How to Write a Hypothesis in 6 Steps, With Examples

Matt Ellis

A hypothesis is a statement that explains the predictions and reasoning of your research—an “educated guess” about how your scientific experiments will end. As a fundamental part of the scientific method, a good hypothesis is carefully written, but even the simplest ones can be difficult to put into words. 

Want to know how to write a hypothesis for your academic paper ? Below we explain the different types of hypotheses, what a good hypothesis requires, the steps to write your own, and plenty of examples.

Write with confidence Grammarly helps you polish your academic writing Write with Grammarly  

What is a hypothesis? 

One of our 10 essential words for university success , a hypothesis is one of the earliest stages of the scientific method. It’s essentially an educated guess—based on observations—of what the results of your experiment or research will be. 

Some hypothesis examples include:

  • If I water plants daily they will grow faster.
  • Adults can more accurately guess the temperature than children can. 
  • Butterflies prefer white flowers to orange ones.

If you’ve noticed that watering your plants every day makes them grow faster, your hypothesis might be “plants grow better with regular watering.” From there, you can begin experiments to test your hypothesis; in this example, you might set aside two plants, water one but not the other, and then record the results to see the differences. 

The language of hypotheses always discusses variables , or the elements that you’re testing. Variables can be objects, events, concepts, etc.—whatever is observable. 

There are two types of variables: independent and dependent. Independent variables are the ones that you change for your experiment, whereas dependent variables are the ones that you can only observe. In the above example, our independent variable is how often we water the plants and the dependent variable is how well they grow. 

Hypotheses determine the direction and organization of your subsequent research methods, and that makes them a big part of writing a research paper . Ultimately the reader wants to know whether your hypothesis was proven true or false, so it must be written clearly in the introduction and/or abstract of your paper. 

7 examples of hypotheses

Depending on the nature of your research and what you expect to find, your hypothesis will fall into one or more of the seven main categories. Keep in mind that these categories are not exclusive, so the same hypothesis might qualify as several different types. 

1 Simple hypothesis

A simple hypothesis suggests only the relationship between two variables: one independent and one dependent. 

  • If you stay up late, then you feel tired the next day. 
  • Turning off your phone makes it charge faster. 

2 Complex hypothesis

A complex hypothesis suggests the relationship between more than two variables, for example, two independents and one dependent, or vice versa. 

  • People who both (1) eat a lot of fatty foods and (2) have a family history of health problems are more likely to develop heart diseases. 
  • Older people who live in rural areas are happier than younger people who live in rural areas. 

3 Null hypothesis

A null hypothesis, abbreviated as H 0 , suggests that there is no relationship between variables. 

  • There is no difference in plant growth when using either bottled water or tap water. 
  • Professional psychics do not win the lottery more than other people. 

4 Alternative hypothesis

An alternative hypothesis, abbreviated as H 1 or H A , is used in conjunction with a null hypothesis. It states the opposite of the null hypothesis, so that one and only one must be true. 

  • Plants grow better with bottled water than tap water. 
  • Professional psychics win the lottery more than other people. 

5 Logical hypothesis

A logical hypothesis suggests a relationship between variables without actual evidence. Claims are instead based on reasoning or deduction, but lack actual data.  

  • An alien raised on Venus would have trouble breathing in Earth’s atmosphere. 
  • Dinosaurs with sharp, pointed teeth were probably carnivores. 

6 Empirical hypothesis

An empirical hypothesis, also known as a “working hypothesis,” is one that is currently being tested. Unlike logical hypotheses, empirical hypotheses rely on concrete data. 

  • Customers at restaurants will tip the same even if the wait staff’s base salary is raised. 
  • Washing your hands every hour can reduce the frequency of illness. 

7 Statistical hypothesis

A statistical hypothesis is when you test only a sample of a population and then apply statistical evidence to the results to draw a conclusion about the entire population. Instead of testing everything , you test only a portion and generalize the rest based on preexisting data. 

  • In humans, the birth-gender ratio of males to females is 1.05 to 1.00.  
  • Approximately 2% of the world population has natural red hair. 

What makes a good hypothesis?

No matter what you’re testing, a good hypothesis is written according to the same guidelines. In particular, keep these five characteristics in mind: 

Cause and effect

Hypotheses always include a cause-and-effect relationship where one variable causes another to change (or not change if you’re using a null hypothesis). This can best be reflected as an if-then statement: If one variable occurs, then another variable changes. 

Testable prediction

Most hypotheses are designed to be tested (with the exception of logical hypotheses). Before committing to a hypothesis, make sure you’re actually able to conduct experiments on it. Choose a testable hypothesis with an independent variable that you have absolute control over. 

Independent and dependent variables

Define your variables in your hypothesis so your readers understand the big picture. You don’t have to specifically say which ones are independent and dependent variables, but you definitely want to mention them all. 

Candid language

Writing can easily get convoluted, so make sure your hypothesis remains as simple and clear as possible. Readers use your hypothesis as a contextual pillar to unify your entire paper, so there should be no confusion or ambiguity. If you’re unsure about your phrasing, try reading your hypothesis to a friend to see if they understand. 

Adherence to ethics

It’s not always about what you can test, but what you should test. Avoid hypotheses that require questionable or taboo experiments to keep ethics (and therefore, credibility) intact.

How to write a hypothesis in 6 steps

1 ask a question.

Curiosity has inspired some of history’s greatest scientific achievements, so a good place to start is to ask yourself questions about the world around you. Why are things the way they are? What causes the factors you see around you? If you can, choose a research topic that you’re interested in so your curiosity comes naturally. 

2 Conduct preliminary research

Next, collect some background information on your topic. How much background information you need depends on what you’re attempting. It could require reading several books, or it could be as simple as performing a web search for a quick answer. You don’t necessarily have to prove or disprove your hypothesis at this stage; rather, collect only what you need to prove or disprove it yourself. 

3 Define your variables

Once you have an idea of what your hypothesis will be, select which variables are independent and which are dependent. Remember that independent variables can only be factors that you have absolute control over, so consider the limits of your experiment before finalizing your hypothesis. 

4 Phrase it as an if-then statement

When writing a hypothesis, it helps to phrase it using an if-then format, such as, “ If I water a plant every day, then it will grow better.” This format can get tricky when dealing with multiple variables, but in general, it’s a reliable method for expressing the cause-and-effect relationship you’re testing. 

5  Collect data to support your hypothesis

A hypothesis is merely a means to an end. The priority of any scientific research is the conclusion. Once you have your hypothesis laid out and your variables chosen, you can then begin your experiments. Ideally, you’ll collect data to support your hypothesis, but don’t worry if your research ends up proving it wrong—that’s all part of the scientific method. 

6 Write with confidence

Last, you’ll want to record your findings in a research paper for others to see. This requires a bit of writing know-how, quite a different skill set than conducting experiments. 

That’s where Grammarly can be a major help; our writing suggestions point out not only grammar and spelling mistakes , but also new word choices and better phrasing. While you write, Grammarly automatically recommends optimal language and highlights areas where readers might get confused, ensuring that your hypothesis—and your final paper—are clear and polished.

hints in formulating a hypothesis

  • Thesis Action Plan New
  • Academic Project Planner

Literature Navigator

Thesis dialogue blueprint, writing wizard's template, research proposal compass.

  • Why students love us
  • Rebels Blog
  • Why we are different
  • All Products
  • Coming Soon

What is the Correct Way to Write a Hypothesis? Expert Tips and Examples

Crafting a solid hypothesis is a crucial step in the scientific research process. A well-formulated hypothesis not only guides your research but also provides a clear focus for your study. This article delves into expert tips and examples to help you write a strong hypothesis, ensuring your research is grounded in a solid theoretical framework.

Key Takeaways

  • A hypothesis should be clear and precise, providing a specific prediction that can be tested.
  • Preliminary research is essential to formulate a well-informed hypothesis based on existing literature and data.
  • A strong hypothesis must be testable and falsifiable, meaning it can be proven or disproven through experimentation or observation.
  • It is important to differentiate between null and alternative hypotheses, as both play crucial roles in scientific research.
  • Avoid common pitfalls such as overly broad statements and ambiguous language to ensure your hypothesis is effective and meaningful.

Understanding the Fundamentals of a Hypothesis

A hypothesis is a foundational element in scientific research, serving as a preliminary answer to a research question. Understanding its fundamentals is crucial for any researcher. A well-crafted hypothesis not only guides the direction of your study but also provides a basis for statistical storytelling: understanding and applying key stats in experimental research .

Steps to Formulating a Strong Hypothesis

Identifying the research question.

The first step in formulating a strong hypothesis is to identify the main research question . This involves recognizing a pattern or phenomenon that piques your interest and then asking a specific question that your hypothesis will aim to answer. This step is crucial as it sets the direction for your targeted research .

Conducting Preliminary Research

Before you can formulate a hypothesis, you need to conduct preliminary research. This involves gathering as much information as possible about your topic. By reviewing existing literature and studies, you can gain insights into what is already known and identify gaps that your research could fill. This step ensures that your hypothesis is grounded in existing knowledge and is relevant to the field.

Formulating the Hypothesis Statement

Once you have identified your research question and conducted preliminary research, the next step is to formulate your hypothesis statement. A well-crafted hypothesis should be clear, specific, and testable. It should propose a relationship between variables that can be examined through experimentation or observation. Remember, a strong hypothesis not only predicts an outcome but also provides a basis for further investigation.

Characteristics of a Well-Written Hypothesis

A well-written hypothesis is essential for guiding your research and ensuring that your study is both meaningful and scientifically valid. Clarity and precision are paramount; your hypothesis should be articulated in a way that leaves no room for ambiguity. This means using specific language and clearly defining any terms or variables involved. A hypothesis must also be testable and falsifiable, meaning it should be structured in a way that allows for empirical testing and the possibility of being proven wrong. This is crucial for maintaining the scientific integrity of your research. Lastly, your hypothesis should be directly relevant to your research question, providing a focused direction for your study. By adhering to these characteristics, you can formulate a hypothesis that is both robust and reliable.

Types of Hypotheses in Research

Understanding the various types of hypotheses is crucial for any researcher. Each type serves a unique purpose and is used in different contexts to address the research question effectively.

Examples of Effective Hypotheses

Hypotheses in natural sciences.

In the natural sciences, hypotheses often predict relationships between variables based on empirical evidence. For instance, a hypothesis might state, "Plants exposed to higher levels of sunlight will grow faster than those in shaded areas." This hypothesis is clear and testable , making it a strong candidate for scientific investigation.

Hypotheses in Social Sciences

Social science hypotheses frequently address human behavior and societal trends. An example could be, "Individuals who engage in regular physical activity report higher levels of happiness compared to those who do not." This hypothesis is relevant to the research question and can be tested through surveys and observational studies.

Hypotheses in Applied Research

Applied research often focuses on practical problems and solutions. A typical hypothesis might be, "Implementing a four-day workweek will increase employee productivity." This hypothesis is specific and actionable , providing a clear direction for research and potential policy changes.

Common Pitfalls and How to Avoid Them

When crafting a hypothesis, it's crucial to be aware of common pitfalls that can undermine your research. Avoiding these mistakes will enhance the quality and reliability of your study.

Expert Tips for Writing a Hypothesis

Consulting existing literature.

Before you start formulating your hypothesis, it's crucial to delve into existing literature. This step helps in demystifying the concept of a thesis statement and provides a foundation for your research. By reviewing previous studies, you can identify gaps in the research and build upon them. This not only strengthens your hypothesis but also ensures its relevance in the academic community.

Peer Review and Feedback

Engaging with peers and mentors for feedback is an invaluable part of the hypothesis-writing process. Constructive criticism can help you refine your hypothesis, making it more precise and testable. Don't hesitate to share your drafts and be open to suggestions. This collaborative approach can significantly reduce thesis anxiety and improve the quality of your work.

Iterative Refinement

Writing a hypothesis is not a one-time task; it requires iterative refinement. Start with a broad idea and gradually narrow it down through multiple revisions. This process involves continuously testing and tweaking your hypothesis to ensure it aligns with your research objectives. Remember, a well-crafted hypothesis is the result of meticulous planning and constant improvement.

Crafting a solid hypothesis is crucial for the success of your thesis. Our experts at Research Rebels have compiled essential tips to guide you through this process. Don't let uncertainty hold you back. Visit our website to explore our comprehensive Thesis Action Plan and claim your special offer now !

In conclusion, writing a hypothesis is a fundamental step in the scientific research process that requires careful consideration and precision. By following the expert tips and examples provided in this article, researchers can craft hypotheses that are clear, testable, and relevant to their studies. A well-formulated hypothesis not only guides the direction of the research but also provides a framework for analyzing results and drawing meaningful conclusions. As such, mastering the art of hypothesis writing is essential for any researcher aiming to contribute valuable insights to their field of study.

Frequently Asked Questions

What is a hypothesis.

A hypothesis is a tentative statement predicting a relationship between variables, which can be tested through scientific research.

Why is a hypothesis important in scientific research?

A hypothesis provides a focused direction for research, allowing scientists to make predictions and test their validity through experimentation.

What are the key characteristics of a well-written hypothesis?

A well-written hypothesis should be clear, precise, testable, falsifiable, and relevant to the research question.

What is the difference between a null hypothesis and an alternative hypothesis?

A null hypothesis states that there is no effect or relationship between variables, while an alternative hypothesis suggests that there is an effect or relationship.

How can I ensure my hypothesis is testable?

To ensure your hypothesis is testable, it should be specific and measurable, with clearly defined variables and a methodology for testing.

What are common mistakes to avoid when writing a hypothesis?

Common mistakes include making hypotheses that are too broad, using ambiguous language, and failing to ensure the hypothesis is testable.

Discovering Statistics Using IBM SPSS Statistics: A Fun and Informative Guide

Discovering Statistics Using IBM SPSS Statistics: A Fun and Informative Guide

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Discovering Statistics Using SAS: A Comprehensive Review

Discovering Statistics Using SAS: A Comprehensive Review

Collaborative Genius: 6 Hacks for Seamless Group Thesis Writing

Collaborative Genius: 6 Hacks for Seamless Group Thesis Writing

Understanding the Difference Between Research Objectives and Research Questions

Understanding the Difference Between Research Objectives and Research Questions

Transitioning Beyond Academia: Life After Completing Your Thesis

Transitioning Beyond Academia: Life After Completing Your Thesis

Thesis Action Plan

Thesis Action Plan

Research Proposal Compass

  • Blog Articles
  • Affiliate Program
  • Terms and Conditions
  • Payment and Shipping Terms
  • Privacy Policy
  • Return Policy

© 2024 Research Rebels, All rights reserved.

Your cart is currently empty.

Campus MyThesis Academy

The unique, worldwide Campus where you´ll learn how to write a thesis advised by an expert who graduated summa cum laude

hints in formulating a hypothesis

Hypothesis Formulation: A Comprehensive Step Guide

Hypothesis Formulation A Comprehensive Step Guide

Have you ever been intrigued by the old saying, “An apple a day keeps the doctor away”? Are you curious if there’s any truth to it? To discover the answer, we must first establish a valid hypothesis . But what is a hypothesis, you ask? Hello, I’m Dr. Friederike Jurth, here to guide you through your academic journey.

Demystifying the Concept of Hypothesis and Laying the Groundwork for Effective Research

So, let’s dissect a hypothesis. It’s a provisional claim about what you anticipate to discover through your research. It isn’t merely a wild guess, but an educa

Hypothesis

ted conjecture derived from prior knowledge. Why don’t you grab an apple and let’s dig deeper into this interesting subject! Here’s a step-by-step guide on how to create a compelling hypothesis.

Step 1: Pose a Question

Creating a hypothesis begins with a research query you’re interested in addressing. This question should be precise, targeted, and investigable. For example: What are the health benefits of eating an apple a day?

Step 2: Conduct Preliminary Research

Your initial answer to the question should be grounded in existing knowledge on the subject. Investigate theories and past research to guide your educated guess. For instance, you might discover that apples are high in vitamin C and can enhance your immune system, which could lead to fewer visits to the doctor.

Step 3: Draft Your Hypothesis

Once you’ve completed your preliminary research, note down your primary response to the question in a succinct and clear sentence. For instance: Daily apple consumption results in fewer doctor’s visits.

Step 4: Polish Your Hypothesis

In this phase, ensure that your hypothesis is both specific and verifiable. It should include pertinent variables, the anticipated result of the experiment or analysis, and the particular group under examination. For our purpose, let’s focus on people aged over 60.

Step 5: Articulate Your Hypothesis in Three Forms

First, we can use the “if-then” form. If people over the age of 60 consume an apple daily, then their frequency of doctor’s visits will decrease. The first part mentions the independent variable – daily apple consumption. The second part refers to the dependent variable – the frequency of doctor’s visits.

Secondly, you can phrase your hypothesis in terms of a correlation or effect. For instance: Daily apple consumption in over-60s will result in fewer doctor’s visits.

Lastly, a hypothesis can be expressed by comparing two groups. People over the age of 60 who eat an apple daily visit the doctor less often than those who don’t.

Step 6: Construct a Null Hypothesis

If your research involves statistical hypothesis testing, you’ll also need to formulate a null hypothesis. This type of hypothesis presumes no relationship between the variables. In our case, the null hypothesis would be: Daily apple consumption in the over-60s will have no impact on the frequency of doctor’s visits.

If you’re looking for more examples of how to create a hypothesis, be sure to check out the additional resources provided in this web content. That’s a wrap on crafting a hypothesis! If you found this informative and want more, leave a comment or question below. Stay tuned for more content!

Helpful Resources for Further Reference

  • https://www.thoughtco.com/definition-and-types-of-hypothesis-3026350
  • https://www.sciencedirect.com/science/article/abs/pii/S0306987704005638

About the author:

Picture of Dr. Friederike Jurth

Possibly you already heard of me through different media channels. My name is Dr. Friederike Jurth, and I hold a certificate from Harvard in Higher Education Teaching . Since 2010, I have given lectures on Methodology, Empirical Research, Anthropology, and Transcultural (Music) Studies in collaboration with universities in the United States, Germany, Spain, and Brazil . In 2010, I began a 7-year-long fieldwork project in Rio de Janeiro and have since presented my research at conferences worldwide, including in Japan, the United States, Australia, Brazil, Thailand, Switzerland, and many other countries. Additionally, I have worked as a lecturer and researcher with Germany’s renowned UNESCO Chair .

After completing my doctoral dissertation with summa cum laude , I aimed to unite, condense, and share the steps, ways, and details of my unique methodological and structural approach that I developed during my Ph.D. and that ultimately helped me achieve this result. By concentrating and putting them together into an elaborate academic conception, MyThesis Academy was born. Motivated by the sole aim and objective to help my students through all steps and stages of their thesis journey, MyThesis Academy enables them to achieve their best possible results in the shortest time, independent of their specific area of research.

In addition to my extensive teaching and research experience, I am part of the authors of the Cambridge Companion to Music in Brazil 2024, published by Cambridge University Press & Assessment , where I contribute as a Cambridge Author. This work is a co-operative project conducted remotely from Cambridge, England, United Kingdom.

United States & International Students

  • SSL Protection

© Copyright 2024 - MyThesis Academy®. All rights reserved.

hints in formulating a hypothesis

Masterclass Free

hints in formulating a hypothesis

  • Homework Help
  • Essay Examples
  • Citation Generator

Writing Guides

  • Essay Title Generator
  • Essay Topic Generator
  • Essay Outline Generator
  • Flashcard Generator
  • Plagiarism Checker
  • Paraphrasing Tool
  • Conclusion Generator
  • Thesis Statement Generator
  • Introduction Generator
  • Literature Review Generator
  • Hypothesis Generator
  • Human Editing Service
  • Essay Hook Generator

Writing Guides  /  How to Write a Hypothesis w/ Strong Examples

How to Write a Hypothesis w/ Strong Examples

hypothesis

A hypothesis is a guess about what’s going to happen.  In research, the hypothesis is what you the researcher expects the outcome of an experiment, a study, a test, or a program to be.  It is a belief based on the evidence you have before you, the reasoning of your mind, and what prior experience tells you.  The hypothesis is not 100% guaranteed—that’s why there are different kinds of hypotheses.  In this article, we’ll explain what those are when they should be used.  So let’s dive in!

What is a Hypothesis / Definition

A hypothesis is like a bet:  you size things up and tell your mates exactly what you think is going to happen with respect to X, Y, Z.  It can also be like an explanation for a phenomenon, or a logical prediction of a possible causal correlation among multiple factors. In science—or, really, in any field, a hypothesis is used as a basis for further investigation.  For example, many qualitative or exploratory studies are conducted just so that the researcher in the end can formulate a hypothesis after all the data is collected an analyzed.

In short, it is an educated guess, based on existing knowledge or observation.  It is a way of proposing a possible explanation for a relationship between variables.

One thing to remember is this:  the key characteristic of a hypothesis is that it must be testable and potentially falsifiable. This means that it should be possible to design an experiment or observation that could potentially prove the hypothesis wrong.  That is a very important point to keep in mind.

For that reason, hypotheses are usually only formulated after conducting a preliminary review of existing literature, observations, or after obtaining a general understanding of the subject area. They are not random guesses.  They are grounded in some form of evidence or understanding of the phenomena being studied. The formulation of a hypothesis is a big step in the scientific method, as it defines the focus and direction of the research.  A lot of time is often spent simply on developing a good hypothesis.

Why?  A well-constructed hypothesis not only proposes an explanation for an observation but also often predicts measurable and testable outcomes. It is not merely a question, but rather a statement that includes a clear explanation or prediction. For example, rather than asking “Does temperature affect the growth of bacteria?”, a hypothesis would be something like this:  “If the temperature increases, then the growth rate of bacteria will increase.”  It is clear, measurable, testable, and potentially falsifiable.

In the scientific community, a hypothesis is respected when it has the potential to advance knowledge, regardless of whether testing proves it to be true or false. The process of testing, refining, or nullifying hypotheses through experimentation and observation is part of what research is all about.

hypothesis essays

 Different types of Hypotheses

Hypotheses can be categorized into several types.  Each type has a unique purpose in scientific research.  Understanding these types is helpful for formulating a hypothesis that is appropriate to your specific research question. The main types of hypotheses include the following:

  • Simple Hypothesis : This formulates a relationship between two variables, one independent and one dependent. It is straightforward and concise, making it easy to test.  It is most often used in basic scientific experiments where the aim is to investigate the relationship between two variables, such as in laboratory experiments or controlled field studies.
  • Complex Hypothesis : Unlike the simple hypothesis, a complex hypothesis involves multiple independent and dependent variables. It is used in studies that are looking at several factors simultaneously, where there is an interplay of multiple variables. These are common in fields like social sciences, behavioral studies, and large-scale environmental research.
  • Directional Hypothesis : This type predicts the nature of the effect of the independent variable on the dependent variable. It specifies the direction of the expected relationship.  It tends to be used studies where prior research or theory has already suggested a specific direction of influence or effect, such as in clinical trials or in studies testing theoretical models.
  • Non-directional Hypothesis : In contrast to the directional hypothesis, a non-directional hypothesis does not specify the direction of the relationship. It simply suggests that there is a relationship between variables without stating whether it is positive or negative.  It is often used in exploratory research where the direction of the relationship is not known, such as in early-stage psychological research or when studying new phenomena.
  • Null Hypothesis : The null hypothesis states that there is no relationship between the variables being studied. It is a default position that assumes no effect until evidence suggests otherwise.  It is also a fundamental aspect of virtually all quantitative research, serving as the hypothesis that there is no effect or no difference, against which the alternative hypothesis is tested.
  • Associative and Causal Hypotheses : Associative hypotheses propose a relationship between variables where changes in one variable correspond with changes in another.  They are common in observational studies, such as epidemiological research or surveys, where the goal is to identify correlations between variables.  Causal hypotheses go a step further by suggesting that one variable causes the change in the other.  They are used in experimental research designed to determine cause-and-effect relationships, such as randomized controlled trials in medical research or controlled experiments in psychology.

View 120,000+ High Quality Essay Examples

Learn-by-example to improve your academic writing

How to Write a Good Hypothesis

Writing a good hypothesis is definitely a good skill to have in scientific research. But it is also one that you can definitely learn with some practice if you don’t already have it.  Just keep in mind that the hypothesis is what sets the stage for the entire investigation.  It guides the methods and analysis.  Everything you do in research stems from your research question and hypothesis.

Here are four essential steps to follow when crafting a hypothesis:

  • Start with a Research Question

Every hypothesis begins with a clear, focused research question. This question should arise from a review of existing literature, some observations you have made in the field, or an information gap that is apparent in current knowledge. The question should be specific and researchable.  For example, instead of a broad question like “What affects plant growth?”, a more specific question would be “How does the amount of water affect the growth of sunflowers?”  This is a specific question, and sets up a stage for a perfect hypothesis.

How did you develop the question?  Easy.  You simply took a broad view first, and then began looking more closely.  You looked into the subject matter.  And, as with anything, the more you look into it, the more likely you are to have questions.  So, the most important step here is to get a sense of your subject.  The more you learn about it, the more likely you will be to have a good research question.  Ask yourself:  what about this subject would I like to know more about?  It helps if you have a genuine interest in the topic!  Say, for example, you want to know more about cryptocurrency security or scalability:  wouldn’t you start asking questions about how to achieve either?  And wouldn’t you need to know a bit about the topic before you can ask the right question?  Of course!  Apply that same logic to whatever subject you are researching and your research question will appear rather quickly.

  • Do Preliminary Research

Before formulating your hypothesis, you of course should conduct preliminary research. This involves reviewing existing literature, understanding the current state of knowledge in the field, doing some critical thinking on the subject, and considering any existing theories and findings that might be relevant. This preliminary research helps in developing an educated guess.  If you do your background research well, your hypothesis will be grounded in existing knowledge.

This is basically the step that comes after you ask your research question but before you make a prediction about the subject matter.  Just like if you went to a racetrack and wanted to place a bet on a horse, you would research the horses, the owners, the teams, and make an educated guess about which one is most likely to win, doing preliminary research is the same:  you want to become very familiar with the topic—know it inside and out.  Then you will have everything you need to formulate your hypothesis.

  • Formulate the Hypothesis

Based on your research question and preliminary research, now you can create your hypothesis. A good hypothesis should be clear, concise, and testable. It typically takes a statement form, predicting a potential outcome or relationship between variables. Make sure that your hypothesis is focused and answers your research question.  For example, a hypothesis for the research question stated above might be:   “If sunflower plants are watered with varying amounts of water, then those watered more frequently will grow taller due to better hydration.”

Keep in mind that when you reach the stage of formulating your hypothesis, you are essentially ready to make a statement that can be tested through research or experimentation. Your hypothesis should be as precise as possible. Don’t ever use ambiguous language in your hypothesis.  Also, you should be very specific about the variables involved and the expected relationship between them (if applicable).  For example, let’s look at the hypothesis we generated above:  “If sunflower plants are watered with varying amounts of water, then those watered more frequently will grow taller due to better hydration.”  We have clearly identified the variables (frequency of watering and plant growth height) and the expected outcome.

But what else should your hypothesis do?  Well, when we say it should address your research question, we mean it should be a logical extension of the question and your preliminary research.  If your research question is about the effect of watering frequency on sunflower growth, your hypothesis should specifically predict how these two variables are related.  It should not get into the types of soil, sunshine, temperature, or other variables unless these were brought up specifically in your research question.

Above all, you want your hypothesis to make a prediction. This means stating an expected outcome based on your understanding of the subject. The prediction is what will be tested through experiments or observations.

  • Ensure Testability and Falsifiability

An important aspect of a good hypothesis is that it must be testable and potentially falsifiable. This means you should be able to conduct experiments or make observations that can support or refute the hypothesis. Avoid vague or broad statements that cannot be empirically tested.  Also, make sure that your hypothesis is potentially falsifiable; i.e., there should exist the possibility that it can be proven wrong.  For example, a hypothesis like “Sunflower plants need water to grow” is not falsifiable, as it is already a well-established fact.  But a hypothesis regarding frequency or amount of watering does have the potential to be nullified.

Therefore, keep that in mind during this step:  for a hypothesis to be testable, there must be a way to conduct an experiment or make observations that can confirm or disprove it. This means you should be able to measure or observe the variables involved. In the sunflower example, you can measure plant growth and control the frequency of watering very easily.  This is precisely what makes the hypothesis testable.

Another important point is falsifiability, as this is what separates scientific hypotheses from non-scientific ones.  If it doesn’t have the potential to be proven wrong, it’s not a hypothesis.  Being falsifiable doesn’t mean a hypothesis is false. It means that if the hypothesis is false, there is a way to demonstrate this. The potential for falsification is what allows researchers to make scientific progress no matter the problem or field.

Also, don’t be vague.  Your hypothesis needs to be specific: hypotheses that are too vague or broad are not useful in research, as there is no way to test them.  For example, saying “Water affects plant growth” is too vague.  How does water affect growth?  Is it the amount, frequency, or type of water?  Such a hypothesis needs to be more specific to be testable.  See what we mean?

Remember:   A hypothesis does not need to be correct.  It just needs to be testable.  It is a starting point for investigation. The value of a hypothesis lies in its ability to be tested.  The results of that test are what can potentially contribute to the existing body of scientific knowledge, regardless of whether the hypothesis is supported or refuted by the resulting data.

hypothesis examples

Hypothesis Examples

Simple hypothesis examples.

  • Increasing the amount of natural light in a classroom will improve students’ test scores.
  • Drinking at least eight glasses of water a day reduces the frequency of headaches in adults.
  • Plant growth is faster when the plant is exposed to music for at least one hour per day.

Complex Hypothesis Examples

  • Students’ academic performance is influenced by their study habits, family income, and the educational level of their parents.
  • Employee productivity is affected by workplace environment, job satisfaction, and the level of personal stress the worker encounters both on the job and at home.
  • The effectiveness of a weight loss program is dependent on the participant’s age, gender, and adherence to an appropriate diet plan.

Directional Hypothesis Examples

  • Exposure to high levels of air pollution during pregnancy will increase the risk of asthma in children.
  • A diet high in antioxidants will decrease the risk of heart disease in middle-aged adults.
  • Regular physical exercise leads to a significant decrease in the symptoms of depression in adults.

Non-directional Hypothesis Examples

  • There is a relationship between the amount of sleep a person gets and their level of stress.
  • A change in classroom environment has an effect on student concentration.
  • The introduction of ergonomics in the workplace environment impacts employee productivity.

Null Hypothesis Examples

  • There is no significant difference in test scores between students who study in groups and those who study alone.
  • Dietary changes have no effect on the improvement of symptoms in patients with type 2 diabetes.
  • The new marketing strategy does not affect the sales numbers of the product.

Associative Hypothesis Examples

  • There is an association between the number of hours spent on social media and the level of anxiety in teenagers.
  • Daily consumption of green tea is associated with weight loss in adults.
  • The frequency of public transport use correlates with the level of urban air pollution.

Causal Hypotheses Examples

  • Implementing a school-based exercise program causes a reduction in obesity rates among children.
  • High levels of job stress cause an increase in blood pressure.
  • Smoking causes an increase in the risk of developing lung cancer.

In conclusion, understanding and effectively formulating a solid hypothesis is what scientific research and inquiry is all about—regardless of the type of work you’re doing.  It may be a simple, complex, directional, non-directional, null, associative, or causal hypothesis—no matter:  each type has its own specific purpose and guides the direction of a study in a different way. A simple hypothesis explores the relationship between two variables, while a complex hypothesis involves multiple variables. Directional hypotheses specify the expected direction of a relationship, whereas non-directional hypotheses do not. The null hypothesis, a fundamental aspect of statistical testing, posits no effect or relationship, serving as a baseline for analysis. Associative hypotheses explore correlations between variables, and causal hypotheses aim to establish cause-and-effect relationships.

The ability to craft a clear, concise, and testable hypothesis is important for any researcher. It is what shapes the course of the investigation.  It is also the backbone of the scientific method itself. A well-formulated hypothesis can lead to groundbreaking research or make significant contributions to knowledge in different fields.

As we have shown you with our examples, the hypothesis is more than a mere guess; it is an educated, testable prediction that guides you through the process of scientific discovery. When you master the art of hypothesis formulation, you can set off on your investigation with a clear roadmap and a clear sense of purpose.

Take the first step to becoming a better academic writer.

Writing tools.

  • How to write a research proposal 2021 guide
  • Guide to citing in MLA
  • Guide to citing in APA format
  • Chicago style citation guide
  • Harvard referencing and citing guide
  • How to complete an informative essay outline

Unlock Your Writing Potential with Our AI Essay Writing Assistant

Unlock Your Writing Potential with Our AI Essay Writing Assistant

The Negative Impacts of Artificial Intelligence on Tactile Learning

The Negative Impacts of Artificial Intelligence on Tactile Learning

Overcome Your Writer’s Block:  Essay Writing Tips for Students

Overcome Your Writer’s Block: Essay Writing Tips for Students

How to Write a Synthesis Essay: Tips and Techniques

How to Write a Synthesis Essay: Tips and Techniques

  • Words with Friends Cheat
  • Wordle Solver
  • Word Unscrambler
  • Scrabble Dictionary
  • Anagram Solver
  • Wordscapes Answers

Make Our Dictionary Yours

Sign up for our weekly newsletters and get:

  • Grammar and writing tips
  • Fun language articles
  • #WordOfTheDay and quizzes

By signing in, you agree to our Terms and Conditions and Privacy Policy .

We'll see you in your inbox soon.

How to Write a Strong Hypothesis in 6 Simple Steps

how to write a hypothesis directions

  • DESCRIPTION how to write a hypothesis directions
  • SOURCE Created by Lindy Gaskill for YourDictionary
  • PERMISSION Copyright YourDictionary, Owned by YourDictionary

A hypothesis is an important part of the scientific method. It’s an idea or a proposal based on limited evidence. What comes next is the exciting part. The idea or proposal must be proven through facts, direct testing and evidence. Since the hypothesis acts as the foundation for future research, learn how to write a hypothesis through steps and examples.

What Is a Hypothesis Statement?

A hypothesis statement tells the world what you predict will happen in research. One of the most important elements of a hypothesis is that it must be able to be tested . Sure, you might hypothesize that unicorn horns are made of white gold. But, if you can’t test the independent and dependent variables , your hypothesis will have to remain in your dreams.

If, however, you hypothesize that rose quartz and other crystals possess healing powers, then you might be able to perform a few tests and carry on with your hypothesis. You will have some evidence that either supports or does not support your hypothesis. Now that you know what it is, it’s time to learn how to write a hypothesis.

Steps for How to Write a Hypothesis

When it comes to writing a hypothesis, there are six basic steps:

  • Ask a question.
  • Gather preliminary research.
  • Formulate an answer.
  • Write a hypothesis.
  • Refine your hypothesis.
  • Create a null hypothesis.

1. Ask a Question

In the scientific method , the first step is to ask a question. Frame this question using the classic six: who, what, where, when, why, or how. Sample questions might include:

  • How long does it take carrots to grow?
  • Why does the sky get darker earlier in winter?
  • What happened to the dinosaurs?
  • How did we evolve from monkeys?
  • Why are students antsier on Friday afternoon?
How does sleep affect motivation?
  • Why do IEP accommodations work in schools?

You want the question to be specific and focused. It also needs to be researchable, of course. Once you know you can research your question from several angles, it’s time to start some preliminary research.

2. Gather Preliminary Research

It’s time to collect data. This will come in the form of case studies and academic journals , as well as your own experiments and observations .

Remember, it’s important to explore your question from all sides. Don’t let conflicting research deter you. You might come upon many naysayers as you gather background information. That doesn’t invalidate your hypothesis. In fact, you can use their findings as potential rebuttals and frame your study in such a way as to address these concerns.

For example, if you are looking at the question: "How does sleep affect motivation?", you might find studies with conflicting research about eight hours vs. six hours of sleep. You can use these conflicting points to help to guide the creation of your hypothesis.

3. Formulate an Answer To Your Question

After completing all your research, think about how you will answer your question and defend your position. For example, say the question you posed was:

As you start to collect basic observations and information, you'll find that a lack of sleep creates a negative impact on learning. It decreases thought processes and makes it harder to learn anything new. Therefore, when you are tired, it's harder to learn and requires more effort. Since it is harder, you can be less motivated to do it. Additionally, you discover that there is a point where sleep affects functioning. You use this research to answer your question.

Getting less than eight hours of sleep makes it harder to learn anything new and make new memories. This makes learning harder so you are less likely to be motivated.

4. Write a Hypothesis

With the answer to your question at the ready, it’s time to formulate your hypothesis. To write a good hypothesis, it should include:

  • Relevant variables
  • Predicted outcome
  • Who/what is being studied

Remember that your hypothesis needs to be a statement, not a question. It’s an idea, proposal or prediction. For example, a research hypothesis is formatted in an if/then statement:

If a person gets less than eight hours of sleep, then they will be less motivated at work or school.

This statement shows you:

  • who is being studied - a person
  • the variables - sleep and motivation
  • your prediction - less sleep means less motivation

5. Refine Your Hypothesis

While you might be able to stop at writing your research hypothesis, some hypotheses might be a correlation study or studying the difference between two groups. In these instances, you want to state the relationship or difference you expect to find.

A correlation hypothesis might be:

Getting less than eight hours of sleep has a negative impact on work or school motivation.

A hypothesis showing difference might be:

Those with seven or fewer hours of sleep are less motivated than those with eight or more to complete tasks.

6. Create a Null Hypothesis

Depending on your study, you may need to perform some statistical analysis on the data you collect. When forming your hypothesis statement using the scientific method, it’s important to know the difference between a null hypothesis vs. the alternative hypothesis, and how to create a null hypothesis.

  • A null hypothesis , often denoted as H 0 , posits that there is no apparent difference or that there is no evidence to support a difference. Using the motivation example above, the null hypothesis would be that sleep hours have no effect on motivation.
  • An alternative hypothesis , often denoted as H 1 , states that there is a statistically significant difference, or there is evidence to support such a difference. Going back to the same carrot example, the alternative hypothesis is that a person getting six hours of sleep has less motivation than someone getting eight hours of sleep.

Good and Bad Hypothesis Examples

Here are a few examples of good and bad hypotheses to get you started.

How long does it take carrots to grow?

If we plant carrots deep in the soil, it will take them longer to grow than in shallow soil.

You can plant carrots deep in the soil. (There’s no predicted outcome.)

Why does the sky get darker earlier in winter?

The Earth's rotation affects the number of daylight hours.

The sun goes down. (This doesn’t clarify variables or what will be studied.)

What happened to the dinosaurs?

If we study marine fossils found in the Arctic, we will see that dinosaurs disappeared when a comet hit the Earth.

Extinction happened thousands of years ago. (This does not name what is being studied nor present clear variables for studying dinosaur history.)

How did we evolve from monkeys?

Human beings are not descended from apes, but share a common ancestor with them.

Human evolution is long. (This does not present clear variables to be studied or a prediction to be tested.)

Why are students antsier on Friday afternoon?

Students are anticipating the coming of the weekend, making them antsier on Friday afternoon.

Students have bad behavior. (This isn't showing what is being tested or clear variables.)

How does sleep affect motivation?

If a person gets less than eight hours of sleep, then they will be less motivated at work or school.

Sleep is important. (While this might be true, it's not setting the variables for the study.)

Why do IEP accommodations work in schools?

If a student gets accommodations for their learning disability, then they will perform better in school.

Accommodations help students. (Again, while this might be true, it's not providing what is being studied or the variables.)

Tips for Writing a Hypothesis

To write a strong hypothesis, keep these important tips in mind.

  • Don’t just choose a topic randomly. Find something that interests you.
  • Keep it clear and to the point.
  • Use your research to guide you.
  • Always clearly define your variables.
  • Write it as an if-then statement. If this, then that is the expected outcome.

How to Make a Hypothesis

A hypothesis involves a statement about what you will do, but also what you expect to happen or speculation about what could occur. Once you’ve written your hypothesis, you’ll need to test it, analyze the data and form your conclusion. To read more about hypothesis testing, explore good examples of hypothesis testing .

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is secondary school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout secondary school will have lower rates of unplanned pregnancy than teenagers who did not receive any sex education. Secondary school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative correlation between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 16 September 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

hints in formulating a hypothesis

How to Write a Hypothesis: A Step-by-Step Guide

hints in formulating a hypothesis

Introduction

An overview of the research hypothesis, different types of hypotheses, variables in a hypothesis, how to formulate an effective research hypothesis, designing a study around your hypothesis.

The scientific method can derive and test predictions as hypotheses. Empirical research can then provide support (or lack thereof) for the hypotheses. Even failure to find support for a hypothesis still represents a valuable contribution to scientific knowledge. Let's look more closely at the idea of the hypothesis and the role it plays in research.

hints in formulating a hypothesis

As much as the term exists in everyday language, there is a detailed development that informs the word "hypothesis" when applied to research. A good research hypothesis is informed by prior research and guides research design and data analysis , so it is important to understand how a hypothesis is defined and understood by researchers.

What is the simple definition of a hypothesis?

A hypothesis is a testable prediction about an outcome between two or more variables . It functions as a navigational tool in the research process, directing what you aim to predict and how.

What is the hypothesis for in research?

In research, a hypothesis serves as the cornerstone for your empirical study. It not only lays out what you aim to investigate but also provides a structured approach for your data collection and analysis.

Essentially, it bridges the gap between the theoretical and the empirical, guiding your investigation throughout its course.

hints in formulating a hypothesis

What is an example of a hypothesis?

If you are studying the relationship between physical exercise and mental health, a suitable hypothesis could be: "Regular physical exercise leads to improved mental well-being among adults."

This statement constitutes a specific and testable hypothesis that directly relates to the variables you are investigating.

What makes a good hypothesis?

A good hypothesis possesses several key characteristics. Firstly, it must be testable, allowing you to analyze data through empirical means, such as observation or experimentation, to assess if there is significant support for the hypothesis. Secondly, a hypothesis should be specific and unambiguous, giving a clear understanding of the expected relationship between variables. Lastly, it should be grounded in existing research or theoretical frameworks , ensuring its relevance and applicability.

Understanding the types of hypotheses can greatly enhance how you construct and work with hypotheses. While all hypotheses serve the essential function of guiding your study, there are varying purposes among the types of hypotheses. In addition, all hypotheses stand in contrast to the null hypothesis, or the assumption that there is no significant relationship between the variables .

Here, we explore various kinds of hypotheses to provide you with the tools needed to craft effective hypotheses for your specific research needs. Bear in mind that many of these hypothesis types may overlap with one another, and the specific type that is typically used will likely depend on the area of research and methodology you are following.

Null hypothesis

The null hypothesis is a statement that there is no effect or relationship between the variables being studied. In statistical terms, it serves as the default assumption that any observed differences are due to random chance.

For example, if you're studying the effect of a drug on blood pressure, the null hypothesis might state that the drug has no effect.

Alternative hypothesis

Contrary to the null hypothesis, the alternative hypothesis suggests that there is a significant relationship or effect between variables.

Using the drug example, the alternative hypothesis would posit that the drug does indeed affect blood pressure. This is what researchers aim to prove.

hints in formulating a hypothesis

Simple hypothesis

A simple hypothesis makes a prediction about the relationship between two variables, and only two variables.

For example, "Increased study time results in better exam scores." Here, "study time" and "exam scores" are the only variables involved.

Complex hypothesis

A complex hypothesis, as the name suggests, involves more than two variables. For instance, "Increased study time and access to resources result in better exam scores." Here, "study time," "access to resources," and "exam scores" are all variables.

This hypothesis refers to multiple potential mediating variables. Other hypotheses could also include predictions about variables that moderate the relationship between the independent variable and dependent variable .

Directional hypothesis

A directional hypothesis specifies the direction of the expected relationship between variables. For example, "Eating more fruits and vegetables leads to a decrease in heart disease."

Here, the direction of heart disease is explicitly predicted to decrease, due to effects from eating more fruits and vegetables. All hypotheses typically specify the expected direction of the relationship between the independent and dependent variable, such that researchers can test if this prediction holds in their data analysis .

hints in formulating a hypothesis

Statistical hypothesis

A statistical hypothesis is one that is testable through statistical methods, providing a numerical value that can be analyzed. This is commonly seen in quantitative research .

For example, "There is a statistically significant difference in test scores between students who study for one hour and those who study for two."

Empirical hypothesis

An empirical hypothesis is derived from observations and is tested through empirical methods, often through experimentation or survey data . Empirical hypotheses may also be assessed with statistical analyses.

For example, "Regular exercise is correlated with a lower incidence of depression," could be tested through surveys that measure exercise frequency and depression levels.

Causal hypothesis

A causal hypothesis proposes that one variable causes a change in another. This type of hypothesis is often tested through controlled experiments.

For example, "Smoking causes lung cancer," assumes a direct causal relationship.

Associative hypothesis

Unlike causal hypotheses, associative hypotheses suggest a relationship between variables but do not imply causation.

For instance, "People who smoke are more likely to get lung cancer," notes an association but doesn't claim that smoking causes lung cancer directly.

Relational hypothesis

A relational hypothesis explores the relationship between two or more variables but doesn't specify the nature of the relationship.

For example, "There is a relationship between diet and heart health," leaves the nature of the relationship (causal, associative, etc.) open to interpretation.

Logical hypothesis

A logical hypothesis is based on sound reasoning and logical principles. It's often used in theoretical research to explore abstract concepts, rather than being based on empirical data.

For example, "If all men are mortal and Socrates is a man, then Socrates is mortal," employs logical reasoning to make its point.

hints in formulating a hypothesis

Let ATLAS.ti take you from research question to key insights

Get started with a free trial and see how ATLAS.ti can make the most of your data.

In any research hypothesis, variables play a critical role. These are the elements or factors that the researcher manipulates, controls, or measures. Understanding variables is essential for crafting a clear, testable hypothesis and for the stages of research that follow, such as data collection and analysis.

In the realm of hypotheses, there are generally two types of variables to consider: independent and dependent. Independent variables are what you, as the researcher, manipulate or change in your study. It's considered the cause in the relationship you're investigating. For instance, in a study examining the impact of sleep duration on academic performance, the independent variable would be the amount of sleep participants get.

Conversely, the dependent variable is the outcome you measure to gauge the effect of your manipulation. It's the effect in the cause-and-effect relationship. The dependent variable thus refers to the main outcome of interest in your study. In the same sleep study example, the academic performance, perhaps measured by exam scores or GPA, would be the dependent variable.

Beyond these two primary types, you might also encounter control variables. These are variables that could potentially influence the outcome and are therefore kept constant to isolate the relationship between the independent and dependent variables . For example, in the sleep and academic performance study, control variables could include age, diet, or even the subject of study.

By clearly identifying and understanding the roles of these variables in your hypothesis, you set the stage for a methodologically sound research project. It helps you develop focused research questions, design appropriate experiments or observations, and carry out meaningful data analysis . It's a step that lays the groundwork for the success of your entire study.

hints in formulating a hypothesis

Crafting a strong, testable hypothesis is crucial for the success of any research project. It sets the stage for everything from your study design to data collection and analysis . Below are some key considerations to keep in mind when formulating your hypothesis:

  • Be specific : A vague hypothesis can lead to ambiguous results and interpretations . Clearly define your variables and the expected relationship between them.
  • Ensure testability : A good hypothesis should be testable through empirical means, whether by observation , experimentation, or other forms of data analysis.
  • Ground in literature : Before creating your hypothesis, consult existing research and theories. This not only helps you identify gaps in current knowledge but also gives you valuable context and credibility for crafting your hypothesis.
  • Use simple language : While your hypothesis should be conceptually sound, it doesn't have to be complicated. Aim for clarity and simplicity in your wording.
  • State direction, if applicable : If your hypothesis involves a directional outcome (e.g., "increase" or "decrease"), make sure to specify this. You also need to think about how you will measure whether or not the outcome moved in the direction you predicted.
  • Keep it focused : One of the common pitfalls in hypothesis formulation is trying to answer too many questions at once. Keep your hypothesis focused on a specific issue or relationship.
  • Account for control variables : Identify any variables that could potentially impact the outcome and consider how you will control for them in your study.
  • Be ethical : Make sure your hypothesis and the methods for testing it comply with ethical standards , particularly if your research involves human or animal subjects.

hints in formulating a hypothesis

Designing your study involves multiple key phases that help ensure the rigor and validity of your research. Here we discuss these crucial components in more detail.

Literature review

Starting with a comprehensive literature review is essential. This step allows you to understand the existing body of knowledge related to your hypothesis and helps you identify gaps that your research could fill. Your research should aim to contribute some novel understanding to existing literature, and your hypotheses can reflect this. A literature review also provides valuable insights into how similar research projects were executed, thereby helping you fine-tune your own approach.

hints in formulating a hypothesis

Research methods

Choosing the right research methods is critical. Whether it's a survey, an experiment, or observational study, the methodology should be the most appropriate for testing your hypothesis. Your choice of methods will also depend on whether your research is quantitative, qualitative, or mixed-methods. Make sure the chosen methods align well with the variables you are studying and the type of data you need.

Preliminary research

Before diving into a full-scale study, it’s often beneficial to conduct preliminary research or a pilot study . This allows you to test your research methods on a smaller scale, refine your tools, and identify any potential issues. For instance, a pilot survey can help you determine if your questions are clear and if the survey effectively captures the data you need. This step can save you both time and resources in the long run.

Data analysis

Finally, planning your data analysis in advance is crucial for a successful study. Decide which statistical or analytical tools are most suited for your data type and research questions . For quantitative research, you might opt for t-tests, ANOVA, or regression analyses. For qualitative research , thematic analysis or grounded theory may be more appropriate. This phase is integral for interpreting your results and drawing meaningful conclusions in relation to your research question.

hints in formulating a hypothesis

Turn data into evidence for insights with ATLAS.ti

Powerful analysis for your research paper or presentation is at your fingertips starting with a free trial.

hints in formulating a hypothesis

  • Research Process
  • Manuscript Preparation
  • Manuscript Review
  • Publication Process
  • Publication Recognition
  • Language Editing Services
  • Translation Services

Elsevier QRcode Wechat

Step-by-Step Guide: How to Craft a Strong Research Hypothesis

  • 4 minute read
  • 376.6K views

Table of Contents

A research hypothesis is a concise statement about the expected result of an experiment or project. In many ways, a research hypothesis represents the starting point for a scientific endeavor, as it establishes a tentative assumption that is eventually substantiated or falsified, ultimately improving our certainty about the subject investigated.   

To help you with this and ease the process, in this article, we discuss the purpose of research hypotheses and list the most essential qualities of a compelling hypothesis. Let’s find out!  

How to Craft a Research Hypothesis  

Crafting a research hypothesis begins with a comprehensive literature review to identify a knowledge gap in your field. Once you find a question or problem, come up with a possible answer or explanation, which becomes your hypothesis. Now think about the specific methods of experimentation that can prove or disprove the hypothesis, which ultimately lead to the results of the study.   

Enlisted below are some standard formats in which you can formulate a hypothesis¹ :  

  • A hypothesis can use the if/then format when it seeks to explore the correlation between two variables in a study primarily.  

Example: If administered drug X, then patients will experience reduced fatigue from cancer treatment.  

  • A hypothesis can adopt when X/then Y format when it primarily aims to expose a connection between two variables  

Example: When workers spend a significant portion of their waking hours in sedentary work , then they experience a greater frequency of digestive problems.  

  • A hypothesis can also take the form of a direct statement.  

Example: Drug X and drug Y reduce the risk of cognitive decline through the same chemical pathways  

What are the Features of an Effective Hypothesis?  

Hypotheses in research need to satisfy specific criteria to be considered scientifically rigorous. Here are the most notable qualities of a strong hypothesis:  

  • Testability: Ensure the hypothesis allows you to work towards observable and testable results.  
  • Brevity and objectivity: Present your hypothesis as a brief statement and avoid wordiness.  
  • Clarity and Relevance: The hypothesis should reflect a clear idea of what we know and what we expect to find out about a phenomenon and address the significant knowledge gap relevant to a field of study.   

Understanding Null and Alternative Hypotheses in Research  

There are two types of hypotheses used commonly in research that aid statistical analyses. These are known as the null hypothesis and the alternative hypothesis . A null hypothesis is a statement assumed to be factual in the initial phase of the study.   

For example, if a researcher is testing the efficacy of a new drug, then the null hypothesis will posit that the drug has no benefits compared to an inactive control or placebo . Suppose the data collected through a drug trial leads a researcher to reject the null hypothesis. In that case, it is considered to substantiate the alternative hypothesis in the above example, that the new drug provides benefits compared to the placebo.  

Let’s take a closer look at the null hypothesis and alternative hypothesis with two more examples:  

Null Hypothesis:  

The rate of decline in the number of species in habitat X in the last year is the same as in the last 100 years when controlled for all factors except the recent wildfires.  

In the next experiment, the researcher will experimentally reject this null hypothesis in order to confirm the following alternative hypothesis :  

The rate of decline in the number of species in habitat X in the last year is different from the rate of decline in the last 100 years when controlled for all factors other than the recent wildfires.  

In the pair of null and alternative hypotheses stated above, a statistical comparison of the rate of species decline over a century and the preceding year will help the research experimentally test the null hypothesis, helping to draw scientifically valid conclusions about two factors—wildfires and species decline.   

We also recommend that researchers pay attention to contextual echoes and connections when writing research hypotheses. Research hypotheses are often closely linked to the introduction ² , such as the context of the study, and can similarly influence the reader’s judgment of the relevance and validity of the research hypothesis.  

Seasoned experts, such as professionals at Elsevier Language Services, guide authors on how to best embed a hypothesis within an article so that it communicates relevance and credibility. Contact us if you want help in ensuring readers find your hypothesis robust and unbiased.  

References  

  • Hypotheses – The University Writing Center. (n.d.). https://writingcenter.tamu.edu/writing-speaking-guides/hypotheses  
  • Shaping the research question and hypothesis. (n.d.). Students. https://students.unimelb.edu.au/academic-skills/graduate-research-services/writing-thesis-sections-part-2/shaping-the-research-question-and-hypothesis  

Systematic Literature Review or Literature Review

Systematic Literature Review or Literature Review?

Problem Statement

How to Write an Effective Problem Statement for Your Research Paper

You may also like.

Academic paper format

Submission 101: What format should be used for academic papers?

Being Mindful of Tone and Structure in Artilces

Page-Turner Articles are More Than Just Good Arguments: Be Mindful of Tone and Structure!

How to Ensure Inclusivity in Your Scientific Writing

A Must-see for Researchers! How to Ensure Inclusivity in Your Scientific Writing

impactful introduction section

Make Hook, Line, and Sinker: The Art of Crafting Engaging Introductions

Limitations of a Research

Can Describing Study Limitations Improve the Quality of Your Paper?

Guide to Crafting Impactful Sentences

A Guide to Crafting Shorter, Impactful Sentences in Academic Writing

Write an Excellent Discussion in Your Manuscript

6 Steps to Write an Excellent Discussion in Your Manuscript

How to Write Clear Civil Engineering Papers

How to Write Clear and Crisp Civil Engineering Papers? Here are 5 Key Tips to Consider

Input your search keywords and press Enter.

  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

APA Table of Contents

APA Table of Contents – Format and Example

Thesis Format

Thesis Format – Templates and Samples

Research Design

Research Design – Types, Methods and Examples

Figures in Research Paper

Figures in Research Paper – Examples and Guide

Research Results

Research Results Section – Writing Guide and...

Research Methods

Research Methods – Types, Examples and Guide

5 Characteristics of a Good Hypothesis: A Guide for Researchers

  • by Brian Thomas
  • October 10, 2023

Are you a curious soul, always seeking answers to the whys and hows of the world? As a researcher, formulating a hypothesis is a crucial first step towards unraveling the mysteries of your study. A well-crafted hypothesis not only guides your research but also lays the foundation for drawing valid conclusions. But what exactly makes a hypothesis a good one? In this blog post, we will explore the five key characteristics of a good hypothesis that every researcher should know.

Here, we will delve into the world of hypotheses, covering everything from their types in research to understanding if they can be proven true. Whether you’re a seasoned researcher or just starting out, this blog post will provide valuable insights on how to craft a sound hypothesis for your study. So let’s dive in and uncover the secrets to formulating a hypothesis that stands strong amidst the scientific rigor!

(Keywords: characteristics of a good hypothesis, important characteristics of a good hypothesis quizlet, types of hypothesis in research, can a hypothesis be proven true, 6 parts of hypothesis, how to start a hypothesis sentence, examples of hypothesis, five key elements of a good hypothesis, hypothesis in research papers, is a hypothesis always a question, three things needed for a good hypothesis, components of a good hypothesis, formulate a hypothesis, characteristics of a hypothesis mcq, criteria for a scientific hypothesis, steps of theory development in scientific methods, what makes a good hypothesis, characteristics of a good hypothesis quizlet, five-step p-value approach to hypothesis testing , stages of hypothesis, good hypothesis characteristics, writing a good hypothesis example, difference between hypothesis and hypotheses, good hypothesis statement, not a characteristic of a good hypothesis)

5 Characteristics of a Good Hypothesis

Clear and specific.

A good hypothesis is like a GPS that guides you to the right destination. It needs to be clear and specific so that you know exactly what you’re testing. Avoid vague statements or general ideas. Instead, focus on crafting a hypothesis that clearly states the relationship between variables and the expected outcome. Clarity is key, my friend!

Testable and Falsifiable

A hypothesis might sound great in theory, but if you can’t test it or prove it wrong, then it’s like chasing unicorns. A good hypothesis should be testable and falsifiable – meaning there should be a way to gather evidence to support or refute it. Don’t be afraid to challenge your hypothesis and put it to the test. Only when it can be proven false can it truly be considered a good hypothesis.

Based on Existing Knowledge

Imagine trying to build a Lego tower without any Lego bricks. That’s what it’s like to come up with a hypothesis that has no basis in existing knowledge. A good hypothesis is grounded in previous research, theories, or observations. It shows that you’ve done your homework and understand the current state of knowledge in your field. So, put on your research hat and gather those building blocks for a solid hypothesis!

Specific Predictions

No, we’re not talking about crystal ball predictions or psychic abilities here. A good hypothesis includes specific predictions about what you expect to happen. It’s like making an educated guess based on your understanding of the variables involved. These predictions help guide your research and give you something concrete to look for. So, put on those prediction goggles, my friend, and let’s get specific!

Relevant to the Research Question

A hypothesis is a road sign that points you in the right direction. But if it’s not relevant to your research question, then you might end up in a never-ending detour. A good hypothesis aligns with your research question and addresses the specific problem or phenomenon you’re investigating. Keep your focus on the main topic and avoid getting sidetracked by shiny distractions. Stay relevant, my friend, and you’ll find the answers you seek!

And there you have it: the five characteristics of a good hypothesis. Remember, a good hypothesis is clear, testable, based on existing knowledge, makes specific predictions, and is relevant to your research question. So go forth, my friend, and hypothesize your way to scientific discovery!

FAQs: Characteristics of a Good Hypothesis

In the realm of scientific research, a hypothesis plays a crucial role in formulating and testing ideas. A good hypothesis serves as the foundation for an experiment or study, guiding the researcher towards meaningful results. In this FAQ-style subsection, we’ll explore the characteristics of a good hypothesis, their types, formulation, and more. So let’s dive in and unravel the mysteries of hypothesis-making!

What Are Two Important Characteristics of a Good Hypothesis

A good hypothesis possesses two important characteristics:

Testability : A hypothesis must be testable to determine its validity. It should be formulated in a way that allows researchers to design and conduct experiments or gather data for analysis. For example, if we hypothesize that “drinking herbal tea reduces stress,” we can easily test it by conducting a study with a control group and a group drinking herbal tea.

Falsifiability : Falsifiability refers to the potential for a hypothesis to be proven wrong. A good hypothesis should make specific predictions that can be refuted or supported by evidence. This characteristic ensures that hypotheses are based on empirical observations rather than personal opinions. For instance, the hypothesis “all swans are white” can be falsified by discovering a single black swan.

What Are the Types of Hypothesis in Research

In research, there are three main types of hypotheses:

Null Hypothesis (H0) : The null hypothesis is a statement of no effect or relationship. It assumes that there is no significant difference between variables or no effect of a treatment. Researchers aim to reject the null hypothesis in favor of an alternative hypothesis.

Alternative Hypothesis (HA or H1) : The alternative hypothesis is the opposite of the null hypothesis. It asserts that there is a significant difference between variables or an effect of a treatment. Researchers seek evidence to support the alternative hypothesis.

Directional Hypothesis : A directional hypothesis predicts the specific direction of the relationship or difference between variables. For example, “increasing exercise duration will lead to greater weight loss.”

Can a Hypothesis Be Proven True

In scientific research, hypotheses are not proven true; they are supported or rejected based on empirical evidence . Even if a hypothesis is supported by multiple studies, new evidence could arise that contradicts it. Scientific knowledge is always subject to revision and refinement. Therefore, the goal is to gather enough evidence to either support or reject a hypothesis, rather than proving it absolutely true.

What Are the Six Parts of a Hypothesis

A hypothesis typically consists of six essential parts:

Research Question : A clear and concise question that the hypothesis seeks to answer.

Variables : Identification of the independent (manipulated) and dependent (measured) variables involved in the hypothesis.

Population : The specific group or individuals the hypothesis is concerned with.

Relationship or Comparison : The expected relationship or difference between variables, often indicated by directional terms like “more,” “less,” “higher,” or “lower.”

Predictability : A statement of the predicted outcome or result based on the relationship between variables.

Testability : The ability to design an experiment or gather data to support or reject the hypothesis.

How Do You Start a Hypothesis Sentence

When starting a hypothesis sentence, it is essential to use clear and concise language to express your ideas. A common approach is to use the phrase “If…then…” to establish the conditional relationship between variables. For example:

  • If [independent variable], then [dependent variable] because [explanation of expected relationship].

This structure allows for a straightforward and logical formulation of the hypothesis.

What Are Examples of Hypotheses

Here are a few examples of well-formulated hypotheses:

If exposure to sunlight increases, then plants will grow taller because sunlight is necessary for photosynthesis.

If students receive praise for good grades, then their motivation to excel will increase because they seek recognition and approval.

If the dose of a painkiller is increased, then the relief from pain will last longer because a higher dosage has a prolonged effect.

What Are the Five Key Elements to a Good Hypothesis

A good hypothesis should include the following five key elements:

Clarity : The hypothesis should be clear and specific, leaving no room for interpretation.

Testability : It should be possible to test the hypothesis through experimentation or data collection.

Relevance : The hypothesis should be directly tied to the research question or problem being investigated.

Specificity : It must clearly state the relationship or difference between variables being studied.

Falsifiability : The hypothesis should make predictions that can be refuted or supported by empirical evidence.

What Makes a Good Hypothesis in a Research Paper

In a research paper, a good hypothesis should have the following characteristics:

Relevance : It must directly relate to the research topic and address the objectives of the study.

Clarity : The hypothesis should be concise and precisely worded to avoid confusion.

Unambiguous : It must leave no room for multiple interpretations or ambiguity.

Logic : The hypothesis should be based on rational and logical reasoning, considering existing theories and observations.

Empirical Support : Ideally, the hypothesis should be supported by prior empirical evidence or strong theoretical justifications.

Is a Hypothesis Always a Question

No, a hypothesis is not always in the form of a question. While some hypotheses can take the form of a question, others may be statements asserting a relationship or difference between variables. The form of a hypothesis depends on the research question being addressed and the researcher’s preferred style of expression.

What Are the Three Things Needed for a Good Hypothesis

For a hypothesis to be considered good, it must fulfill the following three criteria:

Testability : The hypothesis should be formulated in a way that allows for empirical testing through experimentation or data collection.

Falsifiability : It must make specific predictions that can be potentially refuted or supported by evidence.

Relevance : The hypothesis should directly address the research question or problem being investigated.

What Are the Four Components to a Good Hypothesis

A good hypothesis typically consists of four components:

Independent Variable : The variable being manipulated or controlled by the researcher.

Dependent Variable : The variable being measured or observed to determine the effect of the independent variable.

Directionality : The predicted relationship or difference between the independent and dependent variables.

Population : The specific group or individuals to which the hypothesis applies.

How Do You Formulate a Hypothesis

To formulate a hypothesis, follow these steps:

Identify the Research Topic : Clearly define the area or phenomenon you want to study.

Conduct Background Research : Review existing literature and research to gain knowledge about the topic.

Formulate a Research Question : Ask a clear and focused question that you want to answer through your hypothesis.

State the Null and Alternative Hypotheses : Develop a null hypothesis to assume no effect or relationship, and an alternative hypothesis to propose a significant effect or relationship.

Decide on Variables and Relationships : Determine the independent and dependent variables and the predicted relationship between them.

Refine and Test : Refine your hypothesis, ensuring it is clear, testable, and falsifiable. Then, design experiments or gather data to support or reject it.

What Is a Characteristic of a Hypothesis MCQ

Multiple-choice questions (MCQ) regarding the characteristics of a hypothesis often assess knowledge on the testability and falsifiability of hypotheses. They may ask about the criteria that distinguish a good hypothesis from a poor one or the importance of making specific predictions. Remember to choose answers that emphasize the empirical and testable nature of hypotheses.

What Five Criteria Must Be Satisfied for a Hypothesis to Be Scientific

For a hypothesis to be considered scientific, it must satisfy the following five criteria:

Testability : The hypothesis must be formulated in a way that allows it to be tested through experimentation or data collection.

Falsifiability : It should make specific predictions that can be potentially refuted or supported by empirical evidence.

Empirical Basis : The hypothesis should be based on empirical observations or existing theories and knowledge.

Relevance : It must directly address the research question or problem being investigated.

Objective : A scientific hypothesis should be free from personal biases or subjective opinions, focusing on objective observations and analysis.

What Are the Steps of Theory Development in Scientific Methods

In scientific methods, theory development typically involves the following steps:

Observation : Identifying a phenomenon or pattern worthy of investigation through observation or empirical data.

Formulation of a Hypothesis : Constructing a hypothesis that explains the observed phenomena or predicts a relationship between variables.

Data Collection : Gathering relevant data through experiments, surveys, observations, or other research methods.

Analysis : Analyzing the collected data to evaluate the hypothesis’s predictions and determine their validity.

Revision and Refinement : Based on the analysis, refining the hypothesis, modifying the theory, or formulating new hypotheses for further investigation.

Which of the Following Makes a Good Hypothesis

A good hypothesis is characterized by:

Testability : The ability to form experiments or gather data to support or refute the hypothesis.

Falsifiability : The potential for the hypothesis’s predictions to be proven wrong based on empirical evidence.

Clarity : A clear and concise statement or question that leaves no room for ambiguity.

Relevancy : Directly addressing the research question or problem at hand.

Remember, it is important to select the option that encompasses all these characteristics.

What Are the Characteristics of a Good Hypothesis

A good hypothesis possesses several characteristics, such as:

Testability : It should allow for empirical testing through experiments or data collection.

Falsifiability : The hypothesis should make specific predictions that can be potentially refuted or supported by evidence.

Clarity : It must be clearly and precisely formulated, leaving no room for ambiguity or multiple interpretations.

Relevance : The hypothesis should directly relate to the research question or problem being investigated.

What Is the Five-Step p-value Approach to Hypothesis Testing

The five-step p-value approach is a commonly used framework for hypothesis testing:

Step 1: Formulating the Hypotheses : The null hypothesis (H0) assumes no effect or relationship, while the alternative hypothesis (HA) proposes a significant effect or relationship.

Step 2: Setting the Significance Level : Decide on the level of significance (α), which represents the probability of rejecting the null hypothesis when it is true. The commonly used level is 0.05 (5%).

Step 3: Collecting Data and Performing the Test : Acquire and analyze the data, calculating the test statistic and the corresponding p-value.

Step 4: Comparing the p-value with the Significance Level : If the p-value is less than the significance level (α), reject the null hypothesis. Otherwise, fail to reject the null hypothesis.

Step 5: Drawing Conclusions : Based on the comparison in Step 4, interpret the results and draw conclusions about the hypothesis.

What Are the Stages of Hypothesis

The stages of hypothesis generally include:

Observation : Identifying a pattern, phenomenon, or research question that warrants investigation.

Formulation : Developing a hypothesis that explains or predicts the relationship or difference between variables.

Testing : Collecting data, designing experiments, or conducting studies to gather evidence supporting or refuting the hypothesis.

Analysis : Assessing the collected data to determine whether the results support or reject the hypothesis.

Conclusion : Drawing conclusions based on the analysis and making further iterations, refinements, or new hypotheses for future research.

What Is a Characteristic of a Good Hypothesis

A characteristic of a good hypothesis is its ability to make specific predictions about the relationship or difference between variables. Good hypotheses avoid vague statements and clearly articulate the expected outcomes. By doing so, researchers can design experiments or gather data that directly test the predictions, leading to meaningful results.

How Do You Write a Good Hypothesis Example

To write a good hypothesis example, follow these guidelines:

If possible, use the “If…then…” format to express a conditional relationship between variables.

Be clear and concise in stating the variables involved, the predicted relationship, and the expected outcome.

Ensure the hypothesis is testable, meaning it can be evaluated through experiments or data collection.

For instance, consider the following example:

If students study for longer periods of time, then their test scores will improve because increased study time allows for better retention of information and increased proficiency.

What Is the Difference Between Hypothesis and Hypotheses

The main difference between a hypothesis and hypotheses lies in their grammatical number. A hypothesis refers to a single statement or proposition that is formulated to explain or predict the relationship between variables. On the other hand, hypotheses is the plural form of the term hypothesis, commonly used when multiple statements or propositions are proposed and tested simultaneously.

What Is a Good Hypothesis Statement

A good hypothesis statement exhibits the following qualities:

Clarity : It is written in clear and concise language, leaving no room for confusion or ambiguity.

Testability : The hypothesis should be formulated in a way that enables testing through experiments or data collection.

Specificity : It must clearly state the predicted relationship or difference between variables.

By adhering to these criteria, a good hypothesis statement guides research efforts effectively.

What Is Not a Characteristic of a Good Hypothesis

A characteristic that does not align with a good hypothesis is subjectivity . A hypothesis should be objective, based on empirical observations or existing theories, and free from personal bias. While personal interpretations and opinions can inspire the formulation of a hypothesis, it must ultimately rely on objective observations and be open to empirical testing.

By now, you’ve gained insights into the characteristics of a good hypothesis, including testability, falsifiability, clarity,

  • characteristics
  • falsifiable
  • good hypothesis
  • hypothesis testing
  • null hypothesis
  • observations
  • scientific rigor

' src=

Brian Thomas

Is july really a 31-day month unraveling the puzzling calendar quirk, how long does it take to become l5 at amazon, you may also like, how to turn off the slip indicator: a guide for toyota owners.

  • by Travis Heath
  • November 2, 2023

How Tall is Shinsou? Unraveling the Heights of Your Favorite My Hero Academia Characters

  • by Mr. Gilbert Preston
  • November 3, 2023

Does 5.56 Have Stopping Power?

  • by Willie Wilson
  • October 9, 2023

Gozer: A Real Deity or a Fictional Creation in the Ghostbusters Universe?

  • October 12, 2023

How Old is an Elf? Exploring the Mysteries of Santa’s Little Helpers

  • by Daniel Taylor

Do Mothballs Repel Brown Recluse Spiders?

  • by Richard Edwards
  • October 11, 2023

Educational resources and simple solutions for your research journey

Research hypothesis: What it is, how to write it, types, and examples

What is a Research Hypothesis: How to Write it, Types, and Examples

hints in formulating a hypothesis

Any research begins with a research question and a research hypothesis . A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis ? A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis ? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.  

It is important to be thorough when developing your research hypothesis. Shortcomings in the framing of a hypothesis can affect the study design and the results. A better understanding of the research hypothesis definition and characteristics of a good hypothesis will make it easier for you to develop your own hypothesis for your research. Let’s dive in to know more about the types of research hypothesis , how to write a research hypothesis , and some research hypothesis examples .  

Table of Contents

What is a hypothesis ?  

A hypothesis is based on the existing body of knowledge in a study area. Framed before the data are collected, a hypothesis states the tentative relationship between independent and dependent variables, along with a prediction of the outcome.  

What is a research hypothesis ?  

Young researchers starting out their journey are usually brimming with questions like “ What is a hypothesis ?” “ What is a research hypothesis ?” “How can I write a good research hypothesis ?”   

A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation.     

hints in formulating a hypothesis

Characteristics of a good hypothesis  

Here are the characteristics of a good hypothesis :  

  • Clearly formulated and free of language errors and ambiguity  
  • Concise and not unnecessarily verbose  
  • Has clearly defined variables  
  • Testable and stated in a way that allows for it to be disproven  
  • Can be tested using a research design that is feasible, ethical, and practical   
  • Specific and relevant to the research problem  
  • Rooted in a thorough literature search  
  • Can generate new knowledge or understanding.  

How to create an effective research hypothesis  

A study begins with the formulation of a research question. A researcher then performs background research. This background information forms the basis for building a good research hypothesis . The researcher then performs experiments, collects, and analyzes the data, interprets the findings, and ultimately, determines if the findings support or negate the original hypothesis.  

Let’s look at each step for creating an effective, testable, and good research hypothesis :  

  • Identify a research problem or question: Start by identifying a specific research problem.   
  • Review the literature: Conduct an in-depth review of the existing literature related to the research problem to grasp the current knowledge and gaps in the field.   
  • Formulate a clear and testable hypothesis : Based on the research question, use existing knowledge to form a clear and testable hypothesis . The hypothesis should state a predicted relationship between two or more variables that can be measured and manipulated. Improve the original draft till it is clear and meaningful.  
  • State the null hypothesis: The null hypothesis is a statement that there is no relationship between the variables you are studying.   
  • Define the population and sample: Clearly define the population you are studying and the sample you will be using for your research.  
  • Select appropriate methods for testing the hypothesis: Select appropriate research methods, such as experiments, surveys, or observational studies, which will allow you to test your research hypothesis .  

Remember that creating a research hypothesis is an iterative process, i.e., you might have to revise it based on the data you collect. You may need to test and reject several hypotheses before answering the research problem.  

How to write a research hypothesis  

When you start writing a research hypothesis , you use an “if–then” statement format, which states the predicted relationship between two or more variables. Clearly identify the independent variables (the variables being changed) and the dependent variables (the variables being measured), as well as the population you are studying. Review and revise your hypothesis as needed.  

An example of a research hypothesis in this format is as follows:  

“ If [athletes] follow [cold water showers daily], then their [endurance] increases.”  

Population: athletes  

Independent variable: daily cold water showers  

Dependent variable: endurance  

You may have understood the characteristics of a good hypothesis . But note that a research hypothesis is not always confirmed; a researcher should be prepared to accept or reject the hypothesis based on the study findings.  

hints in formulating a hypothesis

Research hypothesis checklist  

Following from above, here is a 10-point checklist for a good research hypothesis :  

  • Testable: A research hypothesis should be able to be tested via experimentation or observation.  
  • Specific: A research hypothesis should clearly state the relationship between the variables being studied.  
  • Based on prior research: A research hypothesis should be based on existing knowledge and previous research in the field.  
  • Falsifiable: A research hypothesis should be able to be disproven through testing.  
  • Clear and concise: A research hypothesis should be stated in a clear and concise manner.  
  • Logical: A research hypothesis should be logical and consistent with current understanding of the subject.  
  • Relevant: A research hypothesis should be relevant to the research question and objectives.  
  • Feasible: A research hypothesis should be feasible to test within the scope of the study.  
  • Reflects the population: A research hypothesis should consider the population or sample being studied.  
  • Uncomplicated: A good research hypothesis is written in a way that is easy for the target audience to understand.  

By following this research hypothesis checklist , you will be able to create a research hypothesis that is strong, well-constructed, and more likely to yield meaningful results.  

Research hypothesis: What it is, how to write it, types, and examples

Types of research hypothesis  

Different types of research hypothesis are used in scientific research:  

1. Null hypothesis:

A null hypothesis states that there is no change in the dependent variable due to changes to the independent variable. This means that the results are due to chance and are not significant. A null hypothesis is denoted as H0 and is stated as the opposite of what the alternative hypothesis states.   

Example: “ The newly identified virus is not zoonotic .”  

2. Alternative hypothesis:

This states that there is a significant difference or relationship between the variables being studied. It is denoted as H1 or Ha and is usually accepted or rejected in favor of the null hypothesis.  

Example: “ The newly identified virus is zoonotic .”  

3. Directional hypothesis :

This specifies the direction of the relationship or difference between variables; therefore, it tends to use terms like increase, decrease, positive, negative, more, or less.   

Example: “ The inclusion of intervention X decreases infant mortality compared to the original treatment .”   

4. Non-directional hypothesis:

While it does not predict the exact direction or nature of the relationship between the two variables, a non-directional hypothesis states the existence of a relationship or difference between variables but not the direction, nature, or magnitude of the relationship. A non-directional hypothesis may be used when there is no underlying theory or when findings contradict previous research.  

Example, “ Cats and dogs differ in the amount of affection they express .”  

5. Simple hypothesis :

A simple hypothesis only predicts the relationship between one independent and another independent variable.  

Example: “ Applying sunscreen every day slows skin aging .”  

6 . Complex hypothesis :

A complex hypothesis states the relationship or difference between two or more independent and dependent variables.   

Example: “ Applying sunscreen every day slows skin aging, reduces sun burn, and reduces the chances of skin cancer .” (Here, the three dependent variables are slowing skin aging, reducing sun burn, and reducing the chances of skin cancer.)  

7. Associative hypothesis:  

An associative hypothesis states that a change in one variable results in the change of the other variable. The associative hypothesis defines interdependency between variables.  

Example: “ There is a positive association between physical activity levels and overall health .”  

8 . Causal hypothesis:

A causal hypothesis proposes a cause-and-effect interaction between variables.  

Example: “ Long-term alcohol use causes liver damage .”  

Note that some of the types of research hypothesis mentioned above might overlap. The types of hypothesis chosen will depend on the research question and the objective of the study.  

hints in formulating a hypothesis

Research hypothesis examples  

Here are some good research hypothesis examples :  

“The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.”  

“Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.”  

“Plants that are exposed to certain types of music will grow taller than those that are not exposed to music.”  

“The use of the plant growth regulator X will lead to an increase in the number of flowers produced by plants.”  

Characteristics that make a research hypothesis weak are unclear variables, unoriginality, being too general or too vague, and being untestable. A weak hypothesis leads to weak research and improper methods.   

Some bad research hypothesis examples (and the reasons why they are “bad”) are as follows:  

“This study will show that treatment X is better than any other treatment . ” (This statement is not testable, too broad, and does not consider other treatments that may be effective.)  

“This study will prove that this type of therapy is effective for all mental disorders . ” (This statement is too broad and not testable as mental disorders are complex and different disorders may respond differently to different types of therapy.)  

“Plants can communicate with each other through telepathy . ” (This statement is not testable and lacks a scientific basis.)  

Importance of testable hypothesis  

If a research hypothesis is not testable, the results will not prove or disprove anything meaningful. The conclusions will be vague at best. A testable hypothesis helps a researcher focus on the study outcome and understand the implication of the question and the different variables involved. A testable hypothesis helps a researcher make precise predictions based on prior research.  

To be considered testable, there must be a way to prove that the hypothesis is true or false; further, the results of the hypothesis must be reproducible.  

Research hypothesis: What it is, how to write it, types, and examples

Frequently Asked Questions (FAQs) on research hypothesis  

1. What is the difference between research question and research hypothesis ?  

A research question defines the problem and helps outline the study objective(s). It is an open-ended statement that is exploratory or probing in nature. Therefore, it does not make predictions or assumptions. It helps a researcher identify what information to collect. A research hypothesis , however, is a specific, testable prediction about the relationship between variables. Accordingly, it guides the study design and data analysis approach.

2. When to reject null hypothesis ?

A null hypothesis should be rejected when the evidence from a statistical test shows that it is unlikely to be true. This happens when the test statistic (e.g., p -value) is less than the defined significance level (e.g., 0.05). Rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true; it simply means that the evidence found is not compatible with the null hypothesis.  

3. How can I be sure my hypothesis is testable?  

A testable hypothesis should be specific and measurable, and it should state a clear relationship between variables that can be tested with data. To ensure that your hypothesis is testable, consider the following:  

  • Clearly define the key variables in your hypothesis. You should be able to measure and manipulate these variables in a way that allows you to test the hypothesis.  
  • The hypothesis should predict a specific outcome or relationship between variables that can be measured or quantified.   
  • You should be able to collect the necessary data within the constraints of your study.  
  • It should be possible for other researchers to replicate your study, using the same methods and variables.   
  • Your hypothesis should be testable by using appropriate statistical analysis techniques, so you can draw conclusions, and make inferences about the population from the sample data.  
  • The hypothesis should be able to be disproven or rejected through the collection of data.  

4. How do I revise my research hypothesis if my data does not support it?  

If your data does not support your research hypothesis , you will need to revise it or develop a new one. You should examine your data carefully and identify any patterns or anomalies, re-examine your research question, and/or revisit your theory to look for any alternative explanations for your results. Based on your review of the data, literature, and theories, modify your research hypothesis to better align it with the results you obtained. Use your revised hypothesis to guide your research design and data collection. It is important to remain objective throughout the process.  

5. I am performing exploratory research. Do I need to formulate a research hypothesis?  

As opposed to “confirmatory” research, where a researcher has some idea about the relationship between the variables under investigation, exploratory research (or hypothesis-generating research) looks into a completely new topic about which limited information is available. Therefore, the researcher will not have any prior hypotheses. In such cases, a researcher will need to develop a post-hoc hypothesis. A post-hoc research hypothesis is generated after these results are known.  

6. How is a research hypothesis different from a research question?

A research question is an inquiry about a specific topic or phenomenon, typically expressed as a question. It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis.

7. Can a research hypothesis change during the research process?

Yes, research hypotheses can change during the research process. As researchers collect and analyze data, new insights and information may emerge that require modification or refinement of the initial hypotheses. This can be due to unexpected findings, limitations in the original hypotheses, or the need to explore additional dimensions of the research topic. Flexibility is crucial in research, allowing for adaptation and adjustment of hypotheses to align with the evolving understanding of the subject matter.

8. How many hypotheses should be included in a research study?

The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. The number of hypotheses should be determined based on the research objectives, research questions, and the complexity of the research topic. It is important to ensure that the hypotheses are focused, testable, and directly related to the research aims.

9. Can research hypotheses be used in qualitative research?

Yes, research hypotheses can be used in qualitative research, although they are more commonly associated with quantitative research. In qualitative research, hypotheses may be formulated as tentative or exploratory statements that guide the investigation. Instead of testing hypotheses through statistical analysis, qualitative researchers may use the hypotheses to guide data collection and analysis, seeking to uncover patterns, themes, or relationships within the qualitative data. The emphasis in qualitative research is often on generating insights and understanding rather than confirming or rejecting specific research hypotheses through statistical testing.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

Peer Review Week 2024

Join Us for Peer Review Week 2024

Editage All Access Boosting Productivity for Academics in India

How Editage All Access is Boosting Productivity for Academics in India

Definition of a Hypothesis

What it is and how it's used in sociology

  • Key Concepts
  • Major Sociologists
  • News & Issues
  • Research, Samples, and Statistics
  • Recommended Reading
  • Archaeology

A hypothesis is a prediction of what will be found at the outcome of a research project and is typically focused on the relationship between two different variables studied in the research. It is usually based on both theoretical expectations about how things work and already existing scientific evidence.

Within social science, a hypothesis can take two forms. It can predict that there is no relationship between two variables, in which case it is a null hypothesis . Or, it can predict the existence of a relationship between variables, which is known as an alternative hypothesis.

In either case, the variable that is thought to either affect or not affect the outcome is known as the independent variable, and the variable that is thought to either be affected or not is the dependent variable.

Researchers seek to determine whether or not their hypothesis, or hypotheses if they have more than one, will prove true. Sometimes they do, and sometimes they do not. Either way, the research is considered successful if one can conclude whether or not a hypothesis is true. 

Null Hypothesis

A researcher has a null hypothesis when she or he believes, based on theory and existing scientific evidence, that there will not be a relationship between two variables. For example, when examining what factors influence a person's highest level of education within the U.S., a researcher might expect that place of birth, number of siblings, and religion would not have an impact on the level of education. This would mean the researcher has stated three null hypotheses.

Alternative Hypothesis

Taking the same example, a researcher might expect that the economic class and educational attainment of one's parents, and the race of the person in question are likely to have an effect on one's educational attainment. Existing evidence and social theories that recognize the connections between wealth and cultural resources , and how race affects access to rights and resources in the U.S. , would suggest that both economic class and educational attainment of the one's parents would have a positive effect on educational attainment. In this case, economic class and educational attainment of one's parents are independent variables, and one's educational attainment is the dependent variable—it is hypothesized to be dependent on the other two.

Conversely, an informed researcher would expect that being a race other than white in the U.S. is likely to have a negative impact on a person's educational attainment. This would be characterized as a negative relationship, wherein being a person of color has a negative effect on one's educational attainment. In reality, this hypothesis proves true, with the exception of Asian Americans , who go to college at a higher rate than whites do. However, Blacks and Hispanics and Latinos are far less likely than whites and Asian Americans to go to college.

Formulating a Hypothesis

Formulating a hypothesis can take place at the very beginning of a research project , or after a bit of research has already been done. Sometimes a researcher knows right from the start which variables she is interested in studying, and she may already have a hunch about their relationships. Other times, a researcher may have an interest in ​a particular topic, trend, or phenomenon, but he may not know enough about it to identify variables or formulate a hypothesis.

Whenever a hypothesis is formulated, the most important thing is to be precise about what one's variables are, what the nature of the relationship between them might be, and how one can go about conducting a study of them.

Updated by Nicki Lisa Cole, Ph.D

  • What It Means When a Variable Is Spurious
  • Understanding Path Analysis
  • Pilot Study in Research
  • Simple Random Sampling
  • Exploitation
  • What Is Multiculturalism? Definition, Theories, and Examples
  • Convenience Samples for Research
  • What Is Cultural Capital? Do I Have It?
  • What Does Consumerism Mean?
  • Visualizing Social Stratification in the U.S.
  • What Is Symbolic Interactionism?
  • What Is Cultural Hegemony?
  • Understanding Stratified Samples and How to Make Them
  • What Is Groupthink? Definition and Examples
  • What Is a Reference Group?
  • What Is Ethnography?
  • Forgot your Password?

First, please create an account

Formulating a hypothesis.

1. Variables

Once you've decided on your research questions and completed your background reading, you will select variables to study and a hypothesis to test. This is where you begin to put your problem solving skills into action.

A variable is a characteristic that varies throughout the population as a whole and which can be used to study differences between people and groups. Population variables can include age, class, income level, level of education, race, veteran status, gender, employment status, whether one drives, whether one smokes, country of origin, language, citizen status, region of the country, city or country dweller, or marital status. These variables are different for each individual, but you can batch together large groups of people who all share a certain variable or set of variables. You can also see how variables impact each other by identifying them and sorting the data.

Focusing on particular variables allows you to isolate those characteristics in order to analyze the influence of these characteristics on the population's experience.

IN CONTEXT If you are studying the effects of wealth transfer through generations, you might look at the relationship between your subjects' income and education levels and their parents' education levels. You might also want to know if all levels of parental education and income have the same effect. What might you hypothesize about the relationship between the two? You might hypothesize that if a subject's father was educated, the subject will be as educated or higher. You might also hypothesize that if a subject's father was educated, the subject will be likelier to earn a higher income. But there are other variables at play here too: age, gender, race, location, the presence of other similarly educated family members, and many others. In formulating your hypothesis, you make a statement about how the variable “father's education” is related to the variable “subject’s education level.” Keep in mind that not all variables are created equal. Some are very critical in explaining a subject's education level, and some aren’t, meaning that they don't strongly relate to the outcome that you’re trying to explain.

There are two different kinds of variables:

An independent variable is the factor that causes the change, or the outcome. You can think of it as the cause. In the example above, the independent variable is the subject's father's education level. It is what drives the change. The dependent variable is the effect or the variable that is influenced by the other. In the example, the dependent variable is the subject's education and income level. You are hypothesizing that the father's education level affects their child's education and income level.

terms to know Variable A characteristic such as age, education, income, or marriage status that can vary throughout the population. Independent Variable The cause of the change, or what drives the change in the dependent variable. Dependent Variable The effect of the change; a variable changed by other variables.

2. Formulating a Hypothesis

People commonly try to understand the happenings in their world by finding or creating an explanation for an occurrence, which is what we referred to earlier as common sense. Social scientists may develop a hypothesis for the same reason.

A hypothesis is a testable, informed guess about predicted outcomes between two or more variables; it’s a possible explanation for specific happenings in the social world and allows for testing to determine whether the explanation holds true in many instances, as well as among various groups or in different places. The hypothesis will often predict how one form of human behavior influences another. The independent variable is the cause of the change, or the variable that influences the other variable. The dependent variable is the effect, or variable that is changed. It depends on the independent variable.

big idea The hypothesis is the researcher's guess—based on background research—about the answer to the research question. A hypothesis often concerns how one thing affects another, which is another way of saying how the independent variable impacts the dependent variable.

In putting together their hypotheses, researchers establish one form of human behavior as the independent variable and observe the influence it has on a dependent variable.

hint It is important to note that at this stage we are suggesting relationships between variables, or correlation. We are not yet suggesting that one variable is the cause of another, just that one variable changes when another variable changes in a predictable way.

The greater the availability of affordable housing, the lower the homelessness rate. Affordable housing Homelessness rate
The greater the availability of math tutoring, the higher the math grades. Math tutoring Math grades
The greater the police patrol presence, the safer the neighborhood. Police patrol presence Safer neighborhood
The greater the factory lighting, the higher the productivity. Factory lighting Productivity
Individuals with college degrees or higher are less likely to live below the poverty line. College education Likelihood of living below the poverty line

As the table shows, an independent variable is the one that influences the other variable. Rather than being “right,” sociologists are interested in the relationships between variables. If we were to examine the last example, what other variables might come into play? Would we see similar patterns of income for all college-educated people or are there disparities for racial and ethnic minorities? Gender minorities? First, we must move into the next research steps: designing and conducting a study and drawing conclusions. You’ll learn more about these types of research methods in the next section of the course.

term to know Hypothesis A testable, informed guess about predicted outcomes between two or more variables.

3. Sampling

What happens after you gravitate towards a topic, come up with a hypothesis, and hypothesize a relationship between an independent variable and a dependent variable? Most likely it won't be practical to plan on studying an entire population of a city or country. You need to use a sample of the population as a whole.

A sample is a smaller group of subjects that ideally represents the population as a whole. You use a sample because it is impossible to go and ask everyone in the whole population, so you have to take a slice of the whole population. The goal, then, is to have a representative sample where all facets of interest of the study are included. The only requirement is that the sample be random.

hint When selecting a sample of a population for a study, the goal is to select a sample that is representative of the entire population.

One effective way to get a sample is through a technique called snowball sampling . In snowball sampling, you find your initial respondents or subjects through acquaintances that you already have in your network. You then use those acquaintances to find their acquaintances, and so on, and the process snowballs.

terms to know Sample A smaller group of subjects that ideally represents the larger population as a whole. Snowball Sampling A sampling technique where initial subjects are found through acquaintances, and later subjects are found through acquaintances of acquaintances.

summary In this lesson, you learned about how sociologists go about formulating a hypothesis , including establishing independent and dependent variables . You saw why sampling is a useful approach to making a huge population something small enough to work with but still representative. You also strengthened your problem solving skill by beginning to consider educated solutions to problems in society. Best of luck in your learning!

Source: THIS TUTORIAL HAS BEEN ADAPTED FROM "INTRODUCTION TO SOCIOLOGY" BY LUMEN LEARNING. ACCESS FOR FREE AT LUMEN LEARNING . LICENSE: CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL.

The effect of the change. a variable changed by other variables.

A testable educated guess about predicted outcomes between two or more variables.

The cause of the change, or what drives the change in the dependent variable.

A smaller group of subjects that ideally represents the larger population as a whole.

A sampling technique where initial subjects are found through acquaintances, and later subjects are found through acquaintances of acquaintances.

A characteristic such as age, education, income, or marriage status that can vary throughout the population.

  • Privacy Policy
  • Cookie Policy
  • Terms of Use

Your Privacy Choices Icon

© 2024 SOPHIA Learning, LLC. SOPHIA is a registered trademark of SOPHIA Learning, LLC.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

hints in formulating a hypothesis

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved September 16, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

5.2 - writing hypotheses.

The first step in conducting a hypothesis test is to write the hypothesis statements that are going to be tested. For each test you will have a null hypothesis (\(H_0\)) and an alternative hypothesis (\(H_a\)).

When writing hypotheses there are three things that we need to know: (1) the parameter that we are testing (2) the direction of the test (non-directional, right-tailed or left-tailed), and (3) the value of the hypothesized parameter.

  • At this point we can write hypotheses for a single mean (\(\mu\)), paired means(\(\mu_d\)), a single proportion (\(p\)), the difference between two independent means (\(\mu_1-\mu_2\)), the difference between two proportions (\(p_1-p_2\)), a simple linear regression slope (\(\beta\)), and a correlation (\(\rho\)). 
  • The research question will give us the information necessary to determine if the test is two-tailed (e.g., "different from," "not equal to"), right-tailed (e.g., "greater than," "more than"), or left-tailed (e.g., "less than," "fewer than").
  • The research question will also give us the hypothesized parameter value. This is the number that goes in the hypothesis statements (i.e., \(\mu_0\) and \(p_0\)). For the difference between two groups, regression, and correlation, this value is typically 0.

Hypotheses are always written in terms of population parameters (e.g., \(p\) and \(\mu\)).  The tables below display all of the possible hypotheses for the parameters that we have learned thus far. Note that the null hypothesis always includes the equality (i.e., =).

One Group Mean
Research Question Is the population mean different from \( \mu_{0} \)? Is the population mean greater than \(\mu_{0}\)? Is the population mean less than \(\mu_{0}\)?
Null Hypothesis, \(H_{0}\) \(\mu=\mu_{0} \) \(\mu=\mu_{0} \) \(\mu=\mu_{0} \)
Alternative Hypothesis, \(H_{a}\) \(\mu\neq \mu_{0} \) \(\mu> \mu_{0} \) \(\mu<\mu_{0} \)
Type of Hypothesis Test Two-tailed, non-directional Right-tailed, directional Left-tailed, directional
Paired Means
Research Question Is there a difference in the population? Is there a mean increase in the population? Is there a mean decrease in the population?
Null Hypothesis, \(H_{0}\) \(\mu_d=0 \) \(\mu_d =0 \) \(\mu_d=0 \)
Alternative Hypothesis, \(H_{a}\) \(\mu_d \neq 0 \) \(\mu_d> 0 \) \(\mu_d<0 \)
Type of Hypothesis Test Two-tailed, non-directional Right-tailed, directional Left-tailed, directional
One Group Proportion
Research Question Is the population proportion different from \(p_0\)? Is the population proportion greater than \(p_0\)? Is the population proportion less than \(p_0\)?
Null Hypothesis, \(H_{0}\) \(p=p_0\) \(p= p_0\) \(p= p_0\)
Alternative Hypothesis, \(H_{a}\) \(p\neq p_0\) \(p> p_0\) \(p< p_0\)
Type of Hypothesis Test Two-tailed, non-directional Right-tailed, directional Left-tailed, directional
Difference between Two Independent Means
Research Question Are the population means different? Is the population mean in group 1 greater than the population mean in group 2? Is the population mean in group 1 less than the population mean in groups 2?
Null Hypothesis, \(H_{0}\) \(\mu_1=\mu_2\) \(\mu_1 = \mu_2 \) \(\mu_1 = \mu_2 \)
Alternative Hypothesis, \(H_{a}\) \(\mu_1 \ne \mu_2 \) \(\mu_1 \gt \mu_2 \) \(\mu_1 \lt \mu_2\)
Type of Hypothesis Test Two-tailed, non-directional Right-tailed, directional Left-tailed, directional
Difference between Two Proportions
Research Question Are the population proportions different? Is the population proportion in group 1 greater than the population proportion in groups 2? Is the population proportion in group 1 less than the population proportion in group 2?
Null Hypothesis, \(H_{0}\) \(p_1 = p_2 \) \(p_1 = p_2 \) \(p_1 = p_2 \)
Alternative Hypothesis, \(H_{a}\) \(p_1 \ne p_2\) \(p_1 \gt p_2 \) \(p_1 \lt p_2\)
Type of Hypothesis Test Two-tailed, non-directional Right-tailed, directional Left-tailed, directional
Simple Linear Regression: Slope
Research Question Is the slope in the population different from 0? Is the slope in the population positive? Is the slope in the population negative?
Null Hypothesis, \(H_{0}\) \(\beta =0\) \(\beta= 0\) \(\beta = 0\)
Alternative Hypothesis, \(H_{a}\) \(\beta\neq 0\) \(\beta> 0\) \(\beta< 0\)
Type of Hypothesis Test Two-tailed, non-directional Right-tailed, directional Left-tailed, directional
Correlation (Pearson's )
Research Question Is the correlation in the population different from 0? Is the correlation in the population positive? Is the correlation in the population negative?
Null Hypothesis, \(H_{0}\) \(\rho=0\) \(\rho= 0\) \(\rho = 0\)
Alternative Hypothesis, \(H_{a}\) \(\rho \neq 0\) \(\rho > 0\) \(\rho< 0\)
Type of Hypothesis Test Two-tailed, non-directional Right-tailed, directional Left-tailed, directional
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

experiments disproving spontaneous generation

  • When did science begin?
  • Where was science invented?

Blackboard inscribed with scientific formulas and calculations in physics and mathematics

scientific hypothesis

Our editors will review what you’ve submitted and determine whether to revise the article.

  • National Center for Biotechnology Information - PubMed Central - On the scope of scientific hypotheses
  • LiveScience - What is a scientific hypothesis?
  • The Royal Society - Open Science - On the scope of scientific hypotheses

experiments disproving spontaneous generation

scientific hypothesis , an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world. The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an “If…then” statement summarizing the idea and in the ability to be supported or refuted through observation and experimentation. The notion of the scientific hypothesis as both falsifiable and testable was advanced in the mid-20th century by Austrian-born British philosopher Karl Popper .

The formulation and testing of a hypothesis is part of the scientific method , the approach scientists use when attempting to understand and test ideas about natural phenomena. The generation of a hypothesis frequently is described as a creative process and is based on existing scientific knowledge, intuition , or experience. Therefore, although scientific hypotheses commonly are described as educated guesses, they actually are more informed than a guess. In addition, scientists generally strive to develop simple hypotheses, since these are easier to test relative to hypotheses that involve many different variables and potential outcomes. Such complex hypotheses may be developed as scientific models ( see scientific modeling ).

Depending on the results of scientific evaluation, a hypothesis typically is either rejected as false or accepted as true. However, because a hypothesis inherently is falsifiable, even hypotheses supported by scientific evidence and accepted as true are susceptible to rejection later, when new evidence has become available. In some instances, rather than rejecting a hypothesis because it has been falsified by new evidence, scientists simply adapt the existing idea to accommodate the new information. In this sense a hypothesis is never incorrect but only incomplete.

The investigation of scientific hypotheses is an important component in the development of scientific theory . Hence, hypotheses differ fundamentally from theories; whereas the former is a specific tentative explanation and serves as the main tool by which scientists gather data, the latter is a broad general explanation that incorporates data from many different scientific investigations undertaken to explore hypotheses.

Countless hypotheses have been developed and tested throughout the history of science . Several examples include the idea that living organisms develop from nonliving matter, which formed the basis of spontaneous generation , a hypothesis that ultimately was disproved (first in 1668, with the experiments of Italian physician Francesco Redi , and later in 1859, with the experiments of French chemist and microbiologist Louis Pasteur ); the concept proposed in the late 19th century that microorganisms cause certain diseases (now known as germ theory ); and the notion that oceanic crust forms along submarine mountain zones and spreads laterally away from them ( seafloor spreading hypothesis ).

IMAGES

  1. How Do You Formulate A Hypothesis? Hypothesis Testing Assignment Help

    hints in formulating a hypothesis

  2. How to Formulate a Hypothesis for an Experiment

    hints in formulating a hypothesis

  3. How to Write a Hypothesis

    hints in formulating a hypothesis

  4. PPT

    hints in formulating a hypothesis

  5. SOLUTION: 9 research formulating hypothesis

    hints in formulating a hypothesis

  6. Formulating hypotheses

    hints in formulating a hypothesis

VIDEO

  1. Formulating Hypothesis

  2. Research methodology, Formulating a research hypothesis, and Review of research methodology

  3. Concept of Hypothesis

  4. Hypothesis Formulation

  5. One-Sample t-Test: A 5-Step Hypothesis Testing Guide

  6. Formulating a hypothesis

COMMENTS

  1. How to Write a Strong Hypothesis

    5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  2. How to Formulate a Hypothesis: Example and Explanation

    Complex Hypothesis Examples. A complex hypothesis involves more than two variables. An example could be, "If students sleep for at least 8 hours and eat a healthy breakfast, then their test scores and overall well-being will improve." This type of hypothesis examines multiple factors and their combined effects.

  3. How to Write a Hypothesis in 6 Steps, With Examples

    4 Alternative hypothesis. An alternative hypothesis, abbreviated as H 1 or H A, is used in conjunction with a null hypothesis. It states the opposite of the null hypothesis, so that one and only one must be true. Examples: Plants grow better with bottled water than tap water. Professional psychics win the lottery more than other people. 5 ...

  4. What Is Formulation of Hypothesis in Research? Key Concepts and Steps

    Key Takeaways. A hypothesis is a prediction that guides the research process. Formulating a hypothesis helps focus data collection and analysis. Background research is essential for developing a good hypothesis. There are different types of hypotheses, like null and alternative. Ethical considerations are important when making a hypothesis.

  5. What is the Correct Way to Write a Hypothesis? Expert Tips and Examples

    Identifying the Research Question. The first step in formulating a strong hypothesis is to identify the main research question. This involves recognizing a pattern or phenomenon that piques your interest and then asking a specific question that your hypothesis will aim to answer. This step is crucial as it sets the direction for your targeted ...

  6. Hypothesis Formulation: A Comprehensive Step Guide

    Step 5: Articulate Your Hypothesis in Three Forms. First, we can use the "if-then" form. If people over the age of 60 consume an apple daily, then their frequency of doctor's visits will decrease. The first part mentions the independent variable - daily apple consumption.

  7. How to Write a Hypothesis w/ Strong Examples

    Each type has a unique purpose in scientific research. Understanding these types is helpful for formulating a hypothesis that is appropriate to your specific research question. The main types of hypotheses include the following: Simple Hypothesis: This formulates a relationship between two variables, one independent and one dependent. It is ...

  8. How to Write a Strong Hypothesis in 6 Simple Steps

    Learning how to write a hypothesis comes down to knowledge and strategy. So where do you start? Learn how to make your hypothesis strong step-by-step here. Dictionary ... Formulate an answer. Write a hypothesis. Refine your hypothesis. Create a null hypothesis. 1. Ask a Question.

  9. How to Write a Strong Hypothesis

    Step 3: Formulate your hypothesis. Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence. Example: Initial expectations Attending more lectures leads to better exam results. Step 4: Refine your hypothesis. You need to make sure your hypothesis is specific and testable.

  10. How to Write a Hypothesis

    How to formulate an effective research hypothesis. Crafting a strong, testable hypothesis is crucial for the success of any research project. It sets the stage for everything from your study design to data collection and analysis. Below are some key considerations to keep in mind when formulating your hypothesis:

  11. Research Hypothesis: Definition, Types, Examples and Quick Tips

    3. Simple hypothesis. A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, "Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking. 4.

  12. Step-by-Step Guide: How to Craft a Strong Research Hypothesis

    Hypotheses in research need to satisfy specific criteria to be considered scientifically rigorous. Here are the most notable qualities of a strong hypothesis: Testability: Ensure the hypothesis allows you to work towards observable and testable results. Brevity and objectivity: Present your hypothesis as a brief statement and avoid wordiness.

  13. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

  14. 5 Characteristics of a Good Hypothesis: A Guide for Researchers

    Step 1: Formulating the Hypotheses: The null hypothesis (H0) assumes no effect or relationship, while the alternative hypothesis (HA) proposes a significant effect or relationship. Step 2: Setting the Significance Level : Decide on the level of significance (α), which represents the probability of rejecting the null hypothesis when it is true.

  15. What is a Research Hypothesis: How to Write it, Types, and Examples

    It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis. 7.

  16. What a Hypothesis Is and How to Formulate One

    A hypothesis is a prediction of what will be found at the outcome of a research project and is typically focused on the relationship between two different variables studied in the research. It is usually based on both theoretical expectations about how things work and already existing scientific evidence. Within social science, a hypothesis can ...

  17. Formulating a Hypothesis Tutorial

    2. Formulating a Hypothesis. 3. Sampling. 1. Variables. Once you've decided on your research questions and completed your background reading, you will select variables to study and a hypothesis to test. This is where you begin to put your problem solving skills into action. A variable is a characteristic that varies throughout the population as ...

  18. Hypothesis Testing

    Hypothesis testing example. You want to test whether there is a relationship between gender and height. Based on your knowledge of human physiology, you formulate a hypothesis that men are, on average, taller than women. To test this hypothesis, you restate it as: H 0: Men are, on average, not taller than women. H a: Men are, on average, taller ...

  19. 5.2

    5.2 - Writing Hypotheses. The first step in conducting a hypothesis test is to write the hypothesis statements that are going to be tested. For each test you will have a null hypothesis (H 0) and an alternative hypothesis (H a). When writing hypotheses there are three things that we need to know: (1) the parameter that we are testing (2) the ...

  20. PDF Hypothesis Formulation

    hypothesis is a statement that specific relationship you expect to find from your examination of these variables. When formulating the hypothesis(es) for your study, there are a few things you need to keep in mind. Good hypotheses meet the following criteria: 1) Identify the independent and dependent variables to be studied.

  21. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  22. How To Develop a Hypothesis (With Elements, Types and Examples)

    4. Formulate your hypothesis. After collecting background information and making a prediction based on your question, plan a statement that lays out your variables, subjects and predicted outcome. Whether you write it as an "if/then" or declarative statement, your hypothesis should include the prediction to be tested.

  23. Scientific hypothesis

    hypothesis. science. scientific hypothesis, an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world. The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an "If…then" statement summarizing the idea and in the ...