• PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Happiness Hub Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • Happiness Hub
  • This Or That Game
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • College University and Postgraduate
  • Academic Writing

Writing Null Hypotheses in Research and Statistics

Last Updated: September 2, 2024 Fact Checked

This article was co-authored by Joseph Quinones and by wikiHow staff writer, Jennifer Mueller, JD . Joseph Quinones is a Physics Teacher working at South Bronx Community Charter High School. Joseph specializes in astronomy and astrophysics and is interested in science education and science outreach, currently practicing ways to make physics accessible to more students with the goal of bringing more students of color into the STEM fields. He has experience working on Astrophysics research projects at the Museum of Natural History (AMNH). Joseph recieved his Bachelor's degree in Physics from Lehman College and his Masters in Physics Education from City College of New York (CCNY). He is also a member of a network called New York City Men Teach. There are 7 references cited in this article, which can be found at the bottom of the page. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 30,307 times.

Are you working on a research project and struggling with how to write a null hypothesis? Well, you've come to the right place! Keep reading to learn everything you need to know about the null hypothesis, including a review of what it is, how it relates to your research question and your alternative hypothesis, as well as how to use it in different types of studies.

Things You Should Know

  • Write a research null hypothesis as a statement that the studied variables have no relationship to each other, or that there's no difference between 2 groups.

{\displaystyle \mu _{1}=\mu _{2}}

  • Adjust the format of your null hypothesis to match the statistical method you used to test it, such as using "mean" if you're comparing the mean between 2 groups.

What is a null hypothesis?

A null hypothesis states that there's no relationship between 2 variables.

  • Research hypothesis: States in plain language that there's no relationship between the 2 variables or there's no difference between the 2 groups being studied.
  • Statistical hypothesis: States the predicted outcome of statistical analysis through a mathematical equation related to the statistical method you're using.

Examples of Null Hypotheses

Step 1 Research question:

Null Hypothesis vs. Alternative Hypothesis

Step 1 Null hypotheses and alternative hypotheses are mutually exclusive.

  • For example, your alternative hypothesis could state a positive correlation between 2 variables while your null hypothesis states there's no relationship. If there's a negative correlation, then both hypotheses are false.

Step 2 Proving the null hypothesis false is a precursor to proving the alternative.

  • You need additional data or evidence to show that your alternative hypothesis is correct—proving the null hypothesis false is just the first step.
  • In smaller studies, sometimes it's enough to show that there's some relationship and your hypothesis could be correct—you can leave the additional proof as an open question for other researchers to tackle.

How do I test a null hypothesis?

Use statistical methods on collected data to test the null hypothesis.

  • Group means: Compare the mean of the variable in your sample with the mean of the variable in the general population. [6] X Research source
  • Group proportions: Compare the proportion of the variable in your sample with the proportion of the variable in the general population. [7] X Research source
  • Correlation: Correlation analysis looks at the relationship between 2 variables—specifically, whether they tend to happen together. [8] X Research source
  • Regression: Regression analysis reveals the correlation between 2 variables while also controlling for the effect of other, interrelated variables. [9] X Research source

Templates for Null Hypotheses

Step 1 Group means

  • Research null hypothesis: There is no difference in the mean [dependent variable] between [group 1] and [group 2].

{\displaystyle \mu _{1}+\mu _{2}=0}

  • Research null hypothesis: The proportion of [dependent variable] in [group 1] and [group 2] is the same.

{\displaystyle p_{1}=p_{2}}

  • Research null hypothesis: There is no correlation between [independent variable] and [dependent variable] in the population.

\rho =0

  • Research null hypothesis: There is no relationship between [independent variable] and [dependent variable] in the population.

{\displaystyle \beta =0}

Expert Q&A

Joseph Quinones

You Might Also Like

Write an Essay

Expert Interview

null hypothesis example in thesis

Thanks for reading our article! If you’d like to learn more about physics, check out our in-depth interview with Joseph Quinones .

  • ↑ https://online.stat.psu.edu/stat100/lesson/10/10.1
  • ↑ https://online.stat.psu.edu/stat501/lesson/2/2.12
  • ↑ https://support.minitab.com/en-us/minitab/21/help-and-how-to/statistics/basic-statistics/supporting-topics/basics/null-and-alternative-hypotheses/
  • ↑ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635437/
  • ↑ https://online.stat.psu.edu/statprogram/reviews/statistical-concepts/hypothesis-testing
  • ↑ https://education.arcus.chop.edu/null-hypothesis-testing/
  • ↑ https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_hypothesistest-means-proportions/bs704_hypothesistest-means-proportions_print.html

About This Article

Joseph Quinones

  • Send fan mail to authors

Reader Success Stories

Mogens Get

Dec 3, 2022

Did this article help you?

Mogens Get

Featured Articles

Enjoy Your Preteen Years

Trending Articles

Dungeons & Dragons Name Generator

Watch Articles

Make Fluffy Pancakes

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

wikiHow Tech Help Pro:

Develop the tech skills you need for work and life

null hypothesis example in thesis

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Null Hypothesis: Definition, Rejecting & Examples

By Jim Frost 6 Comments

What is a Null Hypothesis?

The null hypothesis in statistics states that there is no difference between groups or no relationship between variables. It is one of two mutually exclusive hypotheses about a population in a hypothesis test.

Photograph of Rodin's statue, The Thinker who is pondering the null hypothesis.

  • Null Hypothesis H 0 : No effect exists in the population.
  • Alternative Hypothesis H A : The effect exists in the population.

In every study or experiment, researchers assess an effect or relationship. This effect can be the effectiveness of a new drug, building material, or other intervention that has benefits. There is a benefit or connection that the researchers hope to identify. Unfortunately, no effect may exist. In statistics, we call this lack of an effect the null hypothesis. Researchers assume that this notion of no effect is correct until they have enough evidence to suggest otherwise, similar to how a trial presumes innocence.

In this context, the analysts don’t necessarily believe the null hypothesis is correct. In fact, they typically want to reject it because that leads to more exciting finds about an effect or relationship. The new vaccine works!

You can think of it as the default theory that requires sufficiently strong evidence to reject. Like a prosecutor, researchers must collect sufficient evidence to overturn the presumption of no effect. Investigators must work hard to set up a study and a data collection system to obtain evidence that can reject the null hypothesis.

Related post : What is an Effect in Statistics?

Null Hypothesis Examples

Null hypotheses start as research questions that the investigator rephrases as a statement indicating there is no effect or relationship.

Does the vaccine prevent infections? The vaccine does not affect the infection rate.
Does the new additive increase product strength? The additive does not affect mean product strength.
Does the exercise intervention increase bone mineral density? The intervention does not affect bone mineral density.
As screen time increases, does test performance decrease? There is no relationship between screen time and test performance.

After reading these examples, you might think they’re a bit boring and pointless. However, the key is to remember that the null hypothesis defines the condition that the researchers need to discredit before suggesting an effect exists.

Let’s see how you reject the null hypothesis and get to those more exciting findings!

When to Reject the Null Hypothesis

So, you want to reject the null hypothesis, but how and when can you do that? To start, you’ll need to perform a statistical test on your data. The following is an overview of performing a study that uses a hypothesis test.

The first step is to devise a research question and the appropriate null hypothesis. After that, the investigators need to formulate an experimental design and data collection procedures that will allow them to gather data that can answer the research question. Then they collect the data. For more information about designing a scientific study that uses statistics, read my post 5 Steps for Conducting Studies with Statistics .

After data collection is complete, statistics and hypothesis testing enter the picture. Hypothesis testing takes your sample data and evaluates how consistent they are with the null hypothesis. The p-value is a crucial part of the statistical results because it quantifies how strongly the sample data contradict the null hypothesis.

When the sample data provide sufficient evidence, you can reject the null hypothesis. In a hypothesis test, this process involves comparing the p-value to your significance level .

Rejecting the Null Hypothesis

Reject the null hypothesis when the p-value is less than or equal to your significance level. Your sample data favor the alternative hypothesis, which suggests that the effect exists in the population. For a mnemonic device, remember—when the p-value is low, the null must go!

When you can reject the null hypothesis, your results are statistically significant. Learn more about Statistical Significance: Definition & Meaning .

Failing to Reject the Null Hypothesis

Conversely, when the p-value is greater than your significance level, you fail to reject the null hypothesis. The sample data provides insufficient data to conclude that the effect exists in the population. When the p-value is high, the null must fly!

Note that failing to reject the null is not the same as proving it. For more information about the difference, read my post about Failing to Reject the Null .

That’s a very general look at the process. But I hope you can see how the path to more exciting findings depends on being able to rule out the less exciting null hypothesis that states there’s nothing to see here!

Let’s move on to learning how to write the null hypothesis for different types of effects, relationships, and tests.

Related posts : How Hypothesis Tests Work and Interpreting P-values

How to Write a Null Hypothesis

The null hypothesis varies by the type of statistic and hypothesis test. Remember that inferential statistics use samples to draw conclusions about populations. Consequently, when you write a null hypothesis, it must make a claim about the relevant population parameter . Further, that claim usually indicates that the effect does not exist in the population. Below are typical examples of writing a null hypothesis for various parameters and hypothesis tests.

Related posts : Descriptive vs. Inferential Statistics and Populations, Parameters, and Samples in Inferential Statistics

Group Means

T-tests and ANOVA assess the differences between group means. For these tests, the null hypothesis states that there is no difference between group means in the population. In other words, the experimental conditions that define the groups do not affect the mean outcome. Mu (µ) is the population parameter for the mean, and you’ll need to include it in the statement for this type of study.

For example, an experiment compares the mean bone density changes for a new osteoporosis medication. The control group does not receive the medicine, while the treatment group does. The null states that the mean bone density changes for the control and treatment groups are equal.

  • Null Hypothesis H 0 : Group means are equal in the population: µ 1 = µ 2 , or µ 1 – µ 2 = 0
  • Alternative Hypothesis H A : Group means are not equal in the population: µ 1 ≠ µ 2 , or µ 1 – µ 2 ≠ 0.

Group Proportions

Proportions tests assess the differences between group proportions. For these tests, the null hypothesis states that there is no difference between group proportions. Again, the experimental conditions did not affect the proportion of events in the groups. P is the population proportion parameter that you’ll need to include.

For example, a vaccine experiment compares the infection rate in the treatment group to the control group. The treatment group receives the vaccine, while the control group does not. The null states that the infection rates for the control and treatment groups are equal.

  • Null Hypothesis H 0 : Group proportions are equal in the population: p 1 = p 2 .
  • Alternative Hypothesis H A : Group proportions are not equal in the population: p 1 ≠ p 2 .

Correlation and Regression Coefficients

Some studies assess the relationship between two continuous variables rather than differences between groups.

In these studies, analysts often use either correlation or regression analysis . For these tests, the null states that there is no relationship between the variables. Specifically, it says that the correlation or regression coefficient is zero. As one variable increases, there is no tendency for the other variable to increase or decrease. Rho (ρ) is the population correlation parameter and beta (β) is the regression coefficient parameter.

For example, a study assesses the relationship between screen time and test performance. The null states that there is no correlation between this pair of variables. As screen time increases, test performance does not tend to increase or decrease.

  • Null Hypothesis H 0 : The correlation in the population is zero: ρ = 0.
  • Alternative Hypothesis H A : The correlation in the population is not zero: ρ ≠ 0.

For all these cases, the analysts define the hypotheses before the study. After collecting the data, they perform a hypothesis test to determine whether they can reject the null hypothesis.

The preceding examples are all for two-tailed hypothesis tests. To learn about one-tailed tests and how to write a null hypothesis for them, read my post One-Tailed vs. Two-Tailed Tests .

Related post : Understanding Correlation

Neyman, J; Pearson, E. S. (January 1, 1933).  On the Problem of the most Efficient Tests of Statistical Hypotheses .  Philosophical Transactions of the Royal Society A .  231  (694–706): 289–337.

Share this:

null hypothesis example in thesis

Reader Interactions

' src=

January 11, 2024 at 2:57 pm

Thanks for the reply.

January 10, 2024 at 1:23 pm

Hi Jim, In your comment you state that equivalence test null and alternate hypotheses are reversed. For hypothesis tests of data fits to a probability distribution, the null hypothesis is that the probability distribution fits the data. Is this correct?

' src=

January 10, 2024 at 2:15 pm

Those two separate things, equivalence testing and normality tests. But, yes, you’re correct for both.

Hypotheses are switched for equivalence testing. You need to “work” (i.e., collect a large sample of good quality data) to be able to reject the null that the groups are different to be able to conclude they’re the same.

With typical hypothesis tests, if you have low quality data and a low sample size, you’ll fail to reject the null that they’re the same, concluding they’re equivalent. But that’s more a statement about the low quality and small sample size than anything to do with the groups being equal.

So, equivalence testing make you work to obtain a finding that the groups are the same (at least within some amount you define as a trivial difference).

For normality testing, and other distribution tests, the null states that the data follow the distribution (normal or whatever). If you reject the null, you have sufficient evidence to conclude that your sample data don’t follow the probability distribution. That’s a rare case where you hope to fail to reject the null. And it suffers from the problem I describe above where you might fail to reject the null simply because you have a small sample size. In that case, you’d conclude the data follow the probability distribution but it’s more that you don’t have enough data for the test to register the deviation. In this scenario, if you had a larger sample size, you’d reject the null and conclude it doesn’t follow that distribution.

I don’t know of any equivalence testing type approach for distribution fit tests where you’d need to work to show the data follow a distribution, although I haven’t looked for one either!

' src=

February 20, 2022 at 9:26 pm

Is a null hypothesis regularly (always) stated in the negative? “there is no” or “does not”

February 23, 2022 at 9:21 pm

Typically, the null hypothesis includes an equal sign. The null hypothesis states that the population parameter equals a particular value. That value is usually one that represents no effect. In the case of a one-sided hypothesis test, the null still contains an equal sign but it’s “greater than or equal to” or “less than or equal to.” If you wanted to translate the null hypothesis from its native mathematical expression, you could use the expression “there is no effect.” But the mathematical form more specifically states what it’s testing.

It’s the alternative hypothesis that typically contains does not equal.

There are some exceptions. For example, in an equivalence test where the researchers want to show that two things are equal, the null hypothesis states that they’re not equal.

In short, the null hypothesis states the condition that the researchers hope to reject. They need to work hard to set up an experiment and data collection that’ll gather enough evidence to be able to reject the null condition.

' src=

February 15, 2022 at 9:32 am

Dear sir I always read your notes on Research methods.. Kindly tell is there any available Book on all these..wonderfull Urgent

Comments and Questions Cancel reply

9.1 Null and Alternative Hypotheses

The actual test begins by considering two hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

H 0 , the — null hypothesis: a statement of no difference between sample means or proportions or no difference between a sample mean or proportion and a population mean or proportion. In other words, the difference equals 0.

H a —, the alternative hypothesis: a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 .

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are reject H 0 if the sample information favors the alternative hypothesis or do not reject H 0 or decline to reject H 0 if the sample information is insufficient to reject the null hypothesis.

Mathematical Symbols Used in H 0 and H a :

equal (=) not equal (≠) greater than (>) less than (<)
greater than or equal to (≥) less than (<)
less than or equal to (≤) more than (>)

H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

Example 9.1

H 0 : No more than 30 percent of the registered voters in Santa Clara County voted in the primary election. p ≤ 30 H a : More than 30 percent of the registered voters in Santa Clara County voted in the primary election. p > 30

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25 percent. State the null and alternative hypotheses.

Example 9.2

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are the following: H 0 : μ = 2.0 H a : μ ≠ 2.0

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 66
  • H a : μ __ 66

Example 9.3

We want to test if college students take fewer than five years to graduate from college, on the average. The null and alternative hypotheses are the following: H 0 : μ ≥ 5 H a : μ < 5

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 45
  • H a : μ __ 45

Example 9.4

An article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third of the students pass. The same article stated that 6.6 percent of U.S. students take advanced placement exams and 4.4 percent pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6 percent. State the null and alternative hypotheses. H 0 : p ≤ 0.066 H a : p > 0.066

On a state driver’s test, about 40 percent pass the test on the first try. We want to test if more than 40 percent pass on the first try. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : p __ 0.40
  • H a : p __ 0.40

Collaborative Exercise

Bring to class a newspaper, some news magazines, and some internet articles. In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute Texas Education Agency (TEA). The original material is available at: https://www.texasgateway.org/book/tea-statistics . Changes were made to the original material, including updates to art, structure, and other content updates.

Access for free at https://openstax.org/books/statistics/pages/1-introduction
  • Authors: Barbara Illowsky, Susan Dean
  • Publisher/website: OpenStax
  • Book title: Statistics
  • Publication date: Mar 27, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/statistics/pages/1-introduction
  • Section URL: https://openstax.org/books/statistics/pages/9-1-null-and-alternative-hypotheses

© Apr 16, 2024 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

  • Thesis Action Plan New
  • Academic Project Planner

Literature Navigator

Thesis dialogue blueprint, writing wizard's template, research proposal compass.

  • Why students love us
  • Rebels Blog
  • Why we are different
  • All Products
  • Coming Soon

Formulating a Null Hypothesis: Key Elements to Consider

Formulating a Null Hypothesis: Key Elements to Consider

The concept of the null hypothesis is a cornerstone of statistical hypothesis testing. In the article 'Formulating a Null Hypothesis: Key Elements to Consider,' we delve into what a null hypothesis is, why it's crucial for research, and how to properly formulate one. This article offers a comprehensive guide for researchers and students alike, providing the necessary tools to craft a null hypothesis that effectively sets the stage for rigorous scientific inquiry.

Key Takeaways

  • A null hypothesis (H0) is a statement that there is no effect or no difference, and it serves as the starting point for statistical testing.
  • Formulating a null hypothesis involves defining a clear and concise research question, stating the hypothesis in a way that allows for empirical testing, and considering the potential for Type I errors.
  • Evaluating a null hypothesis requires understanding its role in research design, recognizing common misconceptions, and being aware of the challenges in crafting a hypothesis that is both testable and meaningful.

Understanding the Null Hypothesis

Defining the null hypothesis.

The null hypothesis , often represented as H0, is the default assumption that there is no effect or no difference in the context of scientific research. It posits a position of neutrality, suggesting that any observed variations in data are due to chance rather than a specific cause or intervention. Formulating a null hypothesis is a foundational step in hypothesis testing , where it is contrasted with an alternative hypothesis (Ha) that predicts an effect or difference.

Importance of the Null Hypothesis in Research

In the research process, the null hypothesis plays a critical role as it provides a benchmark against which the validity of the study's findings is assessed. It is essential for identifying variables, crafting clear hypotheses, and conducting targeted research that advances scientific knowledge. The research process involves revisiting initial assumptions , evaluating the design, considering alternative explanations, adjusting methodology, and addressing limitations when faced with contradictory data.

Common Misconceptions and Clarifications

There are several misconceptions about the null hypothesis that can lead to confusion. One common error is the belief that a failure to reject the null hypothesis is evidence of no effect, which is not necessarily true. It may simply indicate insufficient evidence to support the alternative hypothesis. Another misunderstanding is equating the null hypothesis with the belief that there is no relationship between variables, which overlooks the fact that it is a tool for statistical testing, not a definitive statement about reality.

Crafting the Null Hypothesis

Steps for formulating a null hypothesis.

When you're learning how to write a thesis or a research paper, formulating a null hypothesis is a critical step. Begin by clearly defining the variables or groups you are studying. Next, state the null hypothesis as a position of no effect or no difference, implying that any observed effect is due to chance. Ensure that your hypothesis is testable and measurable, and consider any potential limitations or biases that could affect the results.

Examples of Null Hypotheses in Various Disciplines

In various academic fields, the null hypothesis takes on different forms. For instance, in psychology, a null hypothesis might state that a new therapy has no effect on depression levels compared to the standard treatment. In ecology, it could assert that there is no significant difference in biodiversity between two protected areas. These examples illustrate how the null hypothesis is tailored to the specific research question and discipline.

Evaluating the Null Hypothesis: Considerations and Challenges

Evaluating the null hypothesis involves selecting appropriate statistical tests and determining the significance level. It's essential to understand the difference between statistical and practical significance . Writing anxiety can arise during this phase, especially when interpreting complex data. However, a systematic approach to hypothesis testing can help alleviate this stress and lead to meaningful research conclusions.

Embarking on the journey of thesis writing can be daunting, but with Research Rebels , you're not alone. Our step-by-step Thesis Action Plan is designed to transform your anxiety and uncertainty into confidence and clarity. From crafting the perfect Null Hypothesis to navigating complex research methodologies, we've got you covered. Don't let sleepless nights hinder your academic success. Visit our website now to claim your special offer and take the first step towards a stress-free thesis experience.

In conclusion, formulating a null hypothesis is a fundamental step in the research process, serving as a critical benchmark against which scientific evidence is measured. A well-constructed null hypothesis provides clarity and direction, allowing for rigorous testing and meaningful interpretation of results. It is essential to articulate the null hypothesis with precision, ensuring it is testable, falsifiable, and appropriately framed to reflect the absence of an effect or relationship. By carefully considering the key elements discussed in this article, researchers can establish a robust foundation for their empirical inquiries, ultimately contributing to the advancement of knowledge within their respective fields.

Frequently Asked Questions

What is the null hypothesis in research.

The null hypothesis (H0) is a statement in research that suggests there is no significant effect or difference between certain populations, conditions, or variables. It is the default assumption that there is no relationship or impact, and it is tested to determine if there is evidence to support an alternative hypothesis.

How do you formulate a null hypothesis?

To formulate a null hypothesis, first identify the research question or problem. Then, state the null hypothesis in a way that it asserts no effect or no difference between groups or variables. It should be clear, specific, and testable, often structured as H0: parameter = value (e.g., H0: μ1 = μ2).

What are common challenges in evaluating the null hypothesis?

Challenges in evaluating the null hypothesis include ensuring the study design and data collection methods are appropriate, selecting the correct statistical test, interpreting the results correctly, and understanding the potential for Type I (false positive) and Type II (false negative) errors.

Crafting a Null Hypothesis: A Guide to Writing it Right

Discovering Statistics Using IBM SPSS Statistics: A Fun and Informative Guide

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Discovering Statistics Using SAS: A Comprehensive Review

Discovering Statistics Using SAS: A Comprehensive Review

Understanding the Difference Between Research Objectives and Research Questions

Understanding the Difference Between Research Objectives and Research Questions

Transitioning Beyond Academia: Life After Completing Your Thesis

Transitioning Beyond Academia: Life After Completing Your Thesis

Trending Topics for Your Thesis: What's Hot in 2024

Trending Topics for Your Thesis: What's Hot in 2024

Thesis Action Plan

Thesis Action Plan

Research Proposal Compass

  • Blog Articles
  • Affiliate Program
  • Terms and Conditions
  • Payment and Shipping Terms
  • Privacy Policy
  • Return Policy

© 2024 Research Rebels, All rights reserved.

Your cart is currently empty.

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Null Hypothesis Examples

Null Hypothesis Example

The null hypothesis (H 0 ) is the hypothesis that states there is no statistical difference between two sample sets. In other words, it assumes the independent variable does not have an effect on the dependent variable in a scientific experiment .

The null hypothesis is the most powerful type of hypothesis in the scientific method because it’s the easiest one to test with a high confidence level using statistics. If the null hypothesis is accepted, then it’s evidence any observed differences between two experiment groups are due to random chance. If the null hypothesis is rejected, then it’s strong evidence there is a true difference between test sets or that the independent variable affects the dependent variable.

  • The null hypothesis is a nullifiable hypothesis. A researcher seeks to reject it because this result strongly indicates observed differences are real and not just due to chance.
  • The null hypothesis may be accepted or rejected, but not proven. There is always a level of confidence in the outcome.

What Is the Null Hypothesis?

The null hypothesis is written as H 0 , which is read as H-zero, H-nought, or H-null. It is associated with another hypothesis, called the alternate or alternative hypothesis H A or H 1 . When the null hypothesis and alternate hypothesis are written mathematically, they cover all possible outcomes of an experiment.

An experimenter tests the null hypothesis with a statistical analysis called a significance test. The significance test determines the likelihood that the results of the test are not due to chance. Usually, a researcher uses a confidence level of 95% or 99% (p-value of 0.05 or 0.01). But, even if the confidence in the test is high, there is always a small chance the outcome is incorrect. This means you can’t prove a null hypothesis. It’s also a good reason why it’s important to repeat experiments.

Exact and Inexact Null Hypothesis

The most common type of null hypothesis assumes no difference between two samples or groups or no measurable effect of a treatment. This is the exact hypothesis . If you’re asked to state a null hypothesis for a science class, this is the one to write. It is the easiest type of hypothesis to test and is the only one accepted for certain types of analysis. Examples include:

There is no difference between two groups H 0 : μ 1  = μ 2 (where H 0  = the null hypothesis, μ 1  = the mean of population 1, and μ 2  = the mean of population 2)

Both groups have value of 100 (or any number or quality) H 0 : μ = 100

However, sometimes a researcher may test an inexact hypothesis . This type of hypothesis specifies ranges or intervals. Examples include:

Recovery time from a treatment is the same or worse than a placebo: H 0 : μ ≥ placebo time

There is a 5% or less difference between two groups: H 0 : 95 ≤ μ ≤ 105

An inexact hypothesis offers “directionality” about a phenomenon. For example, an exact hypothesis can indicate whether or not a treatment has an effect, while an inexact hypothesis can tell whether an effect is positive of negative. However, an inexact hypothesis may be harder to test and some scientists and statisticians disagree about whether it’s a true null hypothesis .

How to State the Null Hypothesis

To state the null hypothesis, first state what you expect the experiment to show. Then, rephrase the statement in a form that assumes there is no relationship between the variables or that a treatment has no effect.

Example: A researcher tests whether a new drug speeds recovery time from a certain disease. The average recovery time without treatment is 3 weeks.

  • State the goal of the experiment: “I hope the average recovery time with the new drug will be less than 3 weeks.”
  • Rephrase the hypothesis to assume the treatment has no effect: “If the drug doesn’t shorten recovery time, then the average time will be 3 weeks or longer.” Mathematically: H 0 : μ ≥ 3

This null hypothesis (inexact hypothesis) covers both the scenario in which the drug has no effect and the one in which the drugs makes the recovery time longer. The alternate hypothesis is that average recovery time will be less than three weeks:

H A : μ < 3

Of course, the researcher could test the no-effect hypothesis (exact null hypothesis): H 0 : μ = 3

The danger of testing this hypothesis is that rejecting it only implies the drug affected recovery time (not whether it made it better or worse). This is because the alternate hypothesis is:

H A : μ ≠ 3 (which includes μ <3 and μ >3)

Even though the no-effect null hypothesis yields less information, it’s used because it’s easier to test using statistics. Basically, testing whether something is unchanged/changed is easier than trying to quantify the nature of the change.

Remember, a researcher hopes to reject the null hypothesis because this supports the alternate hypothesis. Also, be sure the null and alternate hypothesis cover all outcomes. Finally, remember a simple true/false, equal/unequal, yes/no exact hypothesis is easier to test than a more complex inexact hypothesis.

Does chewing willow bark relieve pain?Pain relief is the same compared with a . (exact)
Pain relief after chewing willow bark is the same or worse versus taking a placebo. (inexact)
Pain relief is different compared with a placebo. (exact)
Pain relief is better compared to a placebo. (inexact)
Do cats care about the shape of their food?Cats show no food preference based on shape. (exact)Cat show a food preference based on shape. (exact)
Do teens use mobile devices more than adults?Teens and adults use mobile devices the same amount. (exact)
Teens use mobile devices less than or equal to adults. (inexact)
Teens and adults used mobile devices different amounts. (exact)
Teens use mobile devices more than adults. (inexact)
Does the color of light influence plant growth?The color of light has no effect on plant growth. (exact)The color of light affects plant growth. (exact)
  • Adèr, H. J.; Mellenbergh, G. J. & Hand, D. J. (2007).  Advising on Research Methods: A Consultant’s Companion . Huizen, The Netherlands: Johannes van Kessel Publishing. ISBN  978-90-79418-01-5 .
  • Cox, D. R. (2006).  Principles of Statistical Inference . Cambridge University Press. ISBN  978-0-521-68567-2 .
  • Everitt, Brian (1998).  The Cambridge Dictionary of Statistics . Cambridge, UK New York: Cambridge University Press. ISBN 978-0521593465.
  • Weiss, Neil A. (1999).  Introductory Statistics  (5th ed.). ISBN 9780201598773.

Related Posts

What is The Null Hypothesis & When Do You Reject The Null Hypothesis

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A null hypothesis is a statistical concept suggesting no significant difference or relationship between measured variables. It’s the default assumption unless empirical evidence proves otherwise.

The null hypothesis states no relationship exists between the two variables being studied (i.e., one variable does not affect the other).

The null hypothesis is the statement that a researcher or an investigator wants to disprove.

Testing the null hypothesis can tell you whether your results are due to the effects of manipulating ​ the dependent variable or due to random chance. 

How to Write a Null Hypothesis

Null hypotheses (H0) start as research questions that the investigator rephrases as statements indicating no effect or relationship between the independent and dependent variables.

It is a default position that your research aims to challenge or confirm.

For example, if studying the impact of exercise on weight loss, your null hypothesis might be:

There is no significant difference in weight loss between individuals who exercise daily and those who do not.

Examples of Null Hypotheses

Research QuestionNull Hypothesis
Do teenagers use cell phones more than adults?Teenagers and adults use cell phones the same amount.
Do tomato plants exhibit a higher rate of growth when planted in compost rather than in soil?Tomato plants show no difference in growth rates when planted in compost rather than soil.
Does daily meditation decrease the incidence of depression?Daily meditation does not decrease the incidence of depression.
Does daily exercise increase test performance?There is no relationship between daily exercise time and test performance.
Does the new vaccine prevent infections?The vaccine does not affect the infection rate.
Does flossing your teeth affect the number of cavities?Flossing your teeth has no effect on the number of cavities.

When Do We Reject The Null Hypothesis? 

We reject the null hypothesis when the data provide strong enough evidence to conclude that it is likely incorrect. This often occurs when the p-value (probability of observing the data given the null hypothesis is true) is below a predetermined significance level.

If the collected data does not meet the expectation of the null hypothesis, a researcher can conclude that the data lacks sufficient evidence to back up the null hypothesis, and thus the null hypothesis is rejected. 

Rejecting the null hypothesis means that a relationship does exist between a set of variables and the effect is statistically significant ( p > 0.05).

If the data collected from the random sample is not statistically significance , then the null hypothesis will be accepted, and the researchers can conclude that there is no relationship between the variables. 

You need to perform a statistical test on your data in order to evaluate how consistent it is with the null hypothesis. A p-value is one statistical measurement used to validate a hypothesis against observed data.

Calculating the p-value is a critical part of null-hypothesis significance testing because it quantifies how strongly the sample data contradicts the null hypothesis.

The level of statistical significance is often expressed as a  p  -value between 0 and 1. The smaller the p-value, the stronger the evidence that you should reject the null hypothesis.

Probability and statistical significance in ab testing. Statistical significance in a b experiments

Usually, a researcher uses a confidence level of 95% or 99% (p-value of 0.05 or 0.01) as general guidelines to decide if you should reject or keep the null.

When your p-value is less than or equal to your significance level, you reject the null hypothesis.

In other words, smaller p-values are taken as stronger evidence against the null hypothesis. Conversely, when the p-value is greater than your significance level, you fail to reject the null hypothesis.

In this case, the sample data provides insufficient data to conclude that the effect exists in the population.

Because you can never know with complete certainty whether there is an effect in the population, your inferences about a population will sometimes be incorrect.

When you incorrectly reject the null hypothesis, it’s called a type I error. When you incorrectly fail to reject it, it’s called a type II error.

Why Do We Never Accept The Null Hypothesis?

The reason we do not say “accept the null” is because we are always assuming the null hypothesis is true and then conducting a study to see if there is evidence against it. And, even if we don’t find evidence against it, a null hypothesis is not accepted.

A lack of evidence only means that you haven’t proven that something exists. It does not prove that something doesn’t exist. 

It is risky to conclude that the null hypothesis is true merely because we did not find evidence to reject it. It is always possible that researchers elsewhere have disproved the null hypothesis, so we cannot accept it as true, but instead, we state that we failed to reject the null. 

One can either reject the null hypothesis, or fail to reject it, but can never accept it.

Why Do We Use The Null Hypothesis?

We can never prove with 100% certainty that a hypothesis is true; We can only collect evidence that supports a theory. However, testing a hypothesis can set the stage for rejecting or accepting this hypothesis within a certain confidence level.

The null hypothesis is useful because it can tell us whether the results of our study are due to random chance or the manipulation of a variable (with a certain level of confidence).

A null hypothesis is rejected if the measured data is significantly unlikely to have occurred and a null hypothesis is accepted if the observed outcome is consistent with the position held by the null hypothesis.

Rejecting the null hypothesis sets the stage for further experimentation to see if a relationship between two variables exists. 

Hypothesis testing is a critical part of the scientific method as it helps decide whether the results of a research study support a particular theory about a given population. Hypothesis testing is a systematic way of backing up researchers’ predictions with statistical analysis.

It helps provide sufficient statistical evidence that either favors or rejects a certain hypothesis about the population parameter. 

Purpose of a Null Hypothesis 

  • The primary purpose of the null hypothesis is to disprove an assumption. 
  • Whether rejected or accepted, the null hypothesis can help further progress a theory in many scientific cases.
  • A null hypothesis can be used to ascertain how consistent the outcomes of multiple studies are.

Do you always need both a Null Hypothesis and an Alternative Hypothesis?

The null (H0) and alternative (Ha or H1) hypotheses are two competing claims that describe the effect of the independent variable on the dependent variable. They are mutually exclusive, which means that only one of the two hypotheses can be true. 

While the null hypothesis states that there is no effect in the population, an alternative hypothesis states that there is statistical significance between two variables. 

The goal of hypothesis testing is to make inferences about a population based on a sample. In order to undertake hypothesis testing, you must express your research hypothesis as a null and alternative hypothesis. Both hypotheses are required to cover every possible outcome of the study. 

What is the difference between a null hypothesis and an alternative hypothesis?

The alternative hypothesis is the complement to the null hypothesis. The null hypothesis states that there is no effect or no relationship between variables, while the alternative hypothesis claims that there is an effect or relationship in the population.

It is the claim that you expect or hope will be true. The null hypothesis and the alternative hypothesis are always mutually exclusive, meaning that only one can be true at a time.

What are some problems with the null hypothesis?

One major problem with the null hypothesis is that researchers typically will assume that accepting the null is a failure of the experiment. However, accepting or rejecting any hypothesis is a positive result. Even if the null is not refuted, the researchers will still learn something new.

Why can a null hypothesis not be accepted?

We can either reject or fail to reject a null hypothesis, but never accept it. If your test fails to detect an effect, this is not proof that the effect doesn’t exist. It just means that your sample did not have enough evidence to conclude that it exists.

We can’t accept a null hypothesis because a lack of evidence does not prove something that does not exist. Instead, we fail to reject it.

Failing to reject the null indicates that the sample did not provide sufficient enough evidence to conclude that an effect exists.

If the p-value is greater than the significance level, then you fail to reject the null hypothesis.

Is a null hypothesis directional or non-directional?

A hypothesis test can either contain an alternative directional hypothesis or a non-directional alternative hypothesis. A directional hypothesis is one that contains the less than (“<“) or greater than (“>”) sign.

A nondirectional hypothesis contains the not equal sign (“≠”).  However, a null hypothesis is neither directional nor non-directional.

A null hypothesis is a prediction that there will be no change, relationship, or difference between two variables.

The directional hypothesis or nondirectional hypothesis would then be considered alternative hypotheses to the null hypothesis.

Gill, J. (1999). The insignificance of null hypothesis significance testing.  Political research quarterly ,  52 (3), 647-674.

Krueger, J. (2001). Null hypothesis significance testing: On the survival of a flawed method.  American Psychologist ,  56 (1), 16.

Masson, M. E. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing.  Behavior research methods ,  43 , 679-690.

Nickerson, R. S. (2000). Null hypothesis significance testing: a review of an old and continuing controversy.  Psychological methods ,  5 (2), 241.

Rozeboom, W. W. (1960). The fallacy of the null-hypothesis significance test.  Psychological bulletin ,  57 (5), 416.

Print Friendly, PDF & Email

Null Hypothesis Definition and Examples, How to State

What is the null hypothesis, how to state the null hypothesis, null hypothesis overview.

null hypothesis example in thesis

Why is it Called the “Null”?

The word “null” in this context means that it’s a commonly accepted fact that researchers work to nullify . It doesn’t mean that the statement is null (i.e. amounts to nothing) itself! (Perhaps the term should be called the “nullifiable hypothesis” as that might cause less confusion).

Why Do I need to Test it? Why not just prove an alternate one?

The short answer is, as a scientist, you are required to ; It’s part of the scientific process. Science uses a battery of processes to prove or disprove theories, making sure than any new hypothesis has no flaws. Including both a null and an alternate hypothesis is one safeguard to ensure your research isn’t flawed. Not including the null hypothesis in your research is considered very bad practice by the scientific community. If you set out to prove an alternate hypothesis without considering it, you are likely setting yourself up for failure. At a minimum, your experiment will likely not be taken seriously.

null hypothesis

  • Null hypothesis : H 0 : The world is flat.
  • Alternate hypothesis: The world is round.

Several scientists, including Copernicus , set out to disprove the null hypothesis. This eventually led to the rejection of the null and the acceptance of the alternate. Most people accepted it — the ones that didn’t created the Flat Earth Society !. What would have happened if Copernicus had not disproved the it and merely proved the alternate? No one would have listened to him. In order to change people’s thinking, he first had to prove that their thinking was wrong .

How to State the Null Hypothesis from a Word Problem

You’ll be asked to convert a word problem into a hypothesis statement in statistics that will include a null hypothesis and an alternate hypothesis . Breaking your problem into a few small steps makes these problems much easier to handle.

how to state the null hypothesis

Step 2: Convert the hypothesis to math . Remember that the average is sometimes written as μ.

H 1 : μ > 8.2

Broken down into (somewhat) English, that’s H 1 (The hypothesis): μ (the average) > (is greater than) 8.2

Step 3: State what will happen if the hypothesis doesn’t come true. If the recovery time isn’t greater than 8.2 weeks, there are only two possibilities, that the recovery time is equal to 8.2 weeks or less than 8.2 weeks.

H 0 : μ ≤ 8.2

Broken down again into English, that’s H 0 (The null hypothesis): μ (the average) ≤ (is less than or equal to) 8.2

How to State the Null Hypothesis: Part Two

But what if the researcher doesn’t have any idea what will happen.

Example Problem: A researcher is studying the effects of radical exercise program on knee surgery patients. There is a good chance the therapy will improve recovery time, but there’s also the possibility it will make it worse. Average recovery times for knee surgery patients is 8.2 weeks. 

Step 1: State what will happen if the experiment doesn’t make any difference. That’s the null hypothesis–that nothing will happen. In this experiment, if nothing happens, then the recovery time will stay at 8.2 weeks.

H 0 : μ = 8.2

Broken down into English, that’s H 0 (The null hypothesis): μ (the average) = (is equal to) 8.2

Step 2: Figure out the alternate hypothesis . The alternate hypothesis is the opposite of the null hypothesis. In other words, what happens if our experiment makes a difference?

H 1 : μ ≠ 8.2

In English again, that’s H 1 (The  alternate hypothesis): μ (the average) ≠ (is not equal to) 8.2

That’s How to State the Null Hypothesis!

Check out our Youtube channel for more stats tips!

Gonick, L. (1993). The Cartoon Guide to Statistics . HarperPerennial. Kotz, S.; et al., eds. (2006), Encyclopedia of Statistical Sciences , Wiley.

Null Hypothesis Definition and Examples

PM Images / Getty Images

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

In a scientific experiment, the null hypothesis is the proposition that there is no effect or no relationship between phenomena or populations. If the null hypothesis is true, any observed difference in phenomena or populations would be due to sampling error (random chance) or experimental error. The null hypothesis is useful because it can be tested and found to be false, which then implies that there is a relationship between the observed data. It may be easier to think of it as a nullifiable hypothesis or one that the researcher seeks to nullify. The null hypothesis is also known as the H 0, or no-difference hypothesis.

The alternate hypothesis, H A or H 1 , proposes that observations are influenced by a non-random factor. In an experiment, the alternate hypothesis suggests that the experimental or independent variable has an effect on the dependent variable .

How to State a Null Hypothesis

There are two ways to state a null hypothesis. One is to state it as a declarative sentence, and the other is to present it as a mathematical statement.

For example, say a researcher suspects that exercise is correlated to weight loss, assuming diet remains unchanged. The average length of time to achieve a certain amount of weight loss is six weeks when a person works out five times a week. The researcher wants to test whether weight loss takes longer to occur if the number of workouts is reduced to three times a week.

The first step to writing the null hypothesis is to find the (alternate) hypothesis. In a word problem like this, you're looking for what you expect to be the outcome of the experiment. In this case, the hypothesis is "I expect weight loss to take longer than six weeks."

This can be written mathematically as: H 1 : μ > 6

In this example, μ is the average.

Now, the null hypothesis is what you expect if this hypothesis does not happen. In this case, if weight loss isn't achieved in greater than six weeks, then it must occur at a time equal to or less than six weeks. This can be written mathematically as:

H 0 : μ ≤ 6

The other way to state the null hypothesis is to make no assumption about the outcome of the experiment. In this case, the null hypothesis is simply that the treatment or change will have no effect on the outcome of the experiment. For this example, it would be that reducing the number of workouts would not affect the time needed to achieve weight loss:

H 0 : μ = 6

Null Hypothesis Examples

"Hyperactivity is unrelated to eating sugar " is an example of a null hypothesis. If the hypothesis is tested and found to be false, using statistics, then a connection between hyperactivity and sugar ingestion may be indicated. A significance test is the most common statistical test used to establish confidence in a null hypothesis.

Another example of a null hypothesis is "Plant growth rate is unaffected by the presence of cadmium in the soil ." A researcher could test the hypothesis by measuring the growth rate of plants grown in a medium lacking cadmium, compared with the growth rate of plants grown in mediums containing different amounts of cadmium. Disproving the null hypothesis would set the groundwork for further research into the effects of different concentrations of the element in soil.

Why Test a Null Hypothesis?

You may be wondering why you would want to test a hypothesis just to find it false. Why not just test an alternate hypothesis and find it true? The short answer is that it is part of the scientific method. In science, propositions are not explicitly "proven." Rather, science uses math to determine the probability that a statement is true or false. It turns out it's much easier to disprove a hypothesis than to positively prove one. Also, while the null hypothesis may be simply stated, there's a good chance the alternate hypothesis is incorrect.

For example, if your null hypothesis is that plant growth is unaffected by duration of sunlight, you could state the alternate hypothesis in several different ways. Some of these statements might be incorrect. You could say plants are harmed by more than 12 hours of sunlight or that plants need at least three hours of sunlight, etc. There are clear exceptions to those alternate hypotheses, so if you test the wrong plants, you could reach the wrong conclusion. The null hypothesis is a general statement that can be used to develop an alternate hypothesis, which may or may not be correct.

  • Kelvin Temperature Scale Definition
  • Independent Variable Definition and Examples
  • Theory Definition in Science
  • Hypothesis Definition (Science)
  • de Broglie Equation Definition
  • Law of Combining Volumes Definition
  • Chemical Definition
  • Pure Substance Definition in Chemistry
  • Acid Definition and Examples
  • Extensive Property Definition (Chemistry)
  • Radiation Definition and Examples
  • Valence Definition in Chemistry
  • Atomic Solid Definition
  • Weak Base Definition and Examples
  • Oxidation Definition and Example in Chemistry
  • Definition of Binary Compound

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

10.1 - setting the hypotheses: examples.

A significance test examines whether the null hypothesis provides a plausible explanation of the data. The null hypothesis itself does not involve the data. It is a statement about a parameter (a numerical characteristic of the population). These population values might be proportions or means or differences between means or proportions or correlations or odds ratios or any other numerical summary of the population. The alternative hypothesis is typically the research hypothesis of interest. Here are some examples.

Example 10.2: Hypotheses with One Sample of One Categorical Variable Section  

About 10% of the human population is left-handed. Suppose a researcher at Penn State speculates that students in the College of Arts and Architecture are more likely to be left-handed than people found in the general population. We only have one sample since we will be comparing a population proportion based on a sample value to a known population value.

  • Research Question : Are artists more likely to be left-handed than people found in the general population?
  • Response Variable : Classification of the student as either right-handed or left-handed

State Null and Alternative Hypotheses

  • Null Hypothesis : Students in the College of Arts and Architecture are no more likely to be left-handed than people in the general population (population percent of left-handed students in the College of Art and Architecture = 10% or p = .10).
  • Alternative Hypothesis : Students in the College of Arts and Architecture are more likely to be left-handed than people in the general population (population percent of left-handed students in the College of Arts and Architecture > 10% or p > .10). This is a one-sided alternative hypothesis.

Example 10.3: Hypotheses with One Sample of One Measurement Variable Section  

 two Diphenhydramine pills

A generic brand of the anti-histamine Diphenhydramine markets a capsule with a 50 milligram dose. The manufacturer is worried that the machine that fills the capsules has come out of calibration and is no longer creating capsules with the appropriate dosage.

  • Research Question : Does the data suggest that the population mean dosage of this brand is different than 50 mg?
  • Response Variable : dosage of the active ingredient found by a chemical assay.
  • Null Hypothesis : On the average, the dosage sold under this brand is 50 mg (population mean dosage = 50 mg).
  • Alternative Hypothesis : On the average, the dosage sold under this brand is not 50 mg (population mean dosage ≠ 50 mg). This is a two-sided alternative hypothesis.

Example 10.4: Hypotheses with Two Samples of One Categorical Variable Section  

vegetarian airline meal

Many people are starting to prefer vegetarian meals on a regular basis. Specifically, a researcher believes that females are more likely than males to eat vegetarian meals on a regular basis.

  • Research Question : Does the data suggest that females are more likely than males to eat vegetarian meals on a regular basis?
  • Response Variable : Classification of whether or not a person eats vegetarian meals on a regular basis
  • Explanatory (Grouping) Variable: Sex
  • Null Hypothesis : There is no sex effect regarding those who eat vegetarian meals on a regular basis (population percent of females who eat vegetarian meals on a regular basis = population percent of males who eat vegetarian meals on a regular basis or p females = p males ).
  • Alternative Hypothesis : Females are more likely than males to eat vegetarian meals on a regular basis (population percent of females who eat vegetarian meals on a regular basis > population percent of males who eat vegetarian meals on a regular basis or p females > p males ). This is a one-sided alternative hypothesis.

Example 10.5: Hypotheses with Two Samples of One Measurement Variable Section  

low carb meal

Obesity is a major health problem today. Research is starting to show that people may be able to lose more weight on a low carbohydrate diet than on a low fat diet.

  • Research Question : Does the data suggest that, on the average, people are able to lose more weight on a low carbohydrate diet than on a low fat diet?
  • Response Variable : Weight loss (pounds)
  • Explanatory (Grouping) Variable : Type of diet
  • Null Hypothesis : There is no difference in the mean amount of weight loss when comparing a low carbohydrate diet with a low fat diet (population mean weight loss on a low carbohydrate diet = population mean weight loss on a low fat diet).
  • Alternative Hypothesis : The mean weight loss should be greater for those on a low carbohydrate diet when compared with those on a low fat diet (population mean weight loss on a low carbohydrate diet > population mean weight loss on a low fat diet). This is a one-sided alternative hypothesis.

Example 10.6: Hypotheses about the relationship between Two Categorical Variables Section  

  • Research Question : Do the odds of having a stroke increase if you inhale second hand smoke ? A case-control study of non-smoking stroke patients and controls of the same age and occupation are asked if someone in their household smokes.
  • Variables : There are two different categorical variables (Stroke patient vs control and whether the subject lives in the same household as a smoker). Living with a smoker (or not) is the natural explanatory variable and having a stroke (or not) is the natural response variable in this situation.
  • Null Hypothesis : There is no relationship between whether or not a person has a stroke and whether or not a person lives with a smoker (odds ratio between stroke and second-hand smoke situation is = 1).
  • Alternative Hypothesis : There is a relationship between whether or not a person has a stroke and whether or not a person lives with a smoker (odds ratio between stroke and second-hand smoke situation is > 1). This is a one-tailed alternative.

This research question might also be addressed like example 11.4 by making the hypotheses about comparing the proportion of stroke patients that live with smokers to the proportion of controls that live with smokers.

Example 10.7: Hypotheses about the relationship between Two Measurement Variables Section  

  • Research Question : A financial analyst believes there might be a positive association between the change in a stock's price and the amount of the stock purchased by non-management employees the previous day (stock trading by management being under "insider-trading" regulatory restrictions).
  • Variables : Daily price change information (the response variable) and previous day stock purchases by non-management employees (explanatory variable). These are two different measurement variables.
  • Null Hypothesis : The correlation between the daily stock price change (\$) and the daily stock purchases by non-management employees (\$) = 0.
  • Alternative Hypothesis : The correlation between the daily stock price change (\$) and the daily stock purchases by non-management employees (\$) > 0. This is a one-sided alternative hypothesis.

Example 10.8: Hypotheses about comparing the relationship between Two Measurement Variables in Two Samples Section  

Calculation of a person's approximate tip for their meal

  • Research Question : Is there a linear relationship between the amount of the bill (\$) at a restaurant and the tip (\$) that was left. Is the strength of this association different for family restaurants than for fine dining restaurants?
  • Variables : There are two different measurement variables. The size of the tip would depend on the size of the bill so the amount of the bill would be the explanatory variable and the size of the tip would be the response variable.
  • Null Hypothesis : The correlation between the amount of the bill (\$) at a restaurant and the tip (\$) that was left is the same at family restaurants as it is at fine dining restaurants.
  • Alternative Hypothesis : The correlation between the amount of the bill (\$) at a restaurant and the tip (\$) that was left is the difference at family restaurants then it is at fine dining restaurants. This is a two-sided alternative hypothesis.

Module 9: Hypothesis Testing With One Sample

Null and alternative hypotheses, learning outcomes.

  • Describe hypothesis testing in general and in practice

The actual test begins by considering two  hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

H 0 : The null hypothesis: It is a statement about the population that either is believed to be true or is used to put forth an argument unless it can be shown to be incorrect beyond a reasonable doubt.

H a : The alternative hypothesis : It is a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 .

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make adecision. There are two options for a  decision . They are “reject H 0 ” if the sample information favors the alternative hypothesis or “do not reject H 0 ” or “decline to reject H 0 ” if the sample information is insufficient to reject the null hypothesis.

Mathematical Symbols Used in  H 0 and H a :

equal (=) not equal (≠)
greater than (>) less than (<)
greater than or equal to (≥) less than (<)
less than or equal to (≤) more than (>)

H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

H 0 : No more than 30% of the registered voters in Santa Clara County voted in the primary election. p ≤ 30

H a : More than 30% of the registered voters in Santa Clara County voted in the primary election. p > 30

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

H 0 : The drug reduces cholesterol by 25%. p = 0.25

H a : The drug does not reduce cholesterol by 25%. p ≠ 0.25

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are:

H 0 : μ = 2.0

H a : μ ≠ 2.0

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H 0 : μ __ 66 H a : μ __ 66

  • H 0 : μ = 66
  • H a : μ ≠ 66

We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are:

H 0 : μ ≥ 5

H a : μ < 5

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H 0 : μ __ 45 H a : μ __ 45

  • H 0 : μ ≥ 45
  • H a : μ < 45

In an issue of U.S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses.

H 0 : p ≤ 0.066

H a : p > 0.066

On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H 0 : p __ 0.40 H a : p __ 0.40

  • H 0 : p = 0.40
  • H a : p > 0.40

Concept Review

In a  hypothesis test , sample data is evaluated in order to arrive at a decision about some type of claim. If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we: Evaluate the null hypothesis , typically denoted with H 0 . The null is not rejected unless the hypothesis test shows otherwise. The null statement must always contain some form of equality (=, ≤ or ≥) Always write the alternative hypothesis , typically denoted with H a or H 1 , using less than, greater than, or not equals symbols, i.e., (≠, >, or <). If we reject the null hypothesis, then we can assume there is enough evidence to support the alternative hypothesis. Never state that a claim is proven true or false. Keep in mind the underlying fact that hypothesis testing is based on probability laws; therefore, we can talk only in terms of non-absolute certainties.

Formula Review

H 0 and H a are contradictory.

  • OpenStax, Statistics, Null and Alternative Hypotheses. Provided by : OpenStax. Located at : http://cnx.org/contents/[email protected]:58/Introductory_Statistics . License : CC BY: Attribution
  • Introductory Statistics . Authored by : Barbara Illowski, Susan Dean. Provided by : Open Stax. Located at : http://cnx.org/contents/[email protected] . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/contents/[email protected]
  • Simple hypothesis testing | Probability and Statistics | Khan Academy. Authored by : Khan Academy. Located at : https://youtu.be/5D1gV37bKXY . License : All Rights Reserved . License Terms : Standard YouTube License

Logo for Pressbooks at Virginia Tech

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

5.5 Introduction to Hypothesis Tests

Dalmation puppy near man sitting on the floor.

One job of a statistician is to make statistical inferences about populations based on samples taken from the population. Confidence intervals are one way to estimate a population parameter.

Another way to make a statistical inference is to make a decision about a parameter. For instance, a car dealership advertises that its new small truck gets 35 miles per gallon on average. A tutoring service claims that its method of tutoring helps 90% of its students get an A or a B. A company says that female managers in their company earn an average of $60,000 per year. A statistician may want to make a decision about or evaluate these claims. A hypothesis test can be used to do this.

A hypothesis test involves collecting data from a sample and evaluating the data. Then the statistician makes a decision as to whether or not there is sufficient evidence to reject the null hypothesis based upon analyses of the data.

In this section, you will conduct hypothesis tests on single means when the population standard deviation is known.

Hypothesis testing consists of two contradictory hypotheses or statements, a decision based on the data, and a conclusion. To perform a hypothesis test, a statistician will perform some variation of these steps:

  • Define hypotheses.
  • Collect and/or use the sample data to determine the correct distribution to use.
  • Calculate test statistic.
  • Make a decision.
  • Write a conclusion.

Defining your hypotheses

The actual test begins by considering two hypotheses: the null hypothesis and the alternative hypothesis. These hypotheses contain opposing viewpoints.

The null hypothesis ( H 0 ) is often a statement of the accepted historical value or norm. This is your starting point that you must assume from the beginning in order to show an effect exists.

The alternative hypothesis ( H a ) is a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 .

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision . There are two options for a decision. They are “reject H 0 ” if the sample information favors the alternative hypothesis or “do not reject H 0 ” or “decline to reject H 0 ” if the sample information is insufficient to reject the null hypothesis.

The following table shows mathematical symbols used in H 0 and H a :

Figure 5.12: Null and alternative hypotheses
equal (=) not equal (≠) greater than (>) less than (<)
equal (=) less than (<)
equal (=) more than (>)

NOTE: H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol in the alternative hypothesis depends on the wording of the hypothesis test. Despite this, many researchers may use =, ≤, or ≥ in the null hypothesis. This practice is acceptable because our only decision is to reject or not reject the null hypothesis.

We want to test whether the mean GPA of students in American colleges is 2.0 (out of 4.0). The null hypothesis is: H 0 : μ = 2.0. What is the alternative hypothesis?

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

Using the Sample to Test the Null Hypothesis

Once you have defined your hypotheses, the next step in the process is to collect sample data. In a classroom context, the data or summary statistics will usually be given to you.

Then you will have to determine the correct distribution to perform the hypothesis test, given the assumptions you are able to make about the situation. Right now, we are demonstrating these ideas in a test for a mean when the population standard deviation is known using the z distribution. We will see other scenarios in the future.

Calculating a Test Statistic

Next you will start evaluating the data. This begins with calculating your test statistic , which is a measure of the distance between what you observed and what you are assuming to be true. In this context, your test statistic, z ο , quantifies the number of standard deviations between the sample mean, x, and the population mean, µ . Calculating the test statistic is analogous to the previously discussed process of standardizing observations with z -scores:

z=\frac{\overline{x}-{\mu }_{o}}{\left(\frac{\sigma }{\sqrt{n}}\right)}

where µ o   is the value assumed to be true in the null hypothesis.

Making a Decision

Once you have your test statistic, there are two methods to use it to make your decision:

  • Critical value method (discussed further in later chapters)
  • p -value method (our current focus)

p -Value Method

To find a p -value , we use the test statistic to calculate the actual probability of getting the test result. Formally, the p -value is the probability that, if the null hypothesis is true, the results from another randomly selected sample will be as extreme or more extreme as the results obtained from the given sample.

A large p -value calculated from the data indicates that we should not reject the null hypothesis. The smaller the p -value, the more unlikely the outcome and the stronger the evidence is against the null hypothesis. We would reject the null hypothesis if the evidence is strongly against it.

Draw a graph that shows the p -value. The hypothesis test is easier to perform if you use a graph because you see the problem more clearly.

Suppose a baker claims that his bread height is more than 15 cm on average. Several of his customers do not believe him. To persuade his customers that he is right, the baker decides to do a hypothesis test. He bakes ten loaves of bread. The mean height of the sample loaves is 17 cm. The baker knows from baking hundreds of loaves of bread that the standard deviation for the height is 0.5 cm and the distribution of heights is normal.

The null hypothesis could be H 0 : μ ≤ 15.

The alternate hypothesis is H a : μ > 15.

The words “is more than” calls for the use of the > symbol, so “ μ > 15″ goes into the alternate hypothesis. The null hypothesis must contradict the alternate hypothesis.

\frac{\sigma }{\sqrt{n}}

Suppose the null hypothesis is true (the mean height of the loaves is no more than 15 cm). Then, is the mean height (17 cm) calculated from the sample unexpectedly large? The hypothesis test works by asking how unlikely the sample mean would be if the null hypothesis were true. The graph shows how far out the sample mean is on the normal curve. The p -value is the probability that, if we were to take other samples, any other sample mean would fall at least as far out as 17 cm.

This means that the p -value is the probability that a sample mean is the same or greater than 17 cm when the population mean is, in fact, 15 cm. We can calculate this probability using the normal distribution for means.

Normal distribution curve on average bread heights with values 15, as the population mean, and 17, as the point to determine the p-value, on the x-axis.

A p -value of approximately zero tells us that it is highly unlikely that a loaf of bread rises no more than 15 cm on average. That is, almost 0% of all loaves of bread would be at least as high as 17 cm purely by CHANCE had the population mean height really been 15 cm. Because the outcome of 17 cm is so unlikely (meaning it is happening NOT by chance alone), we conclude that the evidence is strongly against the null hypothesis that the mean height would be at most 15 cm. There is sufficient evidence that the true mean height for the population of the baker’s loaves of bread is greater than 15 cm.

A normal distribution has a standard deviation of one. We want to verify a claim that the mean is greater than 12. A sample of 36 is taken with a sample mean of 12.5.

Find the p -value.

Decision and Conclusion

A systematic way to decide whether to reject or not reject the null hypothesis is to compare the p -value and a preset or preconceived α (also called a significance level ). A preset α is the probability of a type I error (rejecting the null hypothesis when the null hypothesis is true). It may or may not be given to you at the beginning of the problem. If there is no given preconceived α , then use α = 0.05.

When you make a decision to reject or not reject H 0 , do as follows:

  • If α > p -value, reject H 0 . The results of the sample data are statistically significant . You can say there is sufficient evidence to conclude that H 0 is an incorrect belief and that the alternative hypothesis, H a , may be correct.
  • If α ≤ p -value, fail to reject H 0 . The results of the sample data are not significant. There is not sufficient evidence to conclude that the alternative hypothesis, H a , may be correct.

After you make your decision, write a thoughtful conclusion in the context of the scenario incorporating the hypotheses.

NOTE: When you “do not reject H 0 ,” it does not mean that you should believe that H 0 is true. It simply means that the sample data have failed to provide sufficient evidence to cast serious doubt about the truthfulness of H o .

When using the p -value to evaluate a hypothesis test, the following rhymes can come in handy:

If the p -value is low, the null must go.

If the p -value is high, the null must fly.

This memory aid relates a p -value less than the established alpha (“the p -value is low”) as rejecting the null hypothesis and, likewise, relates a p -value higher than the established alpha (“the p -value is high”) as not rejecting the null hypothesis.

Fill in the blanks:

  • Reject the null hypothesis when              .
  • The results of the sample data             .
  • Do not reject the null when hypothesis when             .

It’s a Boy Genetics Labs claim their procedures improve the chances of a boy being born. The results for a test of a single population proportion are as follows:

  • H 0 : p = 0.50, H a : p > 0.50
  • p -value = 0.025

Interpret the results and state a conclusion in simple, non-technical terms.

Click here for more multimedia resources, including podcasts, videos, lecture notes, and worked examples.

Figure References

Figure 5.11: Alora Griffiths (2019). dalmatian puppy near man in blue shorts kneeling. Unsplash license. https://unsplash.com/photos/7aRQZtLsvqw

Figure 5.13: Kindred Grey (2020). Bread height probability. CC BY-SA 4.0.

A decision-making procedure for determining whether sample evidence supports a hypothesis

The claim that is assumed to be true and is tested in a hypothesis test

A working hypothesis that is contradictory to the null hypothesis

A measure of the difference between observations and the hypothesized (or claimed) value

The probability that an event will occur, assuming the null hypothesis is true

Probability that a true null hypothesis will be rejected, also known as type I error and denoted by α

Finding sufficient evidence that the observed effect is not just due to variability, often from rejecting the null hypothesis

Significant Statistics Copyright © 2024 by John Morgan Russell, OpenStaxCollege, OpenIntro is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

  • Math Article

Null Hypothesis

Class Registration Banner

In mathematics, Statistics deals with the study of research and surveys on the numerical data. For taking surveys, we have to define the hypothesis. Generally, there are two types of hypothesis. One is a null hypothesis, and another is an alternative hypothesis .

In probability and statistics, the null hypothesis is a comprehensive statement or default status that there is zero happening or nothing happening. For example, there is no connection among groups or no association between two measured events. It is generally assumed here that the hypothesis is true until any other proof has been brought into the light to deny the hypothesis. Let us learn more here with definition, symbol, principle, types and example, in this article.

Table of contents:

  • Comparison with Alternative Hypothesis

Null Hypothesis Definition

The null hypothesis is a kind of hypothesis which explains the population parameter whose purpose is to test the validity of the given experimental data. This hypothesis is either rejected or not rejected based on the viability of the given population or sample . In other words, the null hypothesis is a hypothesis in which the sample observations results from the chance. It is said to be a statement in which the surveyors wants to examine the data. It is denoted by H 0 .

Null Hypothesis Symbol

In statistics, the null hypothesis is usually denoted by letter H with subscript ‘0’ (zero), such that H 0 . It is pronounced as H-null or H-zero or H-nought. At the same time, the alternative hypothesis expresses the observations determined by the non-random cause. It is represented by H 1 or H a .

Null Hypothesis Principle

The principle followed for null hypothesis testing is, collecting the data and determining the chances of a given set of data during the study on some random sample, assuming that the null hypothesis is true. In case if the given data does not face the expected null hypothesis, then the outcome will be quite weaker, and they conclude by saying that the given set of data does not provide strong evidence against the null hypothesis because of insufficient evidence. Finally, the researchers tend to reject that.

Null Hypothesis Formula

Here, the hypothesis test formulas are given below for reference.

The formula for the null hypothesis is:

H 0 :  p = p 0

The formula for the alternative hypothesis is:

H a = p >p 0 , < p 0 ≠ p 0

The formula for the test static is:

Remember that,  p 0  is the null hypothesis and p – hat is the sample proportion.

Also, read:

Types of Null Hypothesis

There are different types of hypothesis. They are:

Simple Hypothesis

It completely specifies the population distribution. In this method, the sampling distribution is the function of the sample size.

Composite Hypothesis

The composite hypothesis is one that does not completely specify the population distribution.

Exact Hypothesis

Exact hypothesis defines the exact value of the parameter. For example μ= 50

Inexact Hypothesis

This type of hypothesis does not define the exact value of the parameter. But it denotes a specific range or interval. For example 45< μ <60

Null Hypothesis Rejection

Sometimes the null hypothesis is rejected too. If this hypothesis is rejected means, that research could be invalid. Many researchers will neglect this hypothesis as it is merely opposite to the alternate hypothesis. It is a better practice to create a hypothesis and test it. The goal of researchers is not to reject the hypothesis. But it is evident that a perfect statistical model is always associated with the failure to reject the null hypothesis.

How do you Find the Null Hypothesis?

The null hypothesis says there is no correlation between the measured event (the dependent variable) and the independent variable. We don’t have to believe that the null hypothesis is true to test it. On the contrast, you will possibly assume that there is a connection between a set of variables ( dependent and independent).

When is Null Hypothesis Rejected?

The null hypothesis is rejected using the P-value approach. If the P-value is less than or equal to the α, there should be a rejection of the null hypothesis in favour of the alternate hypothesis. In case, if P-value is greater than α, the null hypothesis is not rejected.

Null Hypothesis and Alternative Hypothesis

Now, let us discuss the difference between the null hypothesis and the alternative hypothesis.

1

The null hypothesis is a statement. There exists no relation between two variables

Alternative hypothesis a statement, there exists some relationship between two measured phenomenon

2

Denoted by H

Denoted by H

3

The observations of this hypothesis are the result of chance

The observations of this hypothesis are the result of real effect

4

The mathematical formulation of the null hypothesis is an equal sign

The mathematical formulation alternative hypothesis is an inequality sign such as greater than, less than, etc.

Null Hypothesis Examples

Here, some of the examples of the null hypothesis are given below. Go through the below ones to understand the concept of the null hypothesis in a better way.

If a medicine reduces the risk of cardiac stroke, then the null hypothesis should be “the medicine does not reduce the chance of cardiac stroke”. This testing can be performed by the administration of a drug to a certain group of people in a controlled way. If the survey shows that there is a significant change in the people, then the hypothesis is rejected.

Few more examples are:

1). Are there is 100% chance of getting affected by dengue?

Ans: There could be chances of getting affected by dengue but not 100%.

2). Do teenagers are using mobile phones more than grown-ups to access the internet?

Ans: Age has no limit on using mobile phones to access the internet.

3). Does having apple daily will not cause fever?

Ans: Having apple daily does not assure of not having fever, but increases the immunity to fight against such diseases.

4). Do the children more good in doing mathematical calculations than grown-ups?

Ans: Age has no effect on Mathematical skills.

In many common applications, the choice of the null hypothesis is not automated, but the testing and calculations may be automated. Also, the choice of the null hypothesis is completely based on previous experiences and inconsistent advice. The choice can be more complicated and based on the variety of applications and the diversity of the objectives. 

The main limitation for the choice of the null hypothesis is that the hypothesis suggested by the data is based on the reasoning which proves nothing. It means that if some hypothesis provides a summary of the data set, then there would be no value in the testing of the hypothesis on the particular set of data. 

Frequently Asked Questions on Null Hypothesis

What is meant by the null hypothesis.

In Statistics, a null hypothesis is a type of hypothesis which explains the population parameter whose purpose is to test the validity of the given experimental data.

What are the benefits of hypothesis testing?

Hypothesis testing is defined as a form of inferential statistics, which allows making conclusions from the entire population based on the sample representative.

When a null hypothesis is accepted and rejected?

The null hypothesis is either accepted or rejected in terms of the given data. If P-value is less than α, then the null hypothesis is rejected in favor of the alternative hypothesis, and if the P-value is greater than α, then the null hypothesis is accepted in favor of the alternative hypothesis.

Why is the null hypothesis important?

The importance of the null hypothesis is that it provides an approximate description of the phenomena of the given data. It allows the investigators to directly test the relational statement in a research study.

How to accept or reject the null hypothesis in the chi-square test?

If the result of the chi-square test is bigger than the critical value in the table, then the data does not fit the model, which represents the rejection of the null hypothesis.

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all Maths related queries and study materials

Your result is as below

Request OTP on Voice Call

MATHS Related Links

null hypothesis example in thesis

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

Examples

Null Hypothesis

Ai generator.

null hypothesis example in thesis

Making a certain class or laboratory experiment would require a good null hypothesis . You will be given variables to be used in your experiment and then you would be able to identify the relationship between the two. Every beginning of the experiment report would indicate your hypotheses. It is proven useful for it can be tested to prove if the result is considered false.

What is a Null Hypothesis?

A null hypothesis is used during experiments to prove that there is no difference in the relationship between the two variables. Every type of experiment would require you to make a null hypothesis. From the word itself “null” means zero or no value. If you want to practice making a good experiment report , consider providing a good null hypothesis. Null hypothesis is designed to be rejected if the alternative hypothesis is proven to be exact.

Null Hypothesis Examples in Research

1. medical research.

  • Research Question: Does a new drug lower cholesterol levels more effectively than the current drug?
  • Null Hypothesis (H0): The new drug has no effect on cholesterol levels compared to the current drug.
  • Symbolic Form: H0: ?1 = ?2

2. Educational Research

  • Research Question: Does the use of interactive technology improve student test scores?
  • Null Hypothesis (H0): Interactive technology does not improve student test scores.

3. Business Research

  • Research Question: Does a new marketing strategy increase sales?
  • Null Hypothesis (H0): The new marketing strategy does not increase sales.

4. Psychological Research

  • Research Question: Does cognitive-behavioral therapy reduce symptoms of anxiety more than standard therapy?
  • Null Hypothesis (H0): Cognitive-behavioral therapy does not reduce anxiety symptoms more than standard therapy.

5. Environmental Research

  • Research Question: Does urbanization affect bird population diversity?
  • Null Hypothesis (H0): Urbanization has no effect on bird population diversity.
  • Symbolic Form: H0: ?urban = ?rural

6. Nutritional Research

  • Research Question: Does a low-carb diet lead to more weight loss than a low-fat diet?
  • Null Hypothesis (H0): A low-carb diet does not lead to more weight loss than a low-fat diet.

7. Economic Research

  • Research Question: Does increasing the minimum wage reduce poverty levels?
  • Null Hypothesis (H0): Increasing the minimum wage does not reduce poverty levels.
  • Symbolic Form: H0: ?before = ?after

8. Sociological Research

  • Research Question: Does social media usage affect teenagers’ self-esteem?
  • Null Hypothesis (H0): Social media usage does not affect teenagers’ self-esteem.
  • Symbolic Form: H0: ?users = ?non-users

9. Agricultural Research

  • Research Question: Does the use of a new fertilizer increase crop yield?
  • Null Hypothesis (H0): The new fertilizer does not increase crop yield.

10. Technological Research

  • Research Question: Does a new software algorithm improve processing speed?
  • Null Hypothesis (H0): The new software algorithm does not improve processing speed.
  • Symbolic Form: H0: ?new = ?old

Null Hypothesis Examples in Psychology

1. effectiveness of therapy.

  • Research Question: Does cognitive-behavioral therapy (CBT) reduce symptoms of depression more effectively than no treatment?
  • Null Hypothesis (H0): Cognitive-behavioral therapy does not reduce symptoms of depression more effectively than no treatment.
  • Symbolic Form: H0: ?CBT = ?control

2. Impact of Sleep on Memory

  • Research Question: Does sleep deprivation affect short-term memory performance?
  • Null Hypothesis (H0): Sleep deprivation has no effect on short-term memory performance.
  • Symbolic Form: H0: ?sleep_deprived = ?non_sleep_deprived

3. Influence of Color on Mood

  • Research Question: Does the color of a room affect individuals’ mood?
  • Null Hypothesis (H0): The color of a room does not affect individuals’ mood.
  • Symbolic Form: H0: ?color1 = ?color2 = ?color3

4. Social Media and Self-Esteem

  • Research Question: Does the frequency of social media use affect teenagers’ self-esteem?
  • Null Hypothesis (H0): The frequency of social media use does not affect teenagers’ self-esteem.
  • Symbolic Form: H0: ?high_use = ?low_use

5. Mindfulness and Stress Reduction

  • Research Question: Does mindfulness meditation reduce stress levels in college students?
  • Null Hypothesis (H0): Mindfulness meditation does not reduce stress levels in college students.
  • Symbolic Form: H0: ?mindfulness = ?control

6. Parenting Styles and Academic Performance

  • Research Question: Does authoritative parenting style affect children’s academic performance?
  • Null Hypothesis (H0): Authoritative parenting style does not affect children’s academic performance.
  • Symbolic Form: H0: ?authoritative = ?other_styles

7. Impact of Exercise on Anxiety

  • Research Question: Does regular exercise reduce anxiety levels in adults?
  • Null Hypothesis (H0): Regular exercise does not reduce anxiety levels in adults.
  • Symbolic Form: H0: ?exercise = ?no_exercise

8. Gender Differences in Risk-Taking Behavior

  • Research Question: Are there differences in risk-taking behavior between males and females?
  • Null Hypothesis (H0): There are no differences in risk-taking behavior between males and females.
  • Symbolic Form: H0: ?males = ?females

9. Impact of Music on Concentration

  • Research Question: Does listening to music while studying affect concentration levels?
  • Null Hypothesis (H0): Listening to music while studying does not affect concentration levels.
  • Symbolic Form: H0: ?music = ?no_music

10. Effect of Group Therapy on Social Skills

  • Research Question: Does group therapy improve social skills in individuals with social anxiety?
  • Null Hypothesis (H0): Group therapy does not improve social skills in individuals with social anxiety.
  • Symbolic Form: H0: ?group_therapy = ?no_therapy

Null Hypothesis Examples in Biology

1. effect of fertilizers on plant growth.

  • Research Question: Does a new fertilizer improve plant growth compared to no fertilizer?
  • Null Hypothesis (H0): The new fertilizer does not improve plant growth compared to no fertilizer.
  • Symbolic Form: H0: ?fertilizer = ?no_fertilizer

2. Antibiotic Effectiveness on Bacteria

  • Research Question: Does a new antibiotic reduce bacterial growth more effectively than an existing antibiotic?
  • Null Hypothesis (H0): The new antibiotic does not reduce bacterial growth more effectively than the existing antibiotic.
  • Symbolic Form: H0: ?new_antibiotic = ?existing_antibiotic

3. Impact of Temperature on Enzyme Activity

  • Research Question: Does temperature affect the activity of a specific enzyme?
  • Null Hypothesis (H0): Temperature does not affect the activity of the specific enzyme.
  • Symbolic Form: H0: Enzyme activity at temperature1 = Enzyme activity at temperature2

4. Genetic Influence on Trait Expression

  • Research Question: Does a specific gene affect the expression of a particular trait in a plant species?
  • Null Hypothesis (H0): The specific gene does not affect the expression of the particular trait in the plant species.
  • Symbolic Form: H0: Trait expression with gene = Trait expression without gene

5. Effect of Light Intensity on Photosynthesis

  • Research Question: Does light intensity affect the rate of photosynthesis in plants?
  • Null Hypothesis (H0): Light intensity does not affect the rate of photosynthesis in plants.
  • Symbolic Form: H0: Photosynthesis rate at light intensity1 = Photosynthesis rate at light intensity2

6. Impact of Diet on Animal Growth

  • Research Question: Does a high-protein diet affect the growth rate of animals?
  • Null Hypothesis (H0): A high-protein diet does not affect the growth rate of animals.
  • Symbolic Form: H0: Growth rate on high-protein diet = Growth rate on normal diet

7. Effect of Pollution on Aquatic Life

  • Research Question: Does water pollution affect the survival rate of fish in a lake?
  • Null Hypothesis (H0): Water pollution does not affect the survival rate of fish in a lake.
  • Symbolic Form: H0: Fish survival in polluted water = Fish survival in non-polluted water

8. Impact of Caffeine on Heart Rate in Daphnia

  • Research Question: Does caffeine affect the heart rate of Daphnia (water fleas)?
  • Null Hypothesis (H0): Caffeine does not affect the heart rate of Daphnia.
  • Symbolic Form: H0: Heart rate with caffeine = Heart rate without caffeine

9. Influence of Soil pH on Plant Germination

  • Research Question: Does soil pH affect the germination rate of seeds?
  • Null Hypothesis (H0): Soil pH does not affect the germination rate of seeds.
  • Symbolic Form: H0: Germination rate at pH1 = Germination rate at pH2

10. Effect of Salinity on Aquatic Plant Growth

  • Research Question: Does salinity affect the growth of aquatic plants?
  • Null Hypothesis (H0): Salinity does not affect the growth of aquatic plants.
  • Symbolic Form: H0: Plant growth in saline water = Plant growth in freshwater

Null Hypothesis Examples in Business

1. effect of marketing campaign on sales.

  • Research Question: Does a new marketing campaign increase product sales?
  • Null Hypothesis (H0): The new marketing campaign does not increase product sales.
  • Symbolic Form: H0: ?campaign = ?no_campaign

2. Impact of Training Programs on Employee Productivity

  • Research Question: Do training programs improve employee productivity?
  • Null Hypothesis (H0): Training programs do not improve employee productivity.
  • Symbolic Form: H0: ?trained = ?untrained

3. Influence of Price Changes on Demand

  • Research Question: Do price changes affect the demand for a product?
  • Null Hypothesis (H0): Price changes do not affect the demand for the product.
  • Symbolic Form: H0: ?price_change = ?no_price_change

4. Customer Satisfaction and Service Quality

  • Research Question: Does improving service quality increase customer satisfaction?
  • Null Hypothesis (H0): Improving service quality does not increase customer satisfaction.
  • Symbolic Form: H0: ?improved_service = ?standard_service

5. Effect of Employee Benefits on Retention Rates

  • Research Question: Do enhanced employee benefits reduce turnover rates?
  • Null Hypothesis (H0): Enhanced employee benefits do not reduce turnover rates.
  • Symbolic Form: H0: ?enhanced_benefits = ?standard_benefits

6. Impact of Social Media Presence on Brand Awareness

  • Research Question: Does an active social media presence increase brand awareness?
  • Null Hypothesis (H0): An active social media presence does not increase brand awareness.
  • Symbolic Form: H0: ?active_social_media = ?inactive_social_media

7. Influence of Store Layout on Customer Purchases

  • Research Question: Does store layout affect customer purchasing behavior?
  • Null Hypothesis (H0): Store layout does not affect customer purchasing behavior.
  • Symbolic Form: H0: ?layout1 = ?layout2

8. Online Advertising and Website Traffic

  • Research Question: Does online advertising increase website traffic?
  • Null Hypothesis (H0): Online advertising does not increase website traffic.
  • Symbolic Form: H0: ?ads = ?no_ads

9. Effect of Product Packaging on Sales

  • Research Question: Does new product packaging design increase sales?
  • Null Hypothesis (H0): The new product packaging design does not increase sales.
  • Symbolic Form: H0: ?new_packaging = ?old_packaging

10. Influence of Remote Work on Employee Performance

  • Research Question: Does remote work affect employee performance?
  • Null Hypothesis (H0): Remote work does not affect employee performance.
  • Symbolic Form: H0: ?remote_work = ?office_work

Null Hypothesis Examples in Statistics

1. comparing means.

  • Research Question: Is there a difference in average test scores between two groups of students?
  • Null Hypothesis (H0): There is no difference in the average test scores between the two groups.

2. Proportions

  • Research Question: Is the proportion of defective products the same in two different production lines?
  • Null Hypothesis (H0): The proportion of defective products is the same in both production lines.
  • Symbolic Form: H0: p1 = p2

3. Regression Analysis

  • Research Question: Is there a relationship between years of experience and salary?
  • Null Hypothesis (H0): There is no relationship between years of experience and salary.
  • Symbolic Form: H0: ? = 0 (where ? is the regression coefficient)

4. ANOVA (Analysis of Variance)

  • Research Question: Are the means of three or more groups equal?
  • Null Hypothesis (H0): The means of all groups are equal.
  • Symbolic Form: H0: ?1 = ?2 = ?3 = … = ?k

5. Chi-Square Test for Independence

  • Research Question: Are gender and voting preference independent?
  • Null Hypothesis (H0): Gender and voting preference are independent.
  • Symbolic Form: H0: There is no association between gender and voting preference.

6. Time Series Analysis

  • Research Question: Does a time series exhibit a trend over time?
  • Null Hypothesis (H0): There is no trend in the time series data over time.
  • Symbolic Form: H0: The time series has no significant trend component.

7. Hypothesis Testing for Variance

  • Research Question: Is the variance in test scores different between two classes?
  • Null Hypothesis (H0): The variances in test scores are equal between the two classes.
  • Symbolic Form: H0: ?1² = ?2²

8. Correlation Analysis

  • Research Question: Is there a correlation between two variables, such as height and weight?
  • Null Hypothesis (H0): There is no correlation between the two variables.
  • Symbolic Form: H0: ? = 0 (where ? is the correlation coefficient)

9. Two-Sample t-Test

  • Research Question: Do two samples have the same mean?
  • Null Hypothesis (H0): The two samples have the same mean.

10. One-Sample t-Test

  • Research Question: Does the sample mean differ from a known population mean?
  • Null Hypothesis (H0): The sample mean is equal to the population mean.
  • Symbolic Form: H0: ? = ?0

Real life Examples of Null Hypothesis

1. medical studies.

  • Research Question: Does a new medication lower blood pressure more effectively than the current medication?
  • Null Hypothesis (H0): The new medication does not lower blood pressure more effectively than the current medication.
  • Example: A clinical trial compares blood pressure readings between patients taking the new medication and those taking the current medication.

2. Education

  • Research Question: Does a new teaching method improve student test scores?
  • Null Hypothesis (H0): The new teaching method does not improve student test scores.
  • Example: An educational study compares test scores of students taught using the new method versus those taught using traditional methods.

3. Business

  • Research Question: Does a new advertising campaign increase product sales?
  • Null Hypothesis (H0): The new advertising campaign does not increase product sales.
  • Example: A company runs the new campaign and compares sales data before and after the campaign.

4. Public Health

  • Research Question: Does a smoking cessation program reduce the smoking rate in a community?
  • Null Hypothesis (H0): The smoking cessation program does not reduce the smoking rate in the community.
  • Example: Public health officials analyze smoking rates before and after implementing the program.

5. Environmental Science

  • Research Question: Does the introduction of a specific fish species affect the biodiversity of a lake?
  • Null Hypothesis (H0): The introduction of the specific fish species does not affect the biodiversity of the lake.
  • Example: Environmental scientists monitor biodiversity levels before and after introducing the fish species.

6. Economics

  • Research Question: Does raising the minimum wage reduce poverty levels?
  • Null Hypothesis (H0): Raising the minimum wage does not reduce poverty levels.
  • Example: Economists compare poverty rates in regions with and without recent minimum wage increases.

7. Psychology

  • Research Question: Does mindfulness meditation reduce stress levels among college students?
  • Null Hypothesis (H0): Mindfulness meditation does not reduce stress levels among college students.
  • Example: A study measures stress levels before and after a mindfulness meditation program in a group of students.

8. Agriculture

  • Example: Farmers apply the new fertilizer to one field and a standard fertilizer to another and compare the yields.

9. Technology

  • Research Question: Does a new software update improve the speed of a computer program?
  • Null Hypothesis (H0): The new software update does not improve the speed of the computer program.
  • Example: Software engineers measure the program’s speed before and after applying the update.

10. Marketing

  • Research Question: Does personalized email marketing increase customer engagement?
  • Null Hypothesis (H0): Personalized email marketing does not increase customer engagement.
  • Example: A company sends personalized emails to one group and generic emails to another, then compares engagement rates.

More Null Hypothesis Examples & Samples in PDF

1. null hypothesis significance test example.

Null Hypothesis Significance Test Example

2. Sample Null Hypothesis Example

Sample Null Hypothesis Example

3. Critical Assessment of Null Hypothesis Example

Critical Assessment of Null Hypothesis Example

4. Confidence Levels for Null Hypotheses Example

Confidence Levels for Null Hypotheses Example

5. Interpreting Failure to Reject A Null Hypothesis Example

Interpreting Failure to Reject A Null Hypothesis

6. Simple Null Hypothesis Example

Simple Null Hypothesis Example

7. Basic Neurology Null Hypothesis Example

Basic Neurology Null Hypothesis Example

8. Null Research Hypothesis in DOC

Null Research Hypothesis in DOC

Purpose of Null Hypothesis

The null hypothesis is a fundamental concept in statistics and scientific research . It serves several critical purposes in the process of hypothesis testing, guiding researchers in drawing meaningful conclusions from their data. Below are the primary purposes of the null hypothesis:

1. Baseline for Comparison

The null hypothesis provides a baseline or a default position that indicates no effect, no difference, or no relationship between variables. It is the statement that researchers aim to test against an alternative hypothesis. By starting with the assumption that there is no effect, researchers can objectively assess whether the data provide enough evidence to support the alternative hypothesis.

2. Eliminates Bias

By assuming no effect or no difference, the null hypothesis helps eliminate bias in research. Researchers approach their study without preconceived notions about the outcome, ensuring that the results are based on the data collected rather than personal beliefs or expectations.

3. Framework for Statistical Testing

The null hypothesis provides a structured framework for conducting statistical tests. It is essential for calculating p-values and test statistics, which determine whether the observed data are significantly different from what would be expected under the null hypothesis. This framework allows for a standardized approach to testing hypotheses across various fields of study.

4. Facilitates Decision Making

The null hypothesis facilitates decision-making in research by providing clear criteria for accepting or rejecting it. If the data provide sufficient evidence to reject the null hypothesis, researchers can conclude that there is a statistically significant effect or difference. This decision-making process is critical in advancing scientific knowledge and understanding.

5. Controls Type I and Type II Errors

The null hypothesis plays a crucial role in controlling Type I and Type II errors in hypothesis testing. A Type I error occurs when the null hypothesis is incorrectly rejected (a false positive), while a Type II error happens when the null hypothesis is incorrectly accepted (a false negative). By defining the null hypothesis, researchers can set significance levels (e.g., alpha level) to manage the risk of these errors.

When is the Null Hypothesis Rejected?

Rejecting the null hypothesis is a critical step in the process of hypothesis testing. The decision to reject the null hypothesis is based on statistical evidence derived from the data collected in a study. Below are the key factors that determine when the null hypothesis is rejected:

The p-value is a measure of the probability that the observed data (or something more extreme) would occur if the null hypothesis were true. The null hypothesis is rejected if the p-value is less than or equal to the predetermined significance level (?).

  • Significance Level (?): This is the threshold set by the researcher, commonly 0.05 (5%). If the p-value ? 0.05, the null hypothesis is rejected.
  • If a p-value of 0.03 is obtained and the significance level is 0.05, the null hypothesis is rejected.

2. Test Statistic

The test statistic is a standardized value calculated from sample data during a hypothesis test. It measures the degree to which the sample data differ from the null hypothesis. The decision to reject the null hypothesis depends on whether the test statistic falls within the critical region.

  • Critical Region: This is determined by the significance level and the distribution of the test statistic (e.g., Z-distribution, t-distribution).
  • In a two-tailed test with ? = 0.05, the critical region for a Z-test might be Z < -1.96 or Z > 1.96. If the test statistic is 2.10, the null hypothesis is rejected.

3. Confidence Intervals

Confidence intervals provide a range of values that are likely to contain the population parameter. If the confidence interval does not include the value specified by the null hypothesis, the null hypothesis is rejected.

  • If a 95% confidence interval for the mean difference between two groups is (2.5, 5.0) and the null hypothesis states that the mean difference is 0, the null hypothesis is rejected.

4. Effect Size

Effect size measures the magnitude of the difference between groups or the strength of a relationship between variables. While not a direct criterion for rejecting the null hypothesis, a substantial effect size can support the decision to reject the null hypothesis when combined with a significant p-value.

Null Hypothesis vs. Alternative Hypothesis

Null Hypothesis vs. Alternative Hypothesis

A statement that there is no effect or difference.A statement that there is an effect or difference.
Serves as a baseline or default position.Represents the outcome the researcher aims to support.
Assumes no relationship or effect.Assumes a relationship or effect exists.
“The new drug has no effect on blood pressure.”“The new drug lowers blood pressure.”
Retained if the p-value is greater than the significance level (?).Accepted if the p-value is less than or equal to the significance level (?).
Falls outside the critical region, indicating no significant effect.Falls within the critical region, indicating a significant effect.
Denoted by H0.Denoted by H1 or Ha.
Focuses on the absence of a significant effect or relationship.Focuses on the presence of a significant effect or relationship.
Incorrectly rejecting a true null hypothesis (false positive).N/A
N/AIncorrectly accepting a false null hypothesis (false negative).

How to Write a Null Hypothesis

Writing a null hypothesis is a crucial step in designing a scientific study or experiment. The null hypothesis (H0) serves as a starting point for statistical testing and represents a statement of no effect or no difference. Here’s a step-by-step guide on how to write a null hypothesis:

1. Identify the Research Question

Start by clearly defining the research question you want to investigate. Understand what you are testing and what you expect to find.

  • Example Research Question: Does a new medication reduce blood pressure more effectively than an existing medication?

2. Determine the Variables

Identify the independent and dependent variables in your study.

  • Independent Variable: The variable that is manipulated or categorized (e.g., type of medication).
  • Dependent Variable: The variable that is measured or observed (e.g., blood pressure).

3. State the Null Hypothesis Clearly

The null hypothesis should assert that there is no effect, no difference, or no relationship between the variables. It is usually written as a statement of equality or no change.

  • Format: “There is no [effect/difference/relationship] in [dependent variable] between [independent variable groups].”
  • Example: “There is no difference in blood pressure reduction between the new medication and the existing medication.”

4. Use Proper Symbols and Notation

In formal scientific writing, use symbols and proper notation to represent the null hypothesis.

  • Here, ?1 represents the mean blood pressure reduction for the new medication, and ?2 represents the mean blood pressure reduction for the existing medication.

Why is the null hypothesis important?

The null hypothesis is crucial as it provides a baseline for comparison and allows researchers to test the significance of their findings.

How do you state a null hypothesis?

A null hypothesis is stated as no effect or no difference, typically in the form “There is no [effect/difference] between [groups/variables].”

What is the alternative hypothesis?

The alternative hypothesis (H1) suggests that there is an effect or difference between variables, opposing the null hypothesis.

What does it mean to reject the null hypothesis?

Rejecting the null hypothesis means the data provides sufficient evidence to support the alternative hypothesis, indicating a significant effect or difference.

What is a p-value?

A p-value measures the probability that the observed data would occur if the null hypothesis were true. Low p-values indicate strong evidence against the null hypothesis.

What is a Type I error?

A Type I error occurs when the null hypothesis is incorrectly rejected, meaning a false positive result is concluded.

What is a Type II error?

A Type II error happens when the null hypothesis is incorrectly accepted, meaning a false negative result is concluded.

How do you choose a significance level (?)?

The significance level, often set at 0.05, is chosen based on the acceptable risk of making a Type I error in the context of the study.

Can the null hypothesis be proven true?

No, the null hypothesis can only be rejected or not rejected. Failing to reject it does not prove it true, only that there is not enough evidence against it.

What is the role of sample size in hypothesis testing?

Larger sample sizes increase the test’s power, reducing the risk of Type II errors and making it easier to detect a true effect.

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

An Easy Introduction to Statistical Significance (With Examples)

Published on January 7, 2021 by Pritha Bhandari . Revised on June 22, 2023.

If a result is statistically significant , that means it’s unlikely to be explained solely by chance or random factors. In other words, a statistically significant result has a very low chance of occurring if there were no true effect in a research study.

The p value , or probability value, tells you the statistical significance of a finding. In most studies, a p value of 0.05 or less is considered statistically significant, but this threshold can also be set higher or lower.

Table of contents

How do you test for statistical significance, what is a significance level, problems with relying on statistical significance, other types of significance in research, other interesting articles, frequently asked questions about statistical significance.

In quantitative research , data are analyzed through null hypothesis significance testing, or hypothesis testing. This is a formal procedure for assessing whether a relationship between variables or a difference between groups is statistically significant.

Null and alternative hypotheses

To begin, research predictions are rephrased into two main hypotheses: the null and alternative hypothesis .

  • A null hypothesis ( H 0 ) always predicts no true effect, no relationship between variables , or no difference between groups.
  • An alternative hypothesis ( H a or H 1 ) states your main prediction of a true effect, a relationship between variables, or a difference between groups.

Hypothesis testin g always starts with the assumption that the null hypothesis is true. Using this procedure, you can assess the likelihood (probability) of obtaining your results under this assumption. Based on the outcome of the test, you can reject or retain the null hypothesis.

  • H 0 : There is no difference in happiness between actively smiling and not smiling.
  • H a : Actively smiling leads to more happiness than not smiling.

Test statistics and p values

Every statistical test produces:

  • A test statistic that indicates how closely your data match the null hypothesis.
  • A corresponding p value that tells you the probability of obtaining this result if the null hypothesis is true.

The p value determines statistical significance. An extremely low p value indicates high statistical significance, while a high p value means low or no statistical significance.

Next, you perform a t test to see whether actively smiling leads to more happiness. Using the difference in average happiness between the two groups, you calculate:

  • a t value (the test statistic) that tells you how much the sample data differs from the null hypothesis,
  • a p value showing the likelihood of finding this result if the null hypothesis is true.

Prevent plagiarism. Run a free check.

The significance level , or alpha (α), is a value that the researcher sets in advance as the threshold for statistical significance. It is the maximum risk of making a false positive conclusion ( Type I error ) that you are willing to accept .

In a hypothesis test, the  p value is compared to the significance level to decide whether to reject the null hypothesis.

  • If the p value is  higher than the significance level, the null hypothesis is not refuted, and the results are not statistically significant .
  • If the p value is lower than the significance level, the results are interpreted as refuting the null hypothesis and reported as statistically significant .

Usually, the significance level is set to 0.05 or 5%. That means your results must have a 5% or lower chance of occurring under the null hypothesis to be considered statistically significant.

The significance level can be lowered for a more conservative test. That means an effect has to be larger to be considered statistically significant.

The significance level may also be set higher for significance testing in non-academic marketing or business contexts. This makes the study less rigorous and increases the probability of finding a statistically significant result.

As best practice, you should set a significance level before you begin your study. Otherwise, you can easily manipulate your results to match your research predictions.

It’s important to note that hypothesis testing can only show you whether or not to reject the null hypothesis in favor of the alternative hypothesis. It can never “prove” the null hypothesis, because the lack of a statistically significant effect doesn’t mean that absolutely no effect exists.

When reporting statistical significance, include relevant descriptive statistics about your data (e.g., means and standard deviations ) as well as the test statistic and p value.

There are various critiques of the concept of statistical significance and how it is used in research.

Researchers classify results as statistically significant or non-significant using a conventional threshold that lacks any theoretical or practical basis. This means that even a tiny 0.001 decrease in a p value can convert a research finding from statistically non-significant to significant with almost no real change in the effect.

On its own, statistical significance may also be misleading because it’s affected by sample size. In extremely large samples , you’re more likely to obtain statistically significant results, even if the effect is actually small or negligible in the real world. This means that small effects are often exaggerated if they meet the significance threshold, while interesting results are ignored when they fall short of meeting the threshold.

The strong emphasis on statistical significance has led to a serious publication bias and replication crisis in the social sciences and medicine over the last few decades. Results are usually only published in academic journals if they show statistically significant results—but statistically significant results often can’t be reproduced in high quality replication studies.

As a result, many scientists call for retiring statistical significance as a decision-making tool in favor of more nuanced approaches to interpreting results.

That’s why APA guidelines advise reporting not only p values but also  effect sizes and confidence intervals wherever possible to show the real world implications of a research outcome.

Aside from statistical significance, clinical significance and practical significance are also important research outcomes.

Practical significance shows you whether the research outcome is important enough to be meaningful in the real world. It’s indicated by the effect size of the study.

Clinical significance is relevant for intervention and treatment studies. A treatment is considered clinically significant when it tangibly or substantially improves the lives of patients.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Statistical significance is a term used by researchers to state that it is unlikely their observations could have occurred under the null hypothesis of a statistical test . Significance is usually denoted by a p -value , or probability value.

Statistical significance is arbitrary – it depends on the threshold, or alpha value, chosen by the researcher. The most common threshold is p < 0.05, which means that the data is likely to occur less than 5% of the time under the null hypothesis .

When the p -value falls below the chosen alpha value, then we say the result of the test is statistically significant.

A p -value , or probability value, is a number describing how likely it is that your data would have occurred under the null hypothesis of your statistical test .

P -values are usually automatically calculated by the program you use to perform your statistical test. They can also be estimated using p -value tables for the relevant test statistic .

P -values are calculated from the null distribution of the test statistic. They tell you how often a test statistic is expected to occur under the null hypothesis of the statistical test, based on where it falls in the null distribution.

If the test statistic is far from the mean of the null distribution, then the p -value will be small, showing that the test statistic is not likely to have occurred under the null hypothesis.

No. The p -value only tells you how likely the data you have observed is to have occurred under the null hypothesis .

If the p -value is below your threshold of significance (typically p < 0.05), then you can reject the null hypothesis, but this does not necessarily mean that your alternative hypothesis is true.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). An Easy Introduction to Statistical Significance (With Examples). Scribbr. Retrieved September 9, 2024, from https://www.scribbr.com/statistics/statistical-significance/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, understanding p values | definition and examples, what is effect size and why does it matter (examples), hypothesis testing | a step-by-step guide with easy examples, what is your plagiarism score.

IMAGES

  1. Null Hypothesis

    null hypothesis example in thesis

  2. 15 Null Hypothesis Examples (2024)

    null hypothesis example in thesis

  3. Null And Research Hypothesis Examples /

    null hypothesis example in thesis

  4. Null Hypothesis

    null hypothesis example in thesis

  5. How to Write a Null Hypothesis (with Examples and Templates)

    null hypothesis example in thesis

  6. 200+ Null Thesis Statement Examples, How to Write, Tips

    null hypothesis example in thesis

VIDEO

  1. Difference Between Null Hypothesis and Alternative Hypothesis

  2. Hypothesis Testing: the null and alternative hypotheses

  3. NEGATIVE RESEARCH HYPOTHESIS STATEMENTS l 3 EXAMPLES l RESEARCH PAPER WRITING GUIDE l THESIS TIPS

  4. Null and Alternative Hypothesis

  5. How to frame the Hypothesis statement in your Research

  6. Hypothesis Formulation

COMMENTS

  1. How to Write a Null Hypothesis (5 Examples)

    How to Write a Null Hypothesis (5 Examples) A hypothesis test uses sample data to determine whether or not some claim about a population parameter is true. Whenever we perform a hypothesis test, we always write a null hypothesis and an alternative hypothesis, which take the following forms: H0 (Null Hypothesis): Population parameter =, ≤, ≥ ...

  2. Null & Alternative Hypotheses

    The null hypothesis (H0) answers "No, there's no effect in the population.". The alternative hypothesis (Ha) answers "Yes, there is an effect in the population.". The null and alternative are always claims about the population. That's because the goal of hypothesis testing is to make inferences about a population based on a sample.

  3. How to Formulate a Null Hypothesis (With Examples)

    The null hypothesis is among the easiest hypothesis to test using statistical analysis, making it perhaps the most valuable hypothesis for the scientific method. By evaluating a null hypothesis in addition to another hypothesis, researchers can support their conclusions with a higher level of confidence. Below are examples of how you might formulate a null hypothesis to fit certain questions.

  4. Crafting a Null Hypothesis: A Guide to Writing it Right

    Crafting a Null Hypothesis: A Guide to Writing it Right In the realm of scientific research and statistical analysis, crafting a precise null hypothesis is a fundamental step in hypothesis testing. This guide will navigate through the intricacies of forming a null hypothesis that is both clear and testable, setting the stage for robust and reliable research outcomes. We'll explore the ...

  5. How to Write a Null Hypothesis (with Examples and Templates)

    Are you working on a research project and struggling with how to write a null hypothesis? Well, you've come to the right place! Keep reading to learn everything you need to know about the null hypothesis, including a review of what it is, how it relates to your research question and your alternative hypothesis, as well as how to use it in different types of studies.

  6. Null Hypothesis: Definition, Rejecting & Examples

    The null hypothesis in statistics states that there is no difference between groups or no relationship between variables. It is one of two mutually exclusive hypotheses about a population in a hypothesis test. When your sample contains sufficient evidence, you can reject the null and conclude that the effect is statistically significant.

  7. 9.1 Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses. They are called the null hypothesis and the alternative hypothesis. These hypotheses contain oppos...

  8. Formulating a Null Hypothesis: Key Elements to Consider

    A null hypothesis (H0) is a statement that there is no effect or no difference, and it serves as the starting point for statistical testing. Formulating a null hypothesis involves defining a clear and concise research question, stating the hypothesis in a way that allows for empirical testing, and considering the potential for Type I errors.

  9. Hypothesis Testing

    The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in. Hypothesis testing example You want to test whether there is a relationship between gender and height.

  10. Null Hypothesis Examples

    Get null hypothesis examples. Learn the difference between the null hypothesis and alternative hypothesis.

  11. What Is The Null Hypothesis & When To Reject It

    We reject the null hypothesis when the data provide strong enough evidence to conclude that it is likely incorrect. This often occurs when the p-value (probability of observing the data given the null hypothesis is true) is below a predetermined significance level.

  12. PDF The Concept of the Null Hypothesis

    The statistical hypothesis tests for a pattern, and helps you decide, based on the test statistic, if there is no pattern (NULL) or there is a pattern (ALTERNATIVE) at some specific level of probability.

  13. Null Hypothesis Definition and Examples, How to State

    Null Hypothesis Overview The null hypothesis, H 0 is the commonly accepted fact; it is the opposite of the alternate hypothesis. Researchers work to reject, nullify or disprove the null hypothesis. Researchers come up with an alternate hypothesis, one that they think explains a phenomenon, and then work to reject the null hypothesis. Read on or watch the video for more information.

  14. 9.1: Null and Alternative Hypotheses

    Learn how to formulate and test null and alternative hypotheses in statistics with examples and exercises from this LibreTexts course.

  15. Null Hypothesis Definition and Examples

    Null Hypothesis Examples. "Hyperactivity is unrelated to eating sugar " is an example of a null hypothesis. If the hypothesis is tested and found to be false, using statistics, then a connection between hyperactivity and sugar ingestion may be indicated. A significance test is the most common statistical test used to establish confidence in a ...

  16. 10.1

    10.1 - Setting the Hypotheses: Examples A significance test examines whether the null hypothesis provides a plausible explanation of the data. The null hypothesis itself does not involve the data. It is a statement about a parameter (a numerical characteristic of the population). These population values might be proportions or means or differences between means or proportions or correlations ...

  17. PDF 1. Formulation of Research Hypothesis with student samples

    The research question, when stated as one sentence, is your Research Hypothesis. In some disciplines, the hypothesis is called a "thesis statement."Other words for "hypothesized" are "posited," "theorized" or "proposed". Remember, your hypothesis must REQUIRE two or more disciplines, one of which is law.

  18. Null and Alternative Hypotheses

    Ha: The alternative hypothesis: It is a claim about the population that is contradictory to H0 and what we conclude when we reject H0. Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

  19. How to Write a Strong Hypothesis

    A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses.

  20. Null hypothesis

    Basic definitions. The null hypothesis and the alternative hypothesis are types of conjectures used in statistical tests to make statistical inferences, which are formal methods of reaching conclusions and separating scientific claims from statistical noise. The statement being tested in a test of statistical significance is called the null ...

  21. 5.5 Introduction to Hypothesis Tests

    When using the p-value to evaluate a hypothesis test, the following rhymes can come in handy:. If the p-value is low, the null must go.. If the p-value is high, the null must fly.. This memory aid relates a p-value less than the established alpha ("the p-value is low") as rejecting the null hypothesis and, likewise, relates a p-value higher than the established alpha ("the p-value is ...

  22. Null Hypothesis

    The null hypothesis is a hypothesis in which the sample observation results from chance. Learn the definition, principles, and types of the null hypothesis at BYJU'S.

  23. Null Hypothesis

    Master Null Hypothesis with 60+ examples, step-by-step writing guide, and free PDFs 📘. Essential for students, educators, and researchers in any field!

  24. An Easy Introduction to Statistical Significance (With Examples)

    The p value determines statistical significance. An extremely low p value indicates high statistical significance, while a high p value means low or no statistical significance. Example: Hypothesis testing. To test your hypothesis, you first collect data from two groups. The experimental group actively smiles, while the control group does not.