• Privacy Policy

Research Method

Home » Quasi-Experimental Research Design – Types, Methods

Quasi-Experimental Research Design – Types, Methods

Table of Contents

Quasi-Experimental Design

Quasi-Experimental Design

Quasi-experimental design is a research method that seeks to evaluate the causal relationships between variables, but without the full control over the independent variable(s) that is available in a true experimental design.

In a quasi-experimental design, the researcher uses an existing group of participants that is not randomly assigned to the experimental and control groups. Instead, the groups are selected based on pre-existing characteristics or conditions, such as age, gender, or the presence of a certain medical condition.

Types of Quasi-Experimental Design

There are several types of quasi-experimental designs that researchers use to study causal relationships between variables. Here are some of the most common types:

Non-Equivalent Control Group Design

This design involves selecting two groups of participants that are similar in every way except for the independent variable(s) that the researcher is testing. One group receives the treatment or intervention being studied, while the other group does not. The two groups are then compared to see if there are any significant differences in the outcomes.

Interrupted Time-Series Design

This design involves collecting data on the dependent variable(s) over a period of time, both before and after an intervention or event. The researcher can then determine whether there was a significant change in the dependent variable(s) following the intervention or event.

Pretest-Posttest Design

This design involves measuring the dependent variable(s) before and after an intervention or event, but without a control group. This design can be useful for determining whether the intervention or event had an effect, but it does not allow for control over other factors that may have influenced the outcomes.

Regression Discontinuity Design

This design involves selecting participants based on a specific cutoff point on a continuous variable, such as a test score. Participants on either side of the cutoff point are then compared to determine whether the intervention or event had an effect.

Natural Experiments

This design involves studying the effects of an intervention or event that occurs naturally, without the researcher’s intervention. For example, a researcher might study the effects of a new law or policy that affects certain groups of people. This design is useful when true experiments are not feasible or ethical.

Data Analysis Methods

Here are some data analysis methods that are commonly used in quasi-experimental designs:

Descriptive Statistics

This method involves summarizing the data collected during a study using measures such as mean, median, mode, range, and standard deviation. Descriptive statistics can help researchers identify trends or patterns in the data, and can also be useful for identifying outliers or anomalies.

Inferential Statistics

This method involves using statistical tests to determine whether the results of a study are statistically significant. Inferential statistics can help researchers make generalizations about a population based on the sample data collected during the study. Common statistical tests used in quasi-experimental designs include t-tests, ANOVA, and regression analysis.

Propensity Score Matching

This method is used to reduce bias in quasi-experimental designs by matching participants in the intervention group with participants in the control group who have similar characteristics. This can help to reduce the impact of confounding variables that may affect the study’s results.

Difference-in-differences Analysis

This method is used to compare the difference in outcomes between two groups over time. Researchers can use this method to determine whether a particular intervention has had an impact on the target population over time.

Interrupted Time Series Analysis

This method is used to examine the impact of an intervention or treatment over time by comparing data collected before and after the intervention or treatment. This method can help researchers determine whether an intervention had a significant impact on the target population.

Regression Discontinuity Analysis

This method is used to compare the outcomes of participants who fall on either side of a predetermined cutoff point. This method can help researchers determine whether an intervention had a significant impact on the target population.

Steps in Quasi-Experimental Design

Here are the general steps involved in conducting a quasi-experimental design:

  • Identify the research question: Determine the research question and the variables that will be investigated.
  • Choose the design: Choose the appropriate quasi-experimental design to address the research question. Examples include the pretest-posttest design, non-equivalent control group design, regression discontinuity design, and interrupted time series design.
  • Select the participants: Select the participants who will be included in the study. Participants should be selected based on specific criteria relevant to the research question.
  • Measure the variables: Measure the variables that are relevant to the research question. This may involve using surveys, questionnaires, tests, or other measures.
  • Implement the intervention or treatment: Implement the intervention or treatment to the participants in the intervention group. This may involve training, education, counseling, or other interventions.
  • Collect data: Collect data on the dependent variable(s) before and after the intervention. Data collection may also include collecting data on other variables that may impact the dependent variable(s).
  • Analyze the data: Analyze the data collected to determine whether the intervention had a significant impact on the dependent variable(s).
  • Draw conclusions: Draw conclusions about the relationship between the independent and dependent variables. If the results suggest a causal relationship, then appropriate recommendations may be made based on the findings.

Quasi-Experimental Design Examples

Here are some examples of real-time quasi-experimental designs:

  • Evaluating the impact of a new teaching method: In this study, a group of students are taught using a new teaching method, while another group is taught using the traditional method. The test scores of both groups are compared before and after the intervention to determine whether the new teaching method had a significant impact on student performance.
  • Assessing the effectiveness of a public health campaign: In this study, a public health campaign is launched to promote healthy eating habits among a targeted population. The behavior of the population is compared before and after the campaign to determine whether the intervention had a significant impact on the target behavior.
  • Examining the impact of a new medication: In this study, a group of patients is given a new medication, while another group is given a placebo. The outcomes of both groups are compared to determine whether the new medication had a significant impact on the targeted health condition.
  • Evaluating the effectiveness of a job training program : In this study, a group of unemployed individuals is enrolled in a job training program, while another group is not enrolled in any program. The employment rates of both groups are compared before and after the intervention to determine whether the training program had a significant impact on the employment rates of the participants.
  • Assessing the impact of a new policy : In this study, a new policy is implemented in a particular area, while another area does not have the new policy. The outcomes of both areas are compared before and after the intervention to determine whether the new policy had a significant impact on the targeted behavior or outcome.

Applications of Quasi-Experimental Design

Here are some applications of quasi-experimental design:

  • Educational research: Quasi-experimental designs are used to evaluate the effectiveness of educational interventions, such as new teaching methods, technology-based learning, or educational policies.
  • Health research: Quasi-experimental designs are used to evaluate the effectiveness of health interventions, such as new medications, public health campaigns, or health policies.
  • Social science research: Quasi-experimental designs are used to investigate the impact of social interventions, such as job training programs, welfare policies, or criminal justice programs.
  • Business research: Quasi-experimental designs are used to evaluate the impact of business interventions, such as marketing campaigns, new products, or pricing strategies.
  • Environmental research: Quasi-experimental designs are used to evaluate the impact of environmental interventions, such as conservation programs, pollution control policies, or renewable energy initiatives.

When to use Quasi-Experimental Design

Here are some situations where quasi-experimental designs may be appropriate:

  • When the research question involves investigating the effectiveness of an intervention, policy, or program : In situations where it is not feasible or ethical to randomly assign participants to intervention and control groups, quasi-experimental designs can be used to evaluate the impact of the intervention on the targeted outcome.
  • When the sample size is small: In situations where the sample size is small, it may be difficult to randomly assign participants to intervention and control groups. Quasi-experimental designs can be used to investigate the impact of an intervention without requiring a large sample size.
  • When the research question involves investigating a naturally occurring event : In some situations, researchers may be interested in investigating the impact of a naturally occurring event, such as a natural disaster or a major policy change. Quasi-experimental designs can be used to evaluate the impact of the event on the targeted outcome.
  • When the research question involves investigating a long-term intervention: In situations where the intervention or program is long-term, it may be difficult to randomly assign participants to intervention and control groups for the entire duration of the intervention. Quasi-experimental designs can be used to evaluate the impact of the intervention over time.
  • When the research question involves investigating the impact of a variable that cannot be manipulated : In some situations, it may not be possible or ethical to manipulate a variable of interest. Quasi-experimental designs can be used to investigate the relationship between the variable and the targeted outcome.

Purpose of Quasi-Experimental Design

The purpose of quasi-experimental design is to investigate the causal relationship between two or more variables when it is not feasible or ethical to conduct a randomized controlled trial (RCT). Quasi-experimental designs attempt to emulate the randomized control trial by mimicking the control group and the intervention group as much as possible.

The key purpose of quasi-experimental design is to evaluate the impact of an intervention, policy, or program on a targeted outcome while controlling for potential confounding factors that may affect the outcome. Quasi-experimental designs aim to answer questions such as: Did the intervention cause the change in the outcome? Would the outcome have changed without the intervention? And was the intervention effective in achieving its intended goals?

Quasi-experimental designs are useful in situations where randomized controlled trials are not feasible or ethical. They provide researchers with an alternative method to evaluate the effectiveness of interventions, policies, and programs in real-life settings. Quasi-experimental designs can also help inform policy and practice by providing valuable insights into the causal relationships between variables.

Overall, the purpose of quasi-experimental design is to provide a rigorous method for evaluating the impact of interventions, policies, and programs while controlling for potential confounding factors that may affect the outcome.

Advantages of Quasi-Experimental Design

Quasi-experimental designs have several advantages over other research designs, such as:

  • Greater external validity : Quasi-experimental designs are more likely to have greater external validity than laboratory experiments because they are conducted in naturalistic settings. This means that the results are more likely to generalize to real-world situations.
  • Ethical considerations: Quasi-experimental designs often involve naturally occurring events, such as natural disasters or policy changes. This means that researchers do not need to manipulate variables, which can raise ethical concerns.
  • More practical: Quasi-experimental designs are often more practical than experimental designs because they are less expensive and easier to conduct. They can also be used to evaluate programs or policies that have already been implemented, which can save time and resources.
  • No random assignment: Quasi-experimental designs do not require random assignment, which can be difficult or impossible in some cases, such as when studying the effects of a natural disaster. This means that researchers can still make causal inferences, although they must use statistical techniques to control for potential confounding variables.
  • Greater generalizability : Quasi-experimental designs are often more generalizable than experimental designs because they include a wider range of participants and conditions. This can make the results more applicable to different populations and settings.

Limitations of Quasi-Experimental Design

There are several limitations associated with quasi-experimental designs, which include:

  • Lack of Randomization: Quasi-experimental designs do not involve randomization of participants into groups, which means that the groups being studied may differ in important ways that could affect the outcome of the study. This can lead to problems with internal validity and limit the ability to make causal inferences.
  • Selection Bias: Quasi-experimental designs may suffer from selection bias because participants are not randomly assigned to groups. Participants may self-select into groups or be assigned based on pre-existing characteristics, which may introduce bias into the study.
  • History and Maturation: Quasi-experimental designs are susceptible to history and maturation effects, where the passage of time or other events may influence the outcome of the study.
  • Lack of Control: Quasi-experimental designs may lack control over extraneous variables that could influence the outcome of the study. This can limit the ability to draw causal inferences from the study.
  • Limited Generalizability: Quasi-experimental designs may have limited generalizability because the results may only apply to the specific population and context being studied.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Phenomenology

Phenomenology – Methods, Examples and Guide

Qualitative Research

Qualitative Research – Methods, Analysis Types...

Questionnaire

Questionnaire – Definition, Types, and Examples

Explanatory Research

Explanatory Research – Types, Methods, Guide

Basic Research

Basic Research – Types, Methods and Examples

Mixed Research methods

Mixed Methods Research – Types & Analysis

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Quasi-Experimental Design | Definition, Types & Examples

Quasi-Experimental Design | Definition, Types & Examples

Published on July 31, 2020 by Lauren Thomas . Revised on January 22, 2024.

Like a true experiment , a quasi-experimental design aims to establish a cause-and-effect relationship between an independent and dependent variable .

However, unlike a true experiment, a quasi-experiment does not rely on random assignment . Instead, subjects are assigned to groups based on non-random criteria.

Quasi-experimental design is a useful tool in situations where true experiments cannot be used for ethical or practical reasons.

Quasi-experimental design vs. experimental design

Table of contents

Differences between quasi-experiments and true experiments, types of quasi-experimental designs, when to use quasi-experimental design, advantages and disadvantages, other interesting articles, frequently asked questions about quasi-experimental designs.

There are several common differences between true and quasi-experimental designs.

True experimental design Quasi-experimental design
Assignment to treatment The researcher subjects to control and treatment groups. Some other, method is used to assign subjects to groups.
Control over treatment The researcher usually . The researcher often , but instead studies pre-existing groups that received different treatments after the fact.
Use of Requires the use of . Control groups are not required (although they are commonly used).

Example of a true experiment vs a quasi-experiment

However, for ethical reasons, the directors of the mental health clinic may not give you permission to randomly assign their patients to treatments. In this case, you cannot run a true experiment.

Instead, you can use a quasi-experimental design.

You can use these pre-existing groups to study the symptom progression of the patients treated with the new therapy versus those receiving the standard course of treatment.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

quasi experimental design voxco

Many types of quasi-experimental designs exist. Here we explain three of the most common types: nonequivalent groups design, regression discontinuity, and natural experiments.

Nonequivalent groups design

In nonequivalent group design, the researcher chooses existing groups that appear similar, but where only one of the groups experiences the treatment.

In a true experiment with random assignment , the control and treatment groups are considered equivalent in every way other than the treatment. But in a quasi-experiment where the groups are not random, they may differ in other ways—they are nonequivalent groups .

When using this kind of design, researchers try to account for any confounding variables by controlling for them in their analysis or by choosing groups that are as similar as possible.

This is the most common type of quasi-experimental design.

Regression discontinuity

Many potential treatments that researchers wish to study are designed around an essentially arbitrary cutoff, where those above the threshold receive the treatment and those below it do not.

Near this threshold, the differences between the two groups are often so minimal as to be nearly nonexistent. Therefore, researchers can use individuals just below the threshold as a control group and those just above as a treatment group.

However, since the exact cutoff score is arbitrary, the students near the threshold—those who just barely pass the exam and those who fail by a very small margin—tend to be very similar, with the small differences in their scores mostly due to random chance. You can therefore conclude that any outcome differences must come from the school they attended.

Natural experiments

In both laboratory and field experiments, researchers normally control which group the subjects are assigned to. In a natural experiment, an external event or situation (“nature”) results in the random or random-like assignment of subjects to the treatment group.

Even though some use random assignments, natural experiments are not considered to be true experiments because they are observational in nature.

Although the researchers have no control over the independent variable , they can exploit this event after the fact to study the effect of the treatment.

However, as they could not afford to cover everyone who they deemed eligible for the program, they instead allocated spots in the program based on a random lottery.

Although true experiments have higher internal validity , you might choose to use a quasi-experimental design for ethical or practical reasons.

Sometimes it would be unethical to provide or withhold a treatment on a random basis, so a true experiment is not feasible. In this case, a quasi-experiment can allow you to study the same causal relationship without the ethical issues.

The Oregon Health Study is a good example. It would be unethical to randomly provide some people with health insurance but purposely prevent others from receiving it solely for the purposes of research.

However, since the Oregon government faced financial constraints and decided to provide health insurance via lottery, studying this event after the fact is a much more ethical approach to studying the same problem.

True experimental design may be infeasible to implement or simply too expensive, particularly for researchers without access to large funding streams.

At other times, too much work is involved in recruiting and properly designing an experimental intervention for an adequate number of subjects to justify a true experiment.

In either case, quasi-experimental designs allow you to study the question by taking advantage of data that has previously been paid for or collected by others (often the government).

Quasi-experimental designs have various pros and cons compared to other types of studies.

  • Higher external validity than most true experiments, because they often involve real-world interventions instead of artificial laboratory settings.
  • Higher internal validity than other non-experimental types of research, because they allow you to better control for confounding variables than other types of studies do.
  • Lower internal validity than true experiments—without randomization, it can be difficult to verify that all confounding variables have been accounted for.
  • The use of retrospective data that has already been collected for other purposes can be inaccurate, incomplete or difficult to access.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference with a true experiment is that the groups are not randomly assigned.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomization. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .

Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity  as they can use real-world interventions instead of artificial laboratory settings.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Thomas, L. (2024, January 22). Quasi-Experimental Design | Definition, Types & Examples. Scribbr. Retrieved September 9, 2024, from https://www.scribbr.com/methodology/quasi-experimental-design/

Is this article helpful?

Lauren Thomas

Lauren Thomas

Other students also liked, guide to experimental design | overview, steps, & examples, random assignment in experiments | introduction & examples, control variables | what are they & why do they matter, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

Experimental vs Quasi-Experimental Design: Which to Choose?

Here’s a table that summarizes the similarities and differences between an experimental and a quasi-experimental study design:

 Experimental Study (a.k.a. Randomized Controlled Trial)Quasi-Experimental Study
ObjectiveEvaluate the effect of an intervention or a treatmentEvaluate the effect of an intervention or a treatment
How participants get assigned to groups?Random assignmentNon-random assignment (participants get assigned according to their choosing or that of the researcher)
Is there a control group?YesNot always (although, if present, a control group will provide better evidence for the study results)
Is there any room for confounding?No (although check for a detailed discussion on post-randomization confounding in randomized controlled trials)Yes (however, statistical techniques can be used to study causal relationships in quasi-experiments)
Level of evidenceA randomized trial is at the highest level in the hierarchy of evidenceA quasi-experiment is one level below the experimental study in the hierarchy of evidence [ ]
AdvantagesMinimizes bias and confounding– Can be used in situations where an experiment is not ethically or practically feasible
– Can work with smaller sample sizes than randomized trials
Limitations– High cost (as it generally requires a large sample size)
– Ethical limitations
– Generalizability issues
– Sometimes practically infeasible
Lower ranking in the hierarchy of evidence as losing the power of randomization causes the study to be more susceptible to bias and confounding

What is a quasi-experimental design?

A quasi-experimental design is a non-randomized study design used to evaluate the effect of an intervention. The intervention can be a training program, a policy change or a medical treatment.

Unlike a true experiment, in a quasi-experimental study the choice of who gets the intervention and who doesn’t is not randomized. Instead, the intervention can be assigned to participants according to their choosing or that of the researcher, or by using any method other than randomness.

Having a control group is not required, but if present, it provides a higher level of evidence for the relationship between the intervention and the outcome.

(for more information, I recommend my other article: Understand Quasi-Experimental Design Through an Example ) .

Examples of quasi-experimental designs include:

  • One-Group Posttest Only Design
  • Static-Group Comparison Design
  • One-Group Pretest-Posttest Design
  • Separate-Sample Pretest-Posttest Design

What is an experimental design?

An experimental design is a randomized study design used to evaluate the effect of an intervention. In its simplest form, the participants will be randomly divided into 2 groups:

  • A treatment group: where participants receive the new intervention which effect we want to study.
  • A control or comparison group: where participants do not receive any intervention at all (or receive some standard intervention).

Randomization ensures that each participant has the same chance of receiving the intervention. Its objective is to equalize the 2 groups, and therefore, any observed difference in the study outcome afterwards will only be attributed to the intervention – i.e. it removes confounding.

(for more information, I recommend my other article: Purpose and Limitations of Random Assignment ).

Examples of experimental designs include:

  • Posttest-Only Control Group Design
  • Pretest-Posttest Control Group Design
  • Solomon Four-Group Design
  • Matched Pairs Design
  • Randomized Block Design

When to choose an experimental design over a quasi-experimental design?

Although many statistical techniques can be used to deal with confounding in a quasi-experimental study, in practice, randomization is still the best tool we have to study causal relationships.

Another problem with quasi-experiments is the natural progression of the disease or the condition under study — When studying the effect of an intervention over time, one should consider natural changes because these can be mistaken with changes in outcome that are caused by the intervention. Having a well-chosen control group helps dealing with this issue.

So, if losing the element of randomness seems like an unwise step down in the hierarchy of evidence, why would we ever want to do it?

This is what we’re going to discuss next.

When to choose a quasi-experimental design over a true experiment?

The issue with randomness is that it cannot be always achievable.

So here are some cases where using a quasi-experimental design makes more sense than using an experimental one:

  • If being in one group is believed to be harmful for the participants , either because the intervention is harmful (ex. randomizing people to smoking), or the intervention has a questionable efficacy, or on the contrary it is believed to be so beneficial that it would be malevolent to put people in the control group (ex. randomizing people to receiving an operation).
  • In cases where interventions act on a group of people in a given location , it becomes difficult to adequately randomize subjects (ex. an intervention that reduces pollution in a given area).
  • When working with small sample sizes , as randomized controlled trials require a large sample size to account for heterogeneity among subjects (i.e. to evenly distribute confounding variables between the intervention and control groups).

Further reading

  • Statistical Software Popularity in 40,582 Research Papers
  • Checking the Popularity of 125 Statistical Tests and Models
  • Objectives of Epidemiology (With Examples)
  • 12 Famous Epidemiologists and Why

Is MasterClass right for me?

Take this quiz to find out.

Quasi-Experimental Design: Types, Examples, Pros, and Cons

Written by MasterClass

Last updated: Jun 16, 2022 • 3 min read

A quasi-experimental design can be a great option when ethical or practical concerns make true experiments impossible, but the research methodology does have its drawbacks. Learn all the ins and outs of a quasi-experimental design.

quasi experimental design voxco

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Quasi Experimental Design Overview & Examples

By Jim Frost Leave a Comment

What is a Quasi Experimental Design?

A quasi experimental design is a method for identifying causal relationships that does not randomly assign participants to the experimental groups. Instead, researchers use a non-random process. For example, they might use an eligibility cutoff score or preexisting groups to determine who receives the treatment.

Image illustrating a quasi experimental design.

Quasi-experimental research is a design that closely resembles experimental research but is different. The term “quasi” means “resembling,” so you can think of it as a cousin to actual experiments. In these studies, researchers can manipulate an independent variable — that is, they change one factor to see what effect it has. However, unlike true experimental research, participants are not randomly assigned to different groups.

Learn more about Experimental Designs: Definition & Types .

When to Use Quasi-Experimental Design

Researchers typically use a quasi-experimental design because they can’t randomize due to practical or ethical concerns. For example:

  • Practical Constraints : A school interested in testing a new teaching method can only implement it in preexisting classes and cannot randomly assign students.
  • Ethical Concerns : A medical study might not be able to randomly assign participants to a treatment group for an experimental medication when they are already taking a proven drug.

Quasi-experimental designs also come in handy when researchers want to study the effects of naturally occurring events, like policy changes or environmental shifts, where they can’t control who is exposed to the treatment.

Quasi-experimental designs occupy a unique position in the spectrum of research methodologies, sitting between observational studies and true experiments. This middle ground offers a blend of both worlds, addressing some limitations of purely observational studies while navigating the constraints often accompanying true experiments.

A significant advantage of quasi-experimental research over purely observational studies and correlational research is that it addresses the issue of directionality, determining which variable is the cause and which is the effect. In quasi-experiments, an intervention typically occurs during the investigation, and the researchers record outcomes before and after it, increasing the confidence that it causes the observed changes.

However, it’s crucial to recognize its limitations as well. Controlling confounding variables is a larger concern for a quasi-experimental design than a true experiment because it lacks random assignment.

In sum, quasi-experimental designs offer a valuable research approach when random assignment is not feasible, providing a more structured and controlled framework than observational studies while acknowledging and attempting to address potential confounders.

Types of Quasi-Experimental Designs and Examples

Quasi-experimental studies use various methods, depending on the scenario.

Natural Experiments

This design uses naturally occurring events or changes to create the treatment and control groups. Researchers compare outcomes between those whom the event affected and those it did not affect. Analysts use statistical controls to account for confounders that the researchers must also measure.

Natural experiments are related to observational studies, but they allow for a clearer causality inference because the external event or policy change provides both a form of quasi-random group assignment and a definite start date for the intervention.

For example, in a natural experiment utilizing a quasi-experimental design, researchers study the impact of a significant economic policy change on small business growth. The policy is implemented in one state but not in neighboring states. This scenario creates an unplanned experimental setup, where the state with the new policy serves as the treatment group, and the neighboring states act as the control group.

Researchers are primarily interested in small business growth rates but need to record various confounders that can impact growth rates. Hence, they record state economic indicators, investment levels, and employment figures. By recording these metrics across the states, they can include them in the model as covariates and control them statistically. This method allows researchers to estimate differences in small business growth due to the policy itself, separate from the various confounders.

Nonequivalent Groups Design

This method involves matching existing groups that are similar but not identical. Researchers attempt to find groups that are as equivalent as possible, particularly for factors likely to affect the outcome.

For instance, researchers use a nonequivalent groups quasi-experimental design to evaluate the effectiveness of a new teaching method in improving students’ mathematics performance. A school district considering the teaching method is planning the study. Students are already divided into schools, preventing random assignment.

The researchers matched two schools with similar demographics, baseline academic performance, and resources. The school using the traditional methodology is the control, while the other uses the new approach. Researchers are evaluating differences in educational outcomes between the two methods.

They perform a pretest to identify differences between the schools that might affect the outcome and include them as covariates to control for confounding. They also record outcomes before and after the intervention to have a larger context for the changes they observe.

Regression Discontinuity

This process assigns subjects to a treatment or control group based on a predetermined cutoff point (e.g., a test score). The analysis primarily focuses on participants near the cutoff point, as they are likely similar except for the treatment received. By comparing participants just above and below the cutoff, the design controls for confounders that vary smoothly around the cutoff.

For example, in a regression discontinuity quasi-experimental design focusing on a new medical treatment for depression, researchers use depression scores as the cutoff point. Individuals with depression scores just above a certain threshold are assigned to receive the latest treatment, while those just below the threshold do not receive it. This method creates two closely matched groups: one that barely qualifies for treatment and one that barely misses out.

By comparing the mental health outcomes of these two groups over time, researchers can assess the effectiveness of the new treatment. The assumption is that the only significant difference between the groups is whether they received the treatment, thereby isolating its impact on depression outcomes.

Controlling Confounders in a Quasi-Experimental Design

Accounting for confounding variables is a challenging but essential task for a quasi-experimental design.

In a true experiment, the random assignment process equalizes confounders across the groups to nullify their overall effect. It’s the gold standard because it works on all confounders, known and unknown.

Unfortunately, the lack of random assignment can allow differences between the groups to exist before the intervention. These confounding factors might ultimately explain the results rather than the intervention.

Consequently, researchers must use other methods to equalize the groups roughly using matching and cutoff values or statistically adjust for preexisting differences they measure to reduce the impact of confounders.

A key strength of quasi-experiments is their frequent use of “pre-post testing.” This approach involves conducting initial tests before collecting data to check for preexisting differences between groups that could impact the study’s outcome. By identifying these variables early on and including them as covariates, researchers can more effectively control potential confounders in their statistical analysis.

Additionally, researchers frequently track outcomes before and after the intervention to better understand the context for changes they observe.

Statisticians consider these methods to be less effective than randomization. Hence, quasi-experiments fall somewhere in the middle when it comes to internal validity , or how well the study can identify causal relationships versus mere correlation . They’re more conclusive than correlational studies but not as solid as true experiments.

In conclusion, quasi-experimental designs offer researchers a versatile and practical approach when random assignment is not feasible. This methodology bridges the gap between controlled experiments and observational studies, providing a valuable tool for investigating cause-and-effect relationships in real-world settings. Researchers can address ethical and logistical constraints by understanding and leveraging the different types of quasi-experimental designs while still obtaining insightful and meaningful results.

Cook, T. D., & Campbell, D. T. (1979).  Quasi-experimentation: Design & analysis issues in field settings . Boston, MA: Houghton Mifflin

Share this:

quasi experimental design voxco

Reader Interactions

Comments and questions cancel reply.

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

quasi experimental design voxco

Home Market Research Research Tools and Apps

Quasi-experimental Research: What It Is, Types & Examples

quasi-experimental research is research that appears to be experimental but is not.

Much like an actual experiment, quasi-experimental research tries to demonstrate a cause-and-effect link between a dependent and an independent variable. A quasi-experiment, on the other hand, does not depend on random assignment, unlike an actual experiment. The subjects are sorted into groups based on non-random variables.

What is Quasi-Experimental Research?

“Resemblance” is the definition of “quasi.” Individuals are not randomly allocated to conditions or orders of conditions, even though the regression analysis is changed. As a result, quasi-experimental research is research that appears to be experimental but is not.

The directionality problem is avoided in quasi-experimental research since the regression analysis is altered before the multiple regression is assessed. However, because individuals are not randomized at random, there are likely to be additional disparities across conditions in quasi-experimental research.

As a result, in terms of internal consistency, quasi-experiments fall somewhere between correlational research and actual experiments.

The key component of a true experiment is randomly allocated groups. This means that each person has an equivalent chance of being assigned to the experimental group or the control group, depending on whether they are manipulated or not.

Simply put, a quasi-experiment is not a real experiment. A quasi-experiment does not feature randomly allocated groups since the main component of a real experiment is randomly assigned groups. Why is it so crucial to have randomly allocated groups, given that they constitute the only distinction between quasi-experimental and actual  experimental research ?

Let’s use an example to illustrate our point. Let’s assume we want to discover how new psychological therapy affects depressed patients. In a genuine trial, you’d split half of the psych ward into treatment groups, With half getting the new psychotherapy therapy and the other half receiving standard  depression treatment .

And the physicians compare the outcomes of this treatment to the results of standard treatments to see if this treatment is more effective. Doctors, on the other hand, are unlikely to agree with this genuine experiment since they believe it is unethical to treat one group while leaving another untreated.

A quasi-experimental study will be useful in this case. Instead of allocating these patients at random, you uncover pre-existing psychotherapist groups in the hospitals. Clearly, there’ll be counselors who are eager to undertake these trials as well as others who prefer to stick to the old ways.

These pre-existing groups can be used to compare the symptom development of individuals who received the novel therapy with those who received the normal course of treatment, even though the groups weren’t chosen at random.

If any substantial variations between them can be well explained, you may be very assured that any differences are attributable to the treatment but not to other extraneous variables.

As we mentioned before, quasi-experimental research entails manipulating an independent variable by randomly assigning people to conditions or sequences of conditions. Non-equivalent group designs, pretest-posttest designs, and regression discontinuity designs are only a few of the essential types.

What are quasi-experimental research designs?

Quasi-experimental research designs are a type of research design that is similar to experimental designs but doesn’t give full control over the independent variable(s) like true experimental designs do.

In a quasi-experimental design, the researcher changes or watches an independent variable, but the participants are not put into groups at random. Instead, people are put into groups based on things they already have in common, like their age, gender, or how many times they have seen a certain stimulus.

Because the assignments are not random, it is harder to draw conclusions about cause and effect than in a real experiment. However, quasi-experimental designs are still useful when randomization is not possible or ethical.

The true experimental design may be impossible to accomplish or just too expensive, especially for researchers with few resources. Quasi-experimental designs enable you to investigate an issue by utilizing data that has already been paid for or gathered by others (often the government). 

Because they allow better control for confounding variables than other forms of studies, they have higher external validity than most genuine experiments and higher  internal validity  (less than true experiments) than other non-experimental research.

Is quasi-experimental research quantitative or qualitative?

Quasi-experimental research is a quantitative research method. It involves numerical data collection and statistical analysis. Quasi-experimental research compares groups with different circumstances or treatments to find cause-and-effect links. 

It draws statistical conclusions from quantitative data. Qualitative data can enhance quasi-experimental research by revealing participants’ experiences and opinions, but quantitative data is the method’s foundation.

Quasi-experimental research types

There are many different sorts of quasi-experimental designs. Three of the most popular varieties are described below: Design of non-equivalent groups, Discontinuity in regression, and Natural experiments.

Design of Non-equivalent Groups

Example: design of non-equivalent groups, discontinuity in regression, example: discontinuity in regression, natural experiments, example: natural experiments.

However, because they couldn’t afford to pay everyone who qualified for the program, they had to use a random lottery to distribute slots.

Experts were able to investigate the program’s impact by utilizing enrolled people as a treatment group and those who were qualified but did not play the jackpot as an experimental group.

How QuestionPro helps in quasi-experimental research?

QuestionPro can be a useful tool in quasi-experimental research because it includes features that can assist you in designing and analyzing your research study. Here are some ways in which QuestionPro can help in quasi-experimental research:

Design surveys

Randomize participants, collect data over time, analyze data, collaborate with your team.

With QuestionPro, you have access to the most mature market research platform and tool that helps you collect and analyze the insights that matter the most. By leveraging InsightsHub, the unified hub for data management, you can ​​leverage the consolidated platform to organize, explore, search, and discover your  research data  in one organized data repository . 

Optimize Your quasi-experimental research with QuestionPro. Get started now!

LEARN MORE         FREE TRIAL

MORE LIKE THIS

Agile Qual for Rapid Insights

A guide to conducting agile qualitative research for rapid insights with Digsite 

Sep 11, 2024

When thinking about Customer Experience, so much of what we discuss is focused on measurement, dashboards, analytics, and insights. However, the “product” that is provided can be just as important.

Was The Experience Memorable? — Tuesday CX Thoughts

Sep 10, 2024

Data Analyst

What Does a Data Analyst Do? Skills, Tools & Tips

Sep 9, 2024

Gallup Access alternatives

Best Gallup Access Alternatives & Competitors in 2024

Sep 6, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

A Modern Guide to Understanding and Conducting Research in Psychology

Chapter 7 quasi-experimental research, learning objectives.

  • Explain what quasi-experimental research is and distinguish it clearly from both experimental and correlational research.
  • Describe three different types of quasi-experimental research designs (nonequivalent groups, pretest-posttest, and interrupted time series) and identify examples of each one.

The prefix quasi means “resembling.” Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions ( Cook et al., 1979 ) . Because the independent variable is manipulated before the dependent variable is measured, quasi-experimental research eliminates the directionality problem. But because participants are not randomly assigned—making it likely that there are other differences between conditions—quasi-experimental research does not eliminate the problem of confounding variables. In terms of internal validity, therefore, quasi-experiments are generally somewhere between correlational studies and true experiments.

Quasi-experiments are most likely to be conducted in field settings in which random assignment is difficult or impossible. They are often conducted to evaluate the effectiveness of a treatment—perhaps a type of psychotherapy or an educational intervention. There are many different kinds of quasi-experiments, but we will discuss just a few of the most common ones here, focusing first on nonequivalent groups, pretest-posttest, interrupted time series, and combination designs before turning to single subject designs (including reversal and multiple-baseline designs).

7.1 Nonequivalent Groups Design

Recall that when participants in a between-subjects experiment are randomly assigned to conditions, the resulting groups are likely to be quite similar. In fact, researchers consider them to be equivalent. When participants are not randomly assigned to conditions, however, the resulting groups are likely to be dissimilar in some ways. For this reason, researchers consider them to be nonequivalent. A nonequivalent groups design , then, is a between-subjects design in which participants have not been randomly assigned to conditions.

Imagine, for example, a researcher who wants to evaluate a new method of teaching fractions to third graders. One way would be to conduct a study with a treatment group consisting of one class of third-grade students and a control group consisting of another class of third-grade students. This would be a nonequivalent groups design because the students are not randomly assigned to classes by the researcher, which means there could be important differences between them. For example, the parents of higher achieving or more motivated students might have been more likely to request that their children be assigned to Ms. Williams’s class. Or the principal might have assigned the “troublemakers” to Mr. Jones’s class because he is a stronger disciplinarian. Of course, the teachers’ styles, and even the classroom environments, might be very different and might cause different levels of achievement or motivation among the students. If at the end of the study there was a difference in the two classes’ knowledge of fractions, it might have been caused by the difference between the teaching methods—but it might have been caused by any of these confounding variables.

Of course, researchers using a nonequivalent groups design can take steps to ensure that their groups are as similar as possible. In the present example, the researcher could try to select two classes at the same school, where the students in the two classes have similar scores on a standardized math test and the teachers are the same sex, are close in age, and have similar teaching styles. Taking such steps would increase the internal validity of the study because it would eliminate some of the most important confounding variables. But without true random assignment of the students to conditions, there remains the possibility of other important confounding variables that the researcher was not able to control.

7.2 Pretest-Posttest Design

In a pretest-posttest design , the dependent variable is measured once before the treatment is implemented and once after it is implemented. Imagine, for example, a researcher who is interested in the effectiveness of an STEM education program on elementary school students’ attitudes toward science, technology, engineering and math. The researcher could measure the attitudes of students at a particular elementary school during one week, implement the STEM program during the next week, and finally, measure their attitudes again the following week. The pretest-posttest design is much like a within-subjects experiment in which each participant is tested first under the control condition and then under the treatment condition. It is unlike a within-subjects experiment, however, in that the order of conditions is not counterbalanced because it typically is not possible for a participant to be tested in the treatment condition first and then in an “untreated” control condition.

If the average posttest score is better than the average pretest score, then it makes sense to conclude that the treatment might be responsible for the improvement. Unfortunately, one often cannot conclude this with a high degree of certainty because there may be other explanations for why the posttest scores are better. One category of alternative explanations goes under the name of history . Other things might have happened between the pretest and the posttest. Perhaps an science program aired on television and many of the students watched it, or perhaps a major scientific discover occured and many of the students heard about it. Another category of alternative explanations goes under the name of maturation . Participants might have changed between the pretest and the posttest in ways that they were going to anyway because they are growing and learning. If it were a yearlong program, participants might become more exposed to STEM subjects in class or better reasoners and this might be responsible for the change.

Another alternative explanation for a change in the dependent variable in a pretest-posttest design is regression to the mean . This refers to the statistical fact that an individual who scores extremely on a variable on one occasion will tend to score less extremely on the next occasion. For example, a bowler with a long-term average of 150 who suddenly bowls a 220 will almost certainly score lower in the next game. Her score will “regress” toward her mean score of 150. Regression to the mean can be a problem when participants are selected for further study because of their extreme scores. Imagine, for example, that only students who scored especially low on a test of fractions are given a special training program and then retested. Regression to the mean all but guarantees that their scores will be higher even if the training program has no effect. A closely related concept—and an extremely important one in psychological research—is spontaneous remission . This is the tendency for many medical and psychological problems to improve over time without any form of treatment. The common cold is a good example. If one were to measure symptom severity in 100 common cold sufferers today, give them a bowl of chicken soup every day, and then measure their symptom severity again in a week, they would probably be much improved. This does not mean that the chicken soup was responsible for the improvement, however, because they would have been much improved without any treatment at all. The same is true of many psychological problems. A group of severely depressed people today is likely to be less depressed on average in 6 months. In reviewing the results of several studies of treatments for depression, researchers Michael Posternak and Ivan Miller found that participants in waitlist control conditions improved an average of 10 to 15% before they received any treatment at all ( Posternak & Miller, 2001 ) . Thus one must generally be very cautious about inferring causality from pretest-posttest designs.

Finally, it is possible that the act of taking a pretest can sensitize participants to the measurement process or heighten their awareness of the variable under investigation. This heightened sensitivity, called a testing effect , can subsequently lead to changes in their posttest responses, even in the absence of any external intervention effect.

7.3 Interrupted Time Series Design

A variant of the pretest-posttest design is the interrupted time-series design . A time series is a set of measurements taken at intervals over a period of time. For example, a manufacturing company might measure its workers’ productivity each week for a year. In an interrupted time series-design, a time series like this is “interrupted” by a treatment. In a recent COVID-19 study, the intervention involved the implementation of state-issued mask mandates and restrictions on on-premises restaurant dining. The researchers examined the impact of these measures on COVID-19 cases and deaths ( Guy Jr et al., 2021 ) . Since there was a rapid reduction in daily case and death growth rates following the implementation of mask mandates, and this effect persisted for an extended period, the researchers concluded that the implementation of mask mandates was the cause of the decrease in COVID-19 transmission. This study employed an interrupted time series design, similar to a pretest-posttest design, as it involved measuring the outcomes before and after the intervention. However, unlike the pretest-posttest design, it incorporated multiple measurements before and after the intervention, providing a more comprehensive analysis of the policy impacts.

Figure 7.1 shows data from a hypothetical interrupted time-series study. The dependent variable is the number of student absences per week in a research methods course. The treatment is that the instructor begins publicly taking attendance each day so that students know that the instructor is aware of who is present and who is absent. The top panel of Figure 7.1 shows how the data might look if this treatment worked. There is a consistently high number of absences before the treatment, and there is an immediate and sustained drop in absences after the treatment. The bottom panel of Figure 7.1 shows how the data might look if this treatment did not work. On average, the number of absences after the treatment is about the same as the number before. This figure also illustrates an advantage of the interrupted time-series design over a simpler pretest-posttest design. If there had been only one measurement of absences before the treatment at Week 7 and one afterward at Week 8, then it would have looked as though the treatment were responsible for the reduction. The multiple measurements both before and after the treatment suggest that the reduction between Weeks 7 and 8 is nothing more than normal week-to-week variation.

Two line graphs. The x-axes on both are labeled Week and range from 0 to 14. The y-axes on both are labeled Absences and range from 0 to 8. Between weeks 7 and 8 a vertical dotted line indicates when a treatment was introduced. Both graphs show generally high levels of absences from weeks 1 through 7 (before the treatment) and only 2 absences in week 8 (the first observation after the treatment). The top graph shows the absence level staying low from weeks 9 to 14. The bottom graph shows the absence level for weeks 9 to 15 bouncing around at the same high levels as before the treatment.

Figure 7.1: Hypothetical interrupted time-series design. The top panel shows data that suggest that the treatment caused a reduction in absences. The bottom panel shows data that suggest that it did not.

7.4 Combination Designs

A type of quasi-experimental design that is generally better than either the nonequivalent groups design or the pretest-posttest design is one that combines elements of both. There is a treatment group that is given a pretest, receives a treatment, and then is given a posttest. But at the same time there is a control group that is given a pretest, does not receive the treatment, and then is given a posttest. The question, then, is not simply whether participants who receive the treatment improve but whether they improve more than participants who do not receive the treatment.

Imagine, for example, that students in one school are given a pretest on their current level of engagement in pro-environmental behaviors (i.e., recycling, eating less red meat, abstaining for single-use plastics, etc.), then are exposed to an pro-environmental program in which they learn about the effects of human caused climate change on the planet, and finally are given a posttest. Students in a similar school are given the pretest, not exposed to an pro-environmental program, and finally are given a posttest. Again, if students in the treatment condition become more involved in pro-environmental behaviors, this could be an effect of the treatment, but it could also be a matter of history or maturation. If it really is an effect of the treatment, then students in the treatment condition should become engage in more pro-environmental behaviors than students in the control condition. But if it is a matter of history (e.g., news of a forest fire or drought) or maturation (e.g., improved reasoning or sense of responsibility), then students in the two conditions would be likely to show similar amounts of change. This type of design does not completely eliminate the possibility of confounding variables, however. Something could occur at one of the schools but not the other (e.g., a local heat wave with record high temperatures), so students at the first school would be affected by it while students at the other school would not.

Finally, if participants in this kind of design are randomly assigned to conditions, it becomes a true experiment rather than a quasi experiment. In fact, this kind of design has now been conducted many times—to demonstrate the effectiveness of psychotherapy.

KEY TAKEAWAYS

  • Quasi-experimental research involves the manipulation of an independent variable without the random assignment of participants to conditions or orders of conditions. Among the important types are nonequivalent groups designs, pretest-posttest, and interrupted time-series designs.
  • Quasi-experimental research eliminates the directionality problem because it involves the manipulation of the independent variable. It does not eliminate the problem of confounding variables, however, because it does not involve random assignment to conditions. For these reasons, quasi-experimental research is generally higher in internal validity than correlational studies but lower than true experiments.
  • Practice: Imagine that two college professors decide to test the effect of giving daily quizzes on student performance in a statistics course. They decide that Professor A will give quizzes but Professor B will not. They will then compare the performance of students in their two sections on a common final exam. List five other variables that might differ between the two sections that could affect the results.

regression to the mean

Spontaneous remission, 7.5 single-subject research.

  • Explain what single-subject research is, including how it differs from other types of psychological research and who uses single-subject research and why.
  • Design simple single-subject studies using reversal and multiple-baseline designs.
  • Explain how single-subject research designs address the issue of internal validity.
  • Interpret the results of simple single-subject studies based on the visual inspection of graphed data.
  • Explain some of the points of disagreement between advocates of single-subject research and advocates of group research.

Researcher Vance Hall and his colleagues were faced with the challenge of increasing the extent to which six disruptive elementary school students stayed focused on their schoolwork ( Hall et al., 1968 ) . For each of several days, the researchers carefully recorded whether or not each student was doing schoolwork every 10 seconds during a 30-minute period. Once they had established this baseline, they introduced a treatment. The treatment was that when the student was doing schoolwork, the teacher gave him or her positive attention in the form of a comment like “good work” or a pat on the shoulder. The result was that all of the students dramatically increased their time spent on schoolwork and decreased their disruptive behavior during this treatment phase. For example, a student named Robbie originally spent 25% of his time on schoolwork and the other 75% “snapping rubber bands, playing with toys from his pocket, and talking and laughing with peers” (p. 3). During the treatment phase, however, he spent 71% of his time on schoolwork and only 29% on other activities. Finally, when the researchers had the teacher stop giving positive attention, the students all decreased their studying and increased their disruptive behavior. This was consistent with the claim that it was, in fact, the positive attention that was responsible for the increase in studying. This was one of the first studies to show that attending to positive behavior—and ignoring negative behavior—could be a quick and effective way to deal with problem behavior in an applied setting.

Single-subject research has shown that positive attention from a teacher for studying can increase studying and decrease disruptive behavior. *Photo by Jerry Wang on Unsplash.*

Figure 7.2: Single-subject research has shown that positive attention from a teacher for studying can increase studying and decrease disruptive behavior. Photo by Jerry Wang on Unsplash.

Most of this book is about what can be called group research, which typically involves studying a large number of participants and combining their data to draw general conclusions about human behavior. The study by Hall and his colleagues, in contrast, is an example of single-subject research, which typically involves studying a small number of participants and focusing closely on each individual. In this section, we consider this alternative approach. We begin with an overview of single-subject research, including some assumptions on which it is based, who conducts it, and why they do. We then look at some basic single-subject research designs and how the data from those designs are analyzed. Finally, we consider some of the strengths and weaknesses of single-subject research as compared with group research and see how these two approaches can complement each other.

Overview of Single-Subject Research

What is single-subject research.

Single-subject research is a type of quantitative, quasi-experimental research that involves studying in detail the behavior of each of a small number of participants. Note that the term single-subject does not mean that only one participant is studied; it is more typical for there to be somewhere between two and 10 participants. (This is why single-subject research designs are sometimes called small-n designs, where n is the statistical symbol for the sample size.) Single-subject research can be contrasted with group research , which typically involves studying large numbers of participants and examining their behavior primarily in terms of group means, standard deviations, and so on. The majority of this book is devoted to understanding group research, which is the most common approach in psychology. But single-subject research is an important alternative, and it is the primary approach in some areas of psychology.

Before continuing, it is important to distinguish single-subject research from two other approaches, both of which involve studying in detail a small number of participants. One is qualitative research, which focuses on understanding people’s subjective experience by collecting relatively unstructured data (e.g., detailed interviews) and analyzing those data using narrative rather than quantitative techniques (see. Single-subject research, in contrast, focuses on understanding objective behavior through experimental manipulation and control, collecting highly structured data, and analyzing those data quantitatively.

It is also important to distinguish single-subject research from case studies. A case study is a detailed description of an individual, which can include both qualitative and quantitative analyses. (Case studies that include only qualitative analyses can be considered a type of qualitative research.) The history of psychology is filled with influential cases studies, such as Sigmund Freud’s description of “Anna O.” (see box “The Case of ‘Anna O.’”) and John Watson and Rosalie Rayner’s description of Little Albert ( Watson & Rayner, 1920 ) who learned to fear a white rat—along with other furry objects—when the researchers made a loud noise while he was playing with the rat. Case studies can be useful for suggesting new research questions and for illustrating general principles. They can also help researchers understand rare phenomena, such as the effects of damage to a specific part of the human brain. As a general rule, however, case studies cannot substitute for carefully designed group or single-subject research studies. One reason is that case studies usually do not allow researchers to determine whether specific events are causally related, or even related at all. For example, if a patient is described in a case study as having been sexually abused as a child and then as having developed an eating disorder as a teenager, there is no way to determine whether these two events had anything to do with each other. A second reason is that an individual case can always be unusual in some way and therefore be unrepresentative of people more generally. Thus case studies have serious problems with both internal and external validity.

The Case of “Anna O.”

Sigmund Freud used the case of a young woman he called “Anna O.” to illustrate many principles of his theory of psychoanalysis ( Freud, 1957 ) . (Her real name was Bertha Pappenheim, and she was an early feminist who went on to make important contributions to the field of social work.) Anna had come to Freud’s colleague Josef Breuer around 1880 with a variety of odd physical and psychological symptoms. One of them was that for several weeks she was unable to drink any fluids. According to Freud,

She would take up the glass of water that she longed for, but as soon as it touched her lips she would push it away like someone suffering from hydrophobia.…She lived only on fruit, such as melons, etc., so as to lessen her tormenting thirst (p. 9).

But according to Freud, a breakthrough came one day while Anna was under hypnosis.

[S]he grumbled about her English “lady-companion,” whom she did not care for, and went on to describe, with every sign of disgust, how she had once gone into this lady’s room and how her little dog—horrid creature!—had drunk out of a glass there. The patient had said nothing, as she had wanted to be polite. After giving further energetic expression to the anger she had held back, she asked for something to drink, drank a large quantity of water without any difficulty, and awoke from her hypnosis with the glass at her lips; and thereupon the disturbance vanished, never to return.

Freud’s interpretation was that Anna had repressed the memory of this incident along with the emotion that it triggered and that this was what had caused her inability to drink. Furthermore, her recollection of the incident, along with her expression of the emotion she had repressed, caused the symptom to go away.

As an illustration of Freud’s theory, the case study of Anna O. is quite effective. As evidence for the theory, however, it is essentially worthless. The description provides no way of knowing whether Anna had really repressed the memory of the dog drinking from the glass, whether this repression had caused her inability to drink, or whether recalling this “trauma” relieved the symptom. It is also unclear from this case study how typical or atypical Anna’s experience was.

"Anna O." was the subject of a famous case study used by Freud to illustrate the principles of psychoanalysis. Source: Wikimedia Commons

Figure 7.3: “Anna O.” was the subject of a famous case study used by Freud to illustrate the principles of psychoanalysis. Source: Wikimedia Commons

Assumptions of Single-Subject Research

Again, single-subject research involves studying a small number of participants and focusing intensively on the behavior of each one. But why take this approach instead of the group approach? There are two important assumptions underlying single-subject research, and it will help to consider them now.

First and foremost is the assumption that it is important to focus intensively on the behavior of individual participants. One reason for this is that group research can hide individual differences and generate results that do not represent the behavior of any individual. For example, a treatment that has a positive effect for half the people exposed to it but a negative effect for the other half would, on average, appear to have no effect at all. Single-subject research, however, would likely reveal these individual differences. A second reason to focus intensively on individuals is that sometimes it is the behavior of a particular individual that is primarily of interest. A school psychologist, for example, might be interested in changing the behavior of a particular disruptive student. Although previous published research (both single-subject and group research) is likely to provide some guidance on how to do this, conducting a study on this student would be more direct and probably more effective.

Another assumption of single-subject research is that it is important to study strong and consistent effects that have biological or social importance. Applied researchers, in particular, are interested in treatments that have substantial effects on important behaviors and that can be implemented reliably in the real-world contexts in which they occur. This is sometimes referred to as social validity ( Wolf, 1978 ) . The study by Hall and his colleagues, for example, had good social validity because it showed strong and consistent effects of positive teacher attention on a behavior that is of obvious importance to teachers, parents, and students. Furthermore, the teachers found the treatment easy to implement, even in their often chaotic elementary school classrooms.

Who Uses Single-Subject Research?

Single-subject research has been around as long as the field of psychology itself. In the late 1800s, one of psychology’s founders, Wilhelm Wundt, studied sensation and consciousness by focusing intensively on each of a small number of research participants. Herman Ebbinghaus’s research on memory and Ivan Pavlov’s research on classical conditioning are other early examples, both of which are still described in almost every introductory psychology textbook.

In the middle of the 20th century, B. F. Skinner clarified many of the assumptions underlying single-subject research and refined many of its techniques ( Skinner, 1938 ) . He and other researchers then used it to describe how rewards, punishments, and other external factors affect behavior over time. This work was carried out primarily using nonhuman subjects—mostly rats and pigeons. This approach, which Skinner called the experimental analysis of behavior —remains an important subfield of psychology and continues to rely almost exclusively on single-subject research. For examples of this work, look at any issue of the Journal of the Experimental Analysis of Behavior . By the 1960s, many researchers were interested in using this approach to conduct applied research primarily with humans—a subfield now called applied behavior analysis ( Baer et al., 1968 ) . Applied behavior analysis plays a significant role in contemporary research on developmental disabilities, education, organizational behavior, and health, among many other areas. Examples of this work (including the study by Hall and his colleagues) can be found in the Journal of Applied Behavior Analysis . The single-subject approach can also be used by clinicians who take any theoretical perspective—behavioral, cognitive, psychodynamic, or humanistic—to study processes of therapeutic change with individual clients and to document their clients’ improvement ( Kazdin, 2019 ) .

Single-Subject Research Designs

General features of single-subject designs.

Before looking at any specific single-subject research designs, it will be helpful to consider some features that are common to most of them. Many of these features are illustrated in Figure 7.4 , which shows the results of a generic single-subject study. First, the dependent variable (represented on the y-axis of the graph) is measured repeatedly over time (represented by the x-axis) at regular intervals. Second, the study is divided into distinct phases, and the participant is tested under one condition per phase. The conditions are often designated by capital letters: A, B, C, and so on. Thus Figure 7.4 represents a design in which the participant was tested first in one condition (A), then tested in another condition (B), and finally retested in the original condition (A). (This is called a reversal design and will be discussed in more detail shortly.)

Results of a generic single-subject study illustrating several principles of single-subject research.

Figure 7.4: Results of a generic single-subject study illustrating several principles of single-subject research.

Another important aspect of single-subject research is that the change from one condition to the next does not usually occur after a fixed amount of time or number of observations. Instead, it depends on the participant’s behavior. Specifically, the researcher waits until the participant’s behavior in one condition becomes fairly consistent from observation to observation before changing conditions. This is sometimes referred to as the steady state strategy ( Sidman, 1960 ) . The idea is that when the dependent variable has reached a steady state, then any change across conditions will be relatively easy to detect. Recall that we encountered this same principle when discussing experimental research more generally. The effect of an independent variable is easier to detect when the “noise” in the data is minimized.

Reversal Designs

The most basic single-subject research design is the reversal design , also called the ABA design . During the first phase, A, a baseline is established for the dependent variable. This is the level of responding before any treatment is introduced, and therefore the baseline phase is a kind of control condition. When steady state responding is reached, phase B begins as the researcher introduces the treatment. Again, the researcher waits until that dependent variable reaches a steady state so that it is clear whether and how much it has changed. Finally, the researcher removes the treatment and again waits until the dependent variable reaches a steady state. This basic reversal design can also be extended with the reintroduction of the treatment (ABAB), another return to baseline (ABABA), and so on. The study by Hall and his colleagues was an ABAB reversal design (Figure 7.5 ).

An approximation of the results for Hall and colleagues’ participant Robbie in their ABAB reversal design. The percentage of time he spent studying (the dependent variable) was low during the first baseline phase, increased during the first treatment phase until it leveled off, decreased during the second baseline phase, and again increased during the second treatment phase.

Figure 7.5: An approximation of the results for Hall and colleagues’ participant Robbie in their ABAB reversal design. The percentage of time he spent studying (the dependent variable) was low during the first baseline phase, increased during the first treatment phase until it leveled off, decreased during the second baseline phase, and again increased during the second treatment phase.

Why is the reversal—the removal of the treatment—considered to be necessary in this type of design? If the dependent variable changes after the treatment is introduced, it is not always clear that the treatment was responsible for the change. It is possible that something else changed at around the same time and that this extraneous variable is responsible for the change in the dependent variable. But if the dependent variable changes with the introduction of the treatment and then changes back with the removal of the treatment, it is much clearer that the treatment (and removal of the treatment) is the cause. In other words, the reversal greatly increases the internal validity of the study.

Multiple-Baseline Designs

There are two potential problems with the reversal design—both of which have to do with the removal of the treatment. One is that if a treatment is working, it may be unethical to remove it. For example, if a treatment seemed to reduce the incidence of self-injury in a developmentally disabled child, it would be unethical to remove that treatment just to show that the incidence of self-injury increases. The second problem is that the dependent variable may not return to baseline when the treatment is removed. For example, when positive attention for studying is removed, a student might continue to study at an increased rate. This could mean that the positive attention had a lasting effect on the student’s studying, which of course would be good, but it could also mean that the positive attention was not really the cause of the increased studying in the first place.

One solution to these problems is to use a multiple-baseline design , which is represented in Figure 7.6 . In one version of the design, a baseline is established for each of several participants, and the treatment is then introduced for each one. In essence, each participant is tested in an AB design. The key to this design is that the treatment is introduced at a different time for each participant. The idea is that if the dependent variable changes when the treatment is introduced for one participant, it might be a coincidence. But if the dependent variable changes when the treatment is introduced for multiple participants—especially when the treatment is introduced at different times for the different participants—then it is less likely to be a coincidence.

Results of a generic multiple-baseline study. The multiple baselines can be for different participants, dependent variables, or settings. The treatment is introduced at a different time on each baseline.

Figure 7.6: Results of a generic multiple-baseline study. The multiple baselines can be for different participants, dependent variables, or settings. The treatment is introduced at a different time on each baseline.

As an example, consider a study by Scott Ross and Robert Horner ( Ross et al., 2009 ) . They were interested in how a school-wide bullying prevention program affected the bullying behavior of particular problem students. At each of three different schools, the researchers studied two students who had regularly engaged in bullying. During the baseline phase, they observed the students for 10-minute periods each day during lunch recess and counted the number of aggressive behaviors they exhibited toward their peers. (The researchers used handheld computers to help record the data.) After 2 weeks, they implemented the program at one school. After 2 more weeks, they implemented it at the second school. And after 2 more weeks, they implemented it at the third school. They found that the number of aggressive behaviors exhibited by each student dropped shortly after the program was implemented at his or her school. Notice that if the researchers had only studied one school or if they had introduced the treatment at the same time at all three schools, then it would be unclear whether the reduction in aggressive behaviors was due to the bullying program or something else that happened at about the same time it was introduced (e.g., a holiday, a television program, a change in the weather). But with their multiple-baseline design, this kind of coincidence would have to happen three separate times—an unlikely occurrence—to explain their results.

Data Analysis in Single-Subject Research

In addition to its focus on individual participants, single-subject research differs from group research in the way the data are typically analyzed. As we have seen throughout the book, group research involves combining data across participants. Inferential statistics are used to help decide whether the result for the sample is likely to generalize to the population. Single-subject research, by contrast, relies heavily on a very different approach called visual inspection . This means plotting individual participants’ data as shown throughout this chapter, looking carefully at those data, and making judgments about whether and to what extent the independent variable had an effect on the dependent variable. Inferential statistics are typically not used.

In visually inspecting their data, single-subject researchers take several factors into account. One of them is changes in the level of the dependent variable from condition to condition. If the dependent variable is much higher or much lower in one condition than another, this suggests that the treatment had an effect. A second factor is trend , which refers to gradual increases or decreases in the dependent variable across observations. If the dependent variable begins increasing or decreasing with a change in conditions, then again this suggests that the treatment had an effect. It can be especially telling when a trend changes directions—for example, when an unwanted behavior is increasing during baseline but then begins to decrease with the introduction of the treatment. A third factor is latency , which is the time it takes for the dependent variable to begin changing after a change in conditions. In general, if a change in the dependent variable begins shortly after a change in conditions, this suggests that the treatment was responsible.

In the top panel of Figure 7.7 , there are fairly obvious changes in the level and trend of the dependent variable from condition to condition. Furthermore, the latencies of these changes are short; the change happens immediately. This pattern of results strongly suggests that the treatment was responsible for the changes in the dependent variable. In the bottom panel of Figure 7.7 , however, the changes in level are fairly small. And although there appears to be an increasing trend in the treatment condition, it looks as though it might be a continuation of a trend that had already begun during baseline. This pattern of results strongly suggests that the treatment was not responsible for any changes in the dependent variable—at least not to the extent that single-subject researchers typically hope to see.

Visual inspection of the data suggests an effective treatment in the top panel but an ineffective treatment in the bottom panel.

Figure 7.7: Visual inspection of the data suggests an effective treatment in the top panel but an ineffective treatment in the bottom panel.

The results of single-subject research can also be analyzed using statistical procedures—and this is becoming more common. There are many different approaches, and single-subject researchers continue to debate which are the most useful. One approach parallels what is typically done in group research. The mean and standard deviation of each participant’s responses under each condition are computed and compared, and inferential statistical tests such as the t test or analysis of variance are applied ( Fisch, 2001 ) . (Note that averaging across participants is less common.) Another approach is to compute the percentage of nonoverlapping data (PND) for each participant ( Scruggs & Mastropieri, 2021 ) . This is the percentage of responses in the treatment condition that are more extreme than the most extreme response in a relevant control condition. In the study of Hall and his colleagues, for example, all measures of Robbie’s study time in the first treatment condition were greater than the highest measure in the first baseline, for a PND of 100%. The greater the percentage of nonoverlapping data, the stronger the treatment effect. Still, formal statistical approaches to data analysis in single-subject research are generally considered a supplement to visual inspection, not a replacement for it.

The Single-Subject Versus Group “Debate”

Single-subject research is similar to group research—especially experimental group research—in many ways. They are both quantitative approaches that try to establish causal relationships by manipulating an independent variable, measuring a dependent variable, and controlling extraneous variables. As we will see, single-subject research and group research are probably best conceptualized as complementary approaches.

Data Analysis

One set of disagreements revolves around the issue of data analysis. Some advocates of group research worry that visual inspection is inadequate for deciding whether and to what extent a treatment has affected a dependent variable. One specific concern is that visual inspection is not sensitive enough to detect weak effects. A second is that visual inspection can be unreliable, with different researchers reaching different conclusions about the same set of data ( Danov & Symons, 2008 ) . A third is that the results of visual inspection—an overall judgment of whether or not a treatment was effective—cannot be clearly and efficiently summarized or compared across studies (unlike the measures of relationship strength typically used in group research).

In general, single-subject researchers share these concerns. However, they also argue that their use of the steady state strategy, combined with their focus on strong and consistent effects, minimizes most of them. If the effect of a treatment is difficult to detect by visual inspection because the effect is weak or the data are noisy, then single-subject researchers look for ways to increase the strength of the effect or reduce the noise in the data by controlling extraneous variables (e.g., by administering the treatment more consistently). If the effect is still difficult to detect, then they are likely to consider it neither strong enough nor consistent enough to be of further interest. Many single-subject researchers also point out that statistical analysis is becoming increasingly common and that many of them are using it as a supplement to visual inspection—especially for the purpose of comparing results across studies ( Scruggs & Mastropieri, 2021 ) .

Turning the tables, some advocates of single-subject research worry about the way that group researchers analyze their data. Specifically, they point out that focusing on group means can be highly misleading. Again, imagine that a treatment has a strong positive effect on half the people exposed to it and an equally strong negative effect on the other half. In a traditional between-subjects experiment, the positive effect on half the participants in the treatment condition would be statistically cancelled out by the negative effect on the other half. The mean for the treatment group would then be the same as the mean for the control group, making it seem as though the treatment had no effect when in fact it had a strong effect on every single participant!

But again, group researchers share this concern. Although they do focus on group statistics, they also emphasize the importance of examining distributions of individual scores. For example, if some participants were positively affected by a treatment and others negatively affected by it, this would produce a bimodal distribution of scores and could be detected by looking at a histogram of the data. The use of within-subjects designs is another strategy that allows group researchers to observe effects at the individual level and even to specify what percentage of individuals exhibit strong, medium, weak, and even negative effects.

External Validity

The second issue about which single-subject and group researchers sometimes disagree has to do with external validity—the ability to generalize the results of a study beyond the people and situation actually studied. In particular, advocates of group research point out the difficulty in knowing whether results for just a few participants are likely to generalize to others in the population. Imagine, for example, that in a single-subject study, a treatment has been shown to reduce self-injury for each of two developmentally disabled children. Even if the effect is strong for these two children, how can one know whether this treatment is likely to work for other developmentally disabled children?

Again, single-subject researchers share this concern. In response, they note that the strong and consistent effects they are typically interested in—even when observed in small samples—are likely to generalize to others in the population. Single-subject researchers also note that they place a strong emphasis on replicating their research results. When they observe an effect with a small sample of participants, they typically try to replicate it with another small sample—perhaps with a slightly different type of participant or under slightly different conditions. Each time they observe similar results, they rightfully become more confident in the generality of those results. Single-subject researchers can also point to the fact that the principles of classical and operant conditioning—most of which were discovered using the single-subject approach—have been successfully generalized across an incredibly wide range of species and situations.

And again turning the tables, single-subject researchers have concerns of their own about the external validity of group research. One extremely important point they make is that studying large groups of participants does not entirely solve the problem of generalizing to other individuals. Imagine, for example, a treatment that has been shown to have a small positive effect on average in a large group study. It is likely that although many participants exhibited a small positive effect, others exhibited a large positive effect, and still others exhibited a small negative effect. When it comes to applying this treatment to another large group , we can be fairly sure that it will have a small effect on average. But when it comes to applying this treatment to another individual , we cannot be sure whether it will have a small, a large, or even a negative effect. Another point that single-subject researchers make is that group researchers also face a similar problem when they study a single situation and then generalize their results to other situations. For example, researchers who conduct a study on the effect of cell phone use on drivers on a closed oval track probably want to apply their results to drivers in many other real-world driving situations. But notice that this requires generalizing from a single situation to a population of situations. Thus the ability to generalize is based on much more than just the sheer number of participants one has studied. It requires a careful consideration of the similarity of the participants and situations studied to the population of participants and situations that one wants to generalize to ( Shadish et al., 2002 ) .

Single-Subject and Group Research as Complementary Methods

As with quantitative and qualitative research, it is probably best to conceptualize single-subject research and group research as complementary methods that have different strengths and weaknesses and that are appropriate for answering different kinds of research questions ( Kazdin, 2019 ) . Single-subject research is particularly good for testing the effectiveness of treatments on individuals when the focus is on strong, consistent, and biologically or socially important effects. It is especially useful when the behavior of particular individuals is of interest. Clinicians who work with only one individual at a time may find that it is their only option for doing systematic quantitative research.

Group research, on the other hand, is good for testing the effectiveness of treatments at the group level. Among the advantages of this approach is that it allows researchers to detect weak effects, which can be of interest for many reasons. For example, finding a weak treatment effect might lead to refinements of the treatment that eventually produce a larger and more meaningful effect. Group research is also good for studying interactions between treatments and participant characteristics. For example, if a treatment is effective for those who are high in motivation to change and ineffective for those who are low in motivation to change, then a group design can detect this much more efficiently than a single-subject design. Group research is also necessary to answer questions that cannot be addressed using the single-subject approach, including questions about independent variables that cannot be manipulated (e.g., number of siblings, extroversion, culture).

  • Single-subject research—which involves testing a small number of participants and focusing intensively on the behavior of each individual—is an important alternative to group research in psychology.
  • Single-subject studies must be distinguished from case studies, in which an individual case is described in detail. Case studies can be useful for generating new research questions, for studying rare phenomena, and for illustrating general principles. However, they cannot substitute for carefully controlled experimental or correlational studies because they are low in internal and external validity.
  • Single-subject research designs typically involve measuring the dependent variable repeatedly over time and changing conditions (e.g., from baseline to treatment) when the dependent variable has reached a steady state. This approach allows the researcher to see whether changes in the independent variable are causing changes in the dependent variable.
  • Single-subject researchers typically analyze their data by graphing them and making judgments about whether the independent variable is affecting the dependent variable based on level, trend, and latency.
  • Differences between single-subject research and group research sometimes lead to disagreements between single-subject and group researchers. These disagreements center on the issues of data analysis and external validity (especially generalization to other people). Single-subject research and group research are probably best seen as complementary methods, with different strengths and weaknesses, that are appropriate for answering different kinds of research questions.
  • Does positive attention from a parent increase a child’s toothbrushing behavior?
  • Does self-testing while studying improve a student’s performance on weekly spelling tests?
  • Does regular exercise help relieve depression?
  • Practice: Create a graph that displays the hypothetical results for the study you designed in Exercise 1. Write a paragraph in which you describe what the results show. Be sure to comment on level, trend, and latency.
  • Discussion: Imagine you have conducted a single-subject study showing a positive effect of a treatment on the behavior of a man with social anxiety disorder. Your research has been criticized on the grounds that it cannot be generalized to others. How could you respond to this criticism?
  • Discussion: Imagine you have conducted a group study showing a positive effect of a treatment on the behavior of a group of people with social anxiety disorder, but your research has been criticized on the grounds that “average” effects cannot be generalized to individuals. How could you respond to this criticism?

7.6 Glossary

The simplest reversal design, in which there is a baseline condition (A), followed by a treatment condition (B), followed by a return to baseline (A).

applied behavior analysis

A subfield of psychology that uses single-subject research and applies the principles of behavior analysis to real-world problems in areas that include education, developmental disabilities, organizational behavior, and health behavior.

A condition in a single-subject research design in which the dependent variable is measured repeatedly in the absence of any treatment. Most designs begin with a baseline condition, and many return to the baseline condition at least once.

A detailed description of an individual case.

experimental analysis of behavior

A subfield of psychology founded by B. F. Skinner that uses single-subject research—often with nonhuman animals—to study relationships primarily between environmental conditions and objectively observable behaviors.

group research

A type of quantitative research that involves studying a large number of participants and examining their behavior in terms of means, standard deviations, and other group-level statistics.

interrupted time-series design

A research design in which a series of measurements of the dependent variable are taken both before and after a treatment.

item-order effect

The effect of responding to one survey item on responses to a later survey item.

Refers collectively to extraneous developmental changes in participants that can occur between a pretest and posttest or between the first and last measurements in a time series. It can provide an alternative explanation for an observed change in the dependent variable.

multiple-baseline design

A single-subject research design in which multiple baselines are established for different participants, different dependent variables, or different contexts and the treatment is introduced at a different time for each baseline.

naturalistic observation

An approach to data collection in which the behavior of interest is observed in the environment in which it typically occurs.

nonequivalent groups design

A between-subjects research design in which participants are not randomly assigned to conditions, usually because participants are in preexisting groups (e.g., students at different schools).

nonexperimental research

Research that lacks the manipulation of an independent variable or the random assignment of participants to conditions or orders of conditions.

open-ended item

A questionnaire item that asks a question and allows respondents to respond in whatever way they want.

percentage of nonoverlapping data

A statistic sometimes used in single-subject research. The percentage of observations in a treatment condition that are more extreme than the most extreme observation in a relevant baseline condition.

pretest-posttest design

A research design in which the dependent variable is measured (the pretest), a treatment is given, and the dependent variable is measured again (the posttest) to see if there is a change in the dependent variable from pretest to posttest.

quasi-experimental research

Research that involves the manipulation of an independent variable but lacks the random assignment of participants to conditions or orders of conditions. It is generally used in field settings to test the effectiveness of a treatment.

rating scale

An ordered set of response options to a closed-ended questionnaire item.

The statistical fact that an individual who scores extremely on one occasion will tend to score less extremely on the next occasion.

A term often used to refer to a participant in survey research.

reversal design

A single-subject research design that begins with a baseline condition with no treatment, followed by the introduction of a treatment, and after that a return to the baseline condition. It can include additional treatment conditions and returns to baseline.

single-subject research

A type of quantitative research that involves examining in detail the behavior of each of a small number of participants.

single-variable research

Research that focuses on a single variable rather than on a statistical relationship between variables.

social validity

The extent to which a single-subject study focuses on an intervention that has a substantial effect on an important behavior and can be implemented reliably in the real-world contexts (e.g., by teachers in a classroom) in which that behavior occurs.

Improvement in a psychological or medical problem over time without any treatment.

steady state strategy

In single-subject research, allowing behavior to become fairly consistent from one observation to the next before changing conditions. This makes any effect of the treatment easier to detect.

survey research

A quantitative research approach that uses self-report measures and large, carefully selected samples.

testing effect

A bias in participants’ responses in which scores on the posttest are influenced by simple exposure to the pretest

visual inspection

The primary approach to data analysis in single-subject research, which involves graphing the data and making a judgment as to whether and to what extent the independent variable affected the dependent variable.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Am Med Inform Assoc
  • v.13(1); Jan-Feb 2006

The Use and Interpretation of Quasi-Experimental Studies in Medical Informatics

Associated data.

Quasi-experimental study designs, often described as nonrandomized, pre-post intervention studies, are common in the medical informatics literature. Yet little has been written about the benefits and limitations of the quasi-experimental approach as applied to informatics studies. This paper outlines a relative hierarchy and nomenclature of quasi-experimental study designs that is applicable to medical informatics intervention studies. In addition, the authors performed a systematic review of two medical informatics journals, the Journal of the American Medical Informatics Association (JAMIA) and the International Journal of Medical Informatics (IJMI), to determine the number of quasi-experimental studies published and how the studies are classified on the above-mentioned relative hierarchy. They hope that future medical informatics studies will implement higher level quasi-experimental study designs that yield more convincing evidence for causal links between medical informatics interventions and outcomes.

Quasi-experimental studies encompass a broad range of nonrandomized intervention studies. These designs are frequently used when it is not logistically feasible or ethical to conduct a randomized controlled trial. Examples of quasi-experimental studies follow. As one example of a quasi-experimental study, a hospital introduces a new order-entry system and wishes to study the impact of this intervention on the number of medication-related adverse events before and after the intervention. As another example, an informatics technology group is introducing a pharmacy order-entry system aimed at decreasing pharmacy costs. The intervention is implemented and pharmacy costs before and after the intervention are measured.

In medical informatics, the quasi-experimental, sometimes called the pre-post intervention, design often is used to evaluate the benefits of specific interventions. The increasing capacity of health care institutions to collect routine clinical data has led to the growing use of quasi-experimental study designs in the field of medical informatics as well as in other medical disciplines. However, little is written about these study designs in the medical literature or in traditional epidemiology textbooks. 1 , 2 , 3 In contrast, the social sciences literature is replete with examples of ways to implement and improve quasi-experimental studies. 4 , 5 , 6

In this paper, we review the different pretest-posttest quasi-experimental study designs, their nomenclature, and the relative hierarchy of these designs with respect to their ability to establish causal associations between an intervention and an outcome. The example of a pharmacy order-entry system aimed at decreasing pharmacy costs will be used throughout this article to illustrate the different quasi-experimental designs. We discuss limitations of quasi-experimental designs and offer methods to improve them. We also perform a systematic review of four years of publications from two informatics journals to determine the number of quasi-experimental studies, classify these studies into their application domains, determine whether the potential limitations of quasi-experimental studies were acknowledged by the authors, and place these studies into the above-mentioned relative hierarchy.

The authors reviewed articles and book chapters on the design of quasi-experimental studies. 4 , 5 , 6 , 7 , 8 , 9 , 10 Most of the reviewed articles referenced two textbooks that were then reviewed in depth. 4 , 6

Key advantages and disadvantages of quasi-experimental studies, as they pertain to the study of medical informatics, were identified. The potential methodological flaws of quasi-experimental medical informatics studies, which have the potential to introduce bias, were also identified. In addition, a summary table outlining a relative hierarchy and nomenclature of quasi-experimental study designs is described. In general, the higher the design is in the hierarchy, the greater the internal validity that the study traditionally possesses because the evidence of the potential causation between the intervention and the outcome is strengthened. 4

We then performed a systematic review of four years of publications from two informatics journals. First, we determined the number of quasi-experimental studies. We then classified these studies on the above-mentioned hierarchy. We also classified the quasi-experimental studies according to their application domain. The categories of application domains employed were based on categorization used by Yearbooks of Medical Informatics 1992–2005 and were similar to the categories of application domains employed by Annual Symposiums of the American Medical Informatics Association. 11 The categories were (1) health and clinical management; (2) patient records; (3) health information systems; (4) medical signal processing and biomedical imaging; (5) decision support, knowledge representation, and management; (6) education and consumer informatics; and (7) bioinformatics. Because the quasi-experimental study design has recognized limitations, we sought to determine whether authors acknowledged the potential limitations of this design. Examples of acknowledgment included mention of lack of randomization, the potential for regression to the mean, the presence of temporal confounders and the mention of another design that would have more internal validity.

All original scientific manuscripts published between January 2000 and December 2003 in the Journal of the American Medical Informatics Association (JAMIA) and the International Journal of Medical Informatics (IJMI) were reviewed. One author (ADH) reviewed all the papers to identify the number of quasi-experimental studies. Other authors (ADH, JCM, JF) then independently reviewed all the studies identified as quasi-experimental. The three authors then convened as a group to resolve any disagreements in study classification, application domain, and acknowledgment of limitations.

Results and Discussion

What is a quasi-experiment.

Quasi-experiments are studies that aim to evaluate interventions but that do not use randomization. Similar to randomized trials, quasi-experiments aim to demonstrate causality between an intervention and an outcome. Quasi-experimental studies can use both preintervention and postintervention measurements as well as nonrandomly selected control groups.

Using this basic definition, it is evident that many published studies in medical informatics utilize the quasi-experimental design. Although the randomized controlled trial is generally considered to have the highest level of credibility with regard to assessing causality, in medical informatics, researchers often choose not to randomize the intervention for one or more reasons: (1) ethical considerations, (2) difficulty of randomizing subjects, (3) difficulty to randomize by locations (e.g., by wards), (4) small available sample size. Each of these reasons is discussed below.

Ethical considerations typically will not allow random withholding of an intervention with known efficacy. Thus, if the efficacy of an intervention has not been established, a randomized controlled trial is the design of choice to determine efficacy. But if the intervention under study incorporates an accepted, well-established therapeutic intervention, or if the intervention has either questionable efficacy or safety based on previously conducted studies, then the ethical issues of randomizing patients are sometimes raised. In the area of medical informatics, it is often believed prior to an implementation that an informatics intervention will likely be beneficial and thus medical informaticians and hospital administrators are often reluctant to randomize medical informatics interventions. In addition, there is often pressure to implement the intervention quickly because of its believed efficacy, thus not allowing researchers sufficient time to plan a randomized trial.

For medical informatics interventions, it is often difficult to randomize the intervention to individual patients or to individual informatics users. So while this randomization is technically possible, it is underused and thus compromises the eventual strength of concluding that an informatics intervention resulted in an outcome. For example, randomly allowing only half of medical residents to use pharmacy order-entry software at a tertiary care hospital is a scenario that hospital administrators and informatics users may not agree to for numerous reasons.

Similarly, informatics interventions often cannot be randomized to individual locations. Using the pharmacy order-entry system example, it may be difficult to randomize use of the system to only certain locations in a hospital or portions of certain locations. For example, if the pharmacy order-entry system involves an educational component, then people may apply the knowledge learned to nonintervention wards, thereby potentially masking the true effect of the intervention. When a design using randomized locations is employed successfully, the locations may be different in other respects (confounding variables), and this further complicates the analysis and interpretation.

In situations where it is known that only a small sample size will be available to test the efficacy of an intervention, randomization may not be a viable option. Randomization is beneficial because on average it tends to evenly distribute both known and unknown confounding variables between the intervention and control group. However, when the sample size is small, randomization may not adequately accomplish this balance. Thus, alternative design and analytical methods are often used in place of randomization when only small sample sizes are available.

What Are the Threats to Establishing Causality When Using Quasi-experimental Designs in Medical Informatics?

The lack of random assignment is the major weakness of the quasi-experimental study design. Associations identified in quasi-experiments meet one important requirement of causality since the intervention precedes the measurement of the outcome. Another requirement is that the outcome can be demonstrated to vary statistically with the intervention. Unfortunately, statistical association does not imply causality, especially if the study is poorly designed. Thus, in many quasi-experiments, one is most often left with the question: “Are there alternative explanations for the apparent causal association?” If these alternative explanations are credible, then the evidence of causation is less convincing. These rival hypotheses, or alternative explanations, arise from principles of epidemiologic study design.

Shadish et al. 4 outline nine threats to internal validity that are outlined in ▶ . Internal validity is defined as the degree to which observed changes in outcomes can be correctly inferred to be caused by an exposure or an intervention. In quasi-experimental studies of medical informatics, we believe that the methodological principles that most often result in alternative explanations for the apparent causal effect include (a) difficulty in measuring or controlling for important confounding variables, particularly unmeasured confounding variables, which can be viewed as a subset of the selection threat in ▶ ; (b) results being explained by the statistical principle of regression to the mean . Each of these latter two principles is discussed in turn.

Threats to Internal Validity

1. Ambiguous temporal precedence: Lack of clarity about whether intervention occurred before outcome
2. Selection: Systematic differences over conditions in respondent characteristics that could also cause the observed effect
3. History: Events occurring concurrently with intervention could cause the observed effect
4. Maturation: Naturally occurring changes over time could be confused with a treatment effect
5. Regression: When units are selected for their extreme scores, they will often have less extreme subsequent scores, an occurrence that can be confused with an intervention effect
6. Attrition: Loss of respondents can produce artifactual effects if that loss is correlated with intervention
7. Testing: Exposure to a test can affect scores on subsequent exposures to that test
8. Instrumentation: The nature of a measurement may change over time or conditions
9. Interactive effects: The impact of an intervention may depend on the level of another intervention

Adapted from Shadish et al. 4

An inability to sufficiently control for important confounding variables arises from the lack of randomization. A variable is a confounding variable if it is associated with the exposure of interest and is also associated with the outcome of interest; the confounding variable leads to a situation where a causal association between a given exposure and an outcome is observed as a result of the influence of the confounding variable. For example, in a study aiming to demonstrate that the introduction of a pharmacy order-entry system led to lower pharmacy costs, there are a number of important potential confounding variables (e.g., severity of illness of the patients, knowledge and experience of the software users, other changes in hospital policy) that may have differed in the preintervention and postintervention time periods ( ▶ ). In a multivariable regression, the first confounding variable could be addressed with severity of illness measures, but the second confounding variable would be difficult if not nearly impossible to measure and control. In addition, potential confounding variables that are unmeasured or immeasurable cannot be controlled for in nonrandomized quasi-experimental study designs and can only be properly controlled by the randomization process in randomized controlled trials.

An external file that holds a picture, illustration, etc.
Object name is 16f01.jpg

Example of confounding. To get the true effect of the intervention of interest, we need to control for the confounding variable.

Another important threat to establishing causality is regression to the mean. 12 , 13 , 14 This widespread statistical phenomenon can result in wrongly concluding that an effect is due to the intervention when in reality it is due to chance. The phenomenon was first described in 1886 by Francis Galton who measured the adult height of children and their parents. He noted that when the average height of the parents was greater than the mean of the population, the children tended to be shorter than their parents, and conversely, when the average height of the parents was shorter than the population mean, the children tended to be taller than their parents.

In medical informatics, what often triggers the development and implementation of an intervention is a rise in the rate above the mean or norm. For example, increasing pharmacy costs and adverse events may prompt hospital informatics personnel to design and implement pharmacy order-entry systems. If this rise in costs or adverse events is really just an extreme observation that is still within the normal range of the hospital's pharmaceutical costs (i.e., the mean pharmaceutical cost for the hospital has not shifted), then the statistical principle of regression to the mean predicts that these elevated rates will tend to decline even without intervention. However, often informatics personnel and hospital administrators cannot wait passively for this decline to occur. Therefore, hospital personnel often implement one or more interventions, and if a decline in the rate occurs, they may mistakenly conclude that the decline is causally related to the intervention. In fact, an alternative explanation for the finding could be regression to the mean.

What Are the Different Quasi-experimental Study Designs?

In the social sciences literature, quasi-experimental studies are divided into four study design groups 4 , 6 :

  • Quasi-experimental designs without control groups
  • Quasi-experimental designs that use control groups but no pretest
  • Quasi-experimental designs that use control groups and pretests
  • Interrupted time-series designs

There is a relative hierarchy within these categories of study designs, with category D studies being sounder than categories C, B, or A in terms of establishing causality. Thus, if feasible from a design and implementation point of view, investigators should aim to design studies that fall in to the higher rated categories. Shadish et al. 4 discuss 17 possible designs, with seven designs falling into category A, three designs in category B, and six designs in category C, and one major design in category D. In our review, we determined that most medical informatics quasi-experiments could be characterized by 11 of 17 designs, with six study designs in category A, one in category B, three designs in category C, and one design in category D because the other study designs were not used or feasible in the medical informatics literature. Thus, for simplicity, we have summarized the 11 study designs most relevant to medical informatics research in ▶ .

Relative Hierarchy of Quasi-experimental Designs

Quasi-experimental Study DesignsDesign Notation
A. Quasi-experimental designs without control groups
    1. The one-group posttest-only designX O1
    2. The one-group pretest-posttest designO1 X O2
    3. The one-group pretest-posttest design using a double pretestO1 O2 X O3
    4. The one-group pretest-posttest design using a nonequivalent dependent variable(O1a, O1b) X (O2a, O2b)
    5. The removed-treatment designO1 X O2 O3 removeX O4
    6. The repeated-treatment designO1 X O2 removeX O3 X O4
B. Quasi-experimental designs that use a control group but no pretest
    1. Posttest-only design with nonequivalent groupsIntervention group: X O1
Control group: O2
C. Quasi-experimental designs that use control groups and pretests
    1. Untreated control group with dependent pretest and posttest samplesIntervention group: O1a X O2a
Control group: O1b O2b
    2. Untreated control group design with dependent pretest and posttest samples using a double pretestIntervention group: O1a O2a X O3a
Control group: O1b O2b O3b
    3. Untreated control group design with dependent pretest and posttest samples using switching replicationsIntervention group: O1a X O2a O3a
Control group: O1b O2b X O3b
D. Interrupted time-series design
    1. Multiple pretest and posttest observations spaced at equal intervals of timeO1 O2 O3 O4 O5 X O6 O7 O8 O9 O10

O = Observational Measurement; X = Intervention Under Study. Time moves from left to right.

The nomenclature and relative hierarchy were used in the systematic review of four years of JAMIA and the IJMI. Similar to the relative hierarchy that exists in the evidence-based literature that assigns a hierarchy to randomized controlled trials, cohort studies, case-control studies, and case series, the hierarchy in ▶ is not absolute in that in some cases, it may be infeasible to perform a higher level study. For example, there may be instances where an A6 design established stronger causality than a B1 design. 15 , 16 , 17

Quasi-experimental Designs without Control Groups

equation M1

Here, X is the intervention and O is the outcome variable (this notation is continued throughout the article). In this study design, an intervention (X) is implemented and a posttest observation (O1) is taken. For example, X could be the introduction of a pharmacy order-entry intervention and O1 could be the pharmacy costs following the intervention. This design is the weakest of the quasi-experimental designs that are discussed in this article. Without any pretest observations or a control group, there are multiple threats to internal validity. Unfortunately, this study design is often used in medical informatics when new software is introduced since it may be difficult to have pretest measurements due to time, technical, or cost constraints.

equation M2

This is a commonly used study design. A single pretest measurement is taken (O1), an intervention (X) is implemented, and a posttest measurement is taken (O2). In this instance, period O1 frequently serves as the “control” period. For example, O1 could be pharmacy costs prior to the intervention, X could be the introduction of a pharmacy order-entry system, and O2 could be the pharmacy costs following the intervention. Including a pretest provides some information about what the pharmacy costs would have been had the intervention not occurred.

equation M3

The advantage of this study design over A2 is that adding a second pretest prior to the intervention helps provide evidence that can be used to refute the phenomenon of regression to the mean and confounding as alternative explanations for any observed association between the intervention and the posttest outcome. For example, in a study where a pharmacy order-entry system led to lower pharmacy costs (O3 < O2 and O1), if one had two preintervention measurements of pharmacy costs (O1 and O2) and they were both elevated, this would suggest that there was a decreased likelihood that O3 is lower due to confounding and regression to the mean. Similarly, extending this study design by increasing the number of measurements postintervention could also help to provide evidence against confounding and regression to the mean as alternate explanations for observed associations.

equation M4

This design involves the inclusion of a nonequivalent dependent variable ( b ) in addition to the primary dependent variable ( a ). Variables a and b should assess similar constructs; that is, the two measures should be affected by similar factors and confounding variables except for the effect of the intervention. Variable a is expected to change because of the intervention X, whereas variable b is not. Taking our example, variable a could be pharmacy costs and variable b could be the length of stay of patients. If our informatics intervention is aimed at decreasing pharmacy costs, we would expect to observe a decrease in pharmacy costs but not in the average length of stay of patients. However, a number of important confounding variables, such as severity of illness and knowledge of software users, might affect both outcome measures. Thus, if the average length of stay did not change following the intervention but pharmacy costs did, then the data are more convincing than if just pharmacy costs were measured.

The Removed-Treatment Design

equation M5

This design adds a third posttest measurement (O3) to the one-group pretest-posttest design and then removes the intervention before a final measure (O4) is made. The advantage of this design is that it allows one to test hypotheses about the outcome in the presence of the intervention and in the absence of the intervention. Thus, if one predicts a decrease in the outcome between O1 and O2 (after implementation of the intervention), then one would predict an increase in the outcome between O3 and O4 (after removal of the intervention). One caveat is that if the intervention is thought to have persistent effects, then O4 needs to be measured after these effects are likely to have disappeared. For example, a study would be more convincing if it demonstrated that pharmacy costs decreased after pharmacy order-entry system introduction (O2 and O3 less than O1) and that when the order-entry system was removed or disabled, the costs increased (O4 greater than O2 and O3 and closer to O1). In addition, there are often ethical issues in this design in terms of removing an intervention that may be providing benefit.

The Repeated-Treatment Design

equation M6

The advantage of this design is that it demonstrates reproducibility of the association between the intervention and the outcome. For example, the association is more likely to be causal if one demonstrates that a pharmacy order-entry system results in decreased pharmacy costs when it is first introduced and again when it is reintroduced following an interruption of the intervention. As for design A5, the assumption must be made that the effect of the intervention is transient, which is most often applicable to medical informatics interventions. Because in this design, subjects may serve as their own controls, this may yield greater statistical efficiency with fewer numbers of subjects.

Quasi-experimental Designs That Use a Control Group but No Pretest

equation M7

An intervention X is implemented for one group and compared to a second group. The use of a comparison group helps prevent certain threats to validity including the ability to statistically adjust for confounding variables. Because in this study design, the two groups may not be equivalent (assignment to the groups is not by randomization), confounding may exist. For example, suppose that a pharmacy order-entry intervention was instituted in the medical intensive care unit (MICU) and not the surgical intensive care unit (SICU). O1 would be pharmacy costs in the MICU after the intervention and O2 would be pharmacy costs in the SICU after the intervention. The absence of a pretest makes it difficult to know whether a change has occurred in the MICU. Also, the absence of pretest measurements comparing the SICU to the MICU makes it difficult to know whether differences in O1 and O2 are due to the intervention or due to other differences in the two units (confounding variables).

Quasi-experimental Designs That Use Control Groups and Pretests

The reader should note that with all the studies in this category, the intervention is not randomized. The control groups chosen are comparison groups. Obtaining pretest measurements on both the intervention and control groups allows one to assess the initial comparability of the groups. The assumption is that if the intervention and the control groups are similar at the pretest, the smaller the likelihood there is of important confounding variables differing between the two groups.

equation M8

The use of both a pretest and a comparison group makes it easier to avoid certain threats to validity. However, because the two groups are nonequivalent (assignment to the groups is not by randomization), selection bias may exist. Selection bias exists when selection results in differences in unit characteristics between conditions that may be related to outcome differences. For example, suppose that a pharmacy order-entry intervention was instituted in the MICU and not the SICU. If preintervention pharmacy costs in the MICU (O1a) and SICU (O1b) are similar, it suggests that it is less likely that there are differences in the important confounding variables between the two units. If MICU postintervention costs (O2a) are less than preintervention MICU costs (O1a), but SICU costs (O1b) and (O2b) are similar, this suggests that the observed outcome may be causally related to the intervention.

equation M9

In this design, the pretests are administered at two different times. The main advantage of this design is that it controls for potentially different time-varying confounding effects in the intervention group and the comparison group. In our example, measuring points O1 and O2 would allow for the assessment of time-dependent changes in pharmacy costs, e.g., due to differences in experience of residents, preintervention between the intervention and control group, and whether these changes were similar or different.

equation M10

With this study design, the researcher administers an intervention at a later time to a group that initially served as a nonintervention control. The advantage of this design over design C2 is that it demonstrates reproducibility in two different settings. This study design is not limited to two groups; in fact, the study results have greater validity if the intervention effect is replicated in different groups at multiple times. In the example of a pharmacy order-entry system, one could implement or intervene in the MICU and then at a later time, intervene in the SICU. This latter design is often very applicable to medical informatics where new technology and new software is often introduced or made available gradually.

Interrupted Time-Series Designs

equation M11

An interrupted time-series design is one in which a string of consecutive observations equally spaced in time is interrupted by the imposition of a treatment or intervention. The advantage of this design is that with multiple measurements both pre- and postintervention, it is easier to address and control for confounding and regression to the mean. In addition, statistically, there is a more robust analytic capability, and there is the ability to detect changes in the slope or intercept as a result of the intervention in addition to a change in the mean values. 18 A change in intercept could represent an immediate effect while a change in slope could represent a gradual effect of the intervention on the outcome. In the example of a pharmacy order-entry system, O1 through O5 could represent monthly pharmacy costs preintervention and O6 through O10 monthly pharmacy costs post the introduction of the pharmacy order-entry system. Interrupted time-series designs also can be further strengthened by incorporating many of the design features previously mentioned in other categories (such as removal of the treatment, inclusion of a nondependent outcome variable, or the addition of a control group).

Systematic Review Results

The results of the systematic review are in ▶ . In the four-year period of JAMIA publications that the authors reviewed, 25 quasi-experimental studies among 22 articles were published. Of these 25, 15 studies were of category A, five studies were of category B, two studies were of category C, and no studies were of category D. Although there were no studies of category D (interrupted time-series analyses), three of the studies classified as category A had data collected that could have been analyzed as an interrupted time-series analysis. Nine of the 25 studies (36%) mentioned at least one of the potential limitations of the quasi-experimental study design. In the four-year period of IJMI publications reviewed by the authors, nine quasi-experimental studies among eight manuscripts were published. Of these nine, five studies were of category A, one of category B, one of category C, and two of category D. Two of the nine studies (22%) mentioned at least one of the potential limitations of the quasi-experimental study design.

Systematic Review of Four Years of Quasi-designs in JAMIA

StudyJournalInformatics Topic CategoryQuasi-experimental DesignLimitation of Quasi-design Mentioned in Article
Staggers and Kobus JAMIA1Counterbalanced study designYes
Schriger et al. JAMIA1A5Yes
Patel et al. JAMIA2A5 (study 1, phase 1)No
Patel et al. JAMIA2A2 (study 1, phase 2)No
Borowitz JAMIA1A2No
Patterson and Harasym JAMIA6C1Yes
Rocha et al. JAMIA5A2Yes
Lovis et al. JAMIA1Counterbalanced study designNo
Hersh et al. JAMIA6B1No
Makoul et al. JAMIA2B1Yes
Ruland JAMIA3B1No
DeLusignan et al. JAMIA1A1No
Mekhjian et al. JAMIA1A2 (study design 1)Yes
Mekhjian et al. JAMIA1B1 (study design 2)Yes
Ammenwerth et al. JAMIA1A2No
Oniki et al. JAMIA5C1Yes
Liederman and Morefield JAMIA1A1 (study 1)No
Liederman and Morefield JAMIA1A2 (study 2)No
Rotich et al. JAMIA2A2 No
Payne et al. JAMIA1A1No
Hoch et al. JAMIA3A2 No
Laerum et al. JAMIA1B1Yes
Devine et al. JAMIA1Counterbalanced study design
Dunbar et al. JAMIA6A1
Lenert et al. JAMIA6A2
Koide et al. IJMI5D4No
Gonzalez-Hendrich et al. IJMI2A1No
Anantharaman and Swee Han IJMI3B1No
Chae et al. IJMI6A2No
Lin et al. IJMI3A1No
Mikulich et al. IJMI1A2Yes
Hwang et al. IJMI1A2Yes
Park et al. IJMI1C2No
Park et al. IJMI1D4No

JAMIA = Journal of the American Medical Informatics Association; IJMI = International Journal of Medical Informatics.

In addition, three studies from JAMIA were based on a counterbalanced design. A counterbalanced design is a higher order study design than other studies in category A. The counterbalanced design is sometimes referred to as a Latin-square arrangement. In this design, all subjects receive all the different interventions but the order of intervention assignment is not random. 19 This design can only be used when the intervention is compared against some existing standard, for example, if a new PDA-based order entry system is to be compared to a computer terminal–based order entry system. In this design, all subjects receive the new PDA-based order entry system and the old computer terminal-based order entry system. The counterbalanced design is a within-participants design, where the order of the intervention is varied (e.g., one group is given software A followed by software B and another group is given software B followed by software A). The counterbalanced design is typically used when the available sample size is small, thus preventing the use of randomization. This design also allows investigators to study the potential effect of ordering of the informatics intervention.

Although quasi-experimental study designs are ubiquitous in the medical informatics literature, as evidenced by 34 studies in the past four years of the two informatics journals, little has been written about the benefits and limitations of the quasi-experimental approach. As we have outlined in this paper, a relative hierarchy and nomenclature of quasi-experimental study designs exist, with some designs being more likely than others to permit causal interpretations of observed associations. Strengths and limitations of a particular study design should be discussed when presenting data collected in the setting of a quasi-experimental study. Future medical informatics investigators should choose the strongest design that is feasible given the particular circumstances.

Supplementary Material

Dr. Harris was supported by NIH grants K23 AI01752-01A1 and R01 AI60859-01A1. Dr. Perencevich was supported by a VA Health Services Research and Development Service (HSR&D) Research Career Development Award (RCD-02026-1). Dr. Finkelstein was supported by NIH grant RO1 HL71690.

This website uses cookies.

By clicking the "Accept" button or continuing to browse our site, you agree to first-party and session-only cookies being stored on your device to enhance site navigation and analyze site performance and traffic. For more information on our use of cookies, please see our Privacy Policy .

American Economic Journal: Economic Policy

  • November 2019

Randomized Safety Inspections and Risk Exposure on the Job: Quasi-experimental Estimates of the Value of a Statistical Life

ISSN 1945-7731 (Print) | ISSN 1945-774X (Online)

  • Editorial Policy
  • Annual Report of the Editor
  • Editorial Process: Discussions with the Editors
  • Research Highlights
  • Contact Information
  • Current Issue
  • Forthcoming Articles
  • Submission Guidelines
  • Accepted Article Guidelines
  • Style Guide
  • Reviewer Guidelines
  • Jonathan M. Lee
  • Laura O. Taylor
  • Article Information
  • Comments ( 0 )

Additional Materials

  • Replication Package (118.77 MB)
  • Online Appendix (662.54 KB)
  • Author Disclosure Statement(s) (10.69 KB)

JEL Classification

  • K32 Energy, Environmental, Health, and Safety Law

quasi experimental design voxco

  • Voxco Online
  • Voxco Panel Management
  • Voxco Panel Portal
  • Voxco Audience
  • Voxco Mobile Offline
  • Voxco Dialer Cloud
  • Voxco Dialer On-premise
  • Voxco TCPA Connect
  • Voxco Analytics
  • Voxco Text & Sentiment Analysis

quasi experimental design voxco

  • 40+ question types
  • Drag-and-drop interface
  • Skip logic and branching
  • Multi-lingual survey
  • Text piping
  • Question library
  • CSS customization
  • White-label surveys
  • Customizable ‘Thank You’ page
  • Customizable survey theme
  • Reminder send-outs
  • Survey rewards
  • Social media
  • Website surveys
  • Correlation analysis
  • Cross-tabulation analysis
  • Trend analysis
  • Real-time dashboard
  • Customizable report
  • Email address validation
  • Recaptcha validation
  • SSL security

Take a peek at our powerful survey features to design surveys that scale discoveries.

Download feature sheet.

  • Hospitality
  • Academic Research
  • Customer Experience
  • Employee Experience
  • Product Experience
  • Market Research
  • Social Research
  • Data Analysis

Explore Voxco 

Need to map Voxco’s features & offerings? We can help!

Watch a Demo 

Download Brochures 

Get a Quote

  • NPS Calculator
  • CES Calculator
  • A/B Testing Calculator
  • Margin of Error Calculator
  • Sample Size Calculator
  • CX Strategy & Management Hub
  • Market Research Hub
  • Patient Experience Hub
  • Employee Experience Hub
  • NPS Knowledge Hub
  • Market Research Guide
  • Customer Experience Guide
  • Survey Research Guides
  • Survey Template Library
  • Webinars and Events
  • Feature Sheets
  • Try a sample survey
  • Professional Services

quasi experimental design voxco

Get exclusive insights into research trends and best practices from top experts! Access Voxco’s ‘State of Research Report 2024 edition’ .

We’ve been avid users of the Voxco platform now for over 20 years. It gives us the flexibility to routinely enhance our survey toolkit and provides our clients with a more robust dataset and story to tell their clients.

VP Innovation & Strategic Partnerships, The Logit Group

  • Client Stories
  • Voxco Reviews
  • Why Voxco Research?
  • Careers at Voxco
  • Vulnerabilities and Ethical Hacking

Explore Regional Offices

  • Survey Software The world’s leading omnichannel survey software
  • Online Survey Tools Create sophisticated surveys with ease.
  • Mobile Offline Conduct efficient field surveys.
  • Text Analysis
  • Close The Loop
  • Automated Translations
  • NPS Dashboard
  • CATI Manage high volume phone surveys efficiently
  • Cloud/On-premise Dialer TCPA compliant Cloud on-premise dialer
  • IVR Survey Software Boost productivity with automated call workflows.
  • Analytics Analyze survey data with visual dashboards
  • Panel Manager Nurture a loyal community of respondents.
  • Survey Portal Best-in-class user friendly survey portal.
  • Voxco Audience Conduct targeted sample research in hours.
  • Predictive Analytics
  • Customer 360
  • Customer Loyalty
  • Fraud & Risk Management
  • AI/ML Enablement Services
  • Credit Underwriting

quasi experimental design voxco

Find the best survey software for you! (Along with a checklist to compare platforms)

Get Buyer’s Guide

  • 100+ question types
  • SMS surveys
  • Financial Services
  • Banking & Financial Services
  • Retail Solution
  • Risk Management
  • Customer Lifecycle Solutions
  • Net Promoter Score
  • Customer Behaviour Analytics
  • Customer Segmentation
  • Data Unification

Explore Voxco 

Watch a Demo 

Download Brochures 

  • CX Strategy & Management Hub
  • The Voxco Guide to Customer Experience
  • Professional services
  • Blogs & White papers
  • Case Studies

Find the best customer experience platform

Uncover customer pain points, analyze feedback and run successful CX programs with the best CX platform for your team.

Get the Guide Now

quasi experimental design voxco

VP Innovation & Strategic Partnerships, The Logit Group

  • Why Voxco Intelligence?
  • Our clients
  • Client stories
  • Featuresheets

True Experimental Design - Types & How to Conduct

SHARE THE ARTICLE ON

EXPERIMENTAL RESEARCH1 1

True-experimental research is often considered the most accurate research. A researcher has complete control over the process which helps reduce any error in the result. This also increases the confidence level of the research outcome. 

In this blog, we will explore in detail what it is, its various types, and how to conduct it in 7 steps.

What is a true experimental design?

True experimental design is a statistical approach to establishing a cause-and-effect relationship between variables. This research method is the most accurate forms which provides substantial backing to support the existence of relationships.

There are three elements in this study that you need to fulfill in order to perform this type of research:

1. The existence of a control group:  The sample of participants is subdivided into 2 groups – one that is subjected to the experiment and so, undergoes changes and the other that does not. 

2. The presence of an independent variable:  Independent variables that influence the working of other variables must be there for the researcher to control and observe changes.

3.   Random assignment:  Participants must be randomly distributed within the groups.

Read how Voxco helped Brain Research improve research productivity by 60%.

“The platform extends our ability to productively manage our busy intercept survey projects, and the confidence to support major new clients.”

Laura Ruvalcaba, President & CEO, Brain Research

An example of true experimental design

A study to observe the effects of physical exercise on productivity levels can be conducted using a true experimental design.

Suppose a group of 300 people volunteer for a study involving office workers in their 20s. These 300 participants are randomly distributed into 3 groups. 

  • 1st Group:  A control group that does not participate in exercising and has to carry on with their everyday schedule. 
  • 2nd Group:  Asked to indulge in home workouts for 30-45 minutes every day for one month. 
  • 3rd Group:  Has to work out 2 hours every day for a month. Both groups have to take one rest day per week.

In this research, the  level of physical exercise acts  as an  independent variable  while the  performance at the workplace  is a  dependent variable  that varies with the change in exercise levels.

Before initiating the true experimental research, each participant’s current performance at the workplace is evaluated and documented. As the study goes on, a progress report is generated for each of the 300 participants to monitor how their physical activity has impacted their workplace functioning.

At the end of two weeks, participants from the 2nd and 3rd groups that are able to endure their current level of workout, are asked to increase their daily exercise time by half an hour. While those that aren’t able to endure, are suggested to either continue with the same timing or fix the timing to a level that is half an hour lower. 

So, in this true experimental design a participant who at the end of two weeks is not able to put up with 2 hours of workout, will now workout for 1 hour and 30 minutes for the remaining tenure of two weeks while someone who can endure the 2 hours, will now push themselves towards 2 hours and 30 minutes.

In this manner, the researcher notes the timings of each member from the two active groups for the first two weeks and the remaining two weeks after the change in timings and also monitors their corresponding performance levels at work.

The above example can be categorized as true experiment research since now we have:

  • Control group:  Group 1 carries on with their schedule without being conditioned to exercise.
  • Independent variable : The duration of exercise each day.
  • Random assignment:  300 participants are randomly distributed into 3 groups and as such, there are no criteria for the assignment.

New call-to-action

What is the purpose of conducting true experimental research?

Both the primary usage and purpose of a true experimental design lie in establishing meaningful relationships based on quantitative surveillance. 

True experiments focus on connecting the dots between two or more variables by displaying how the change in one variable brings about a change in another variable. It can be as small a change as having enough sleep improves retention or as large scale as geographical differences affect consumer behavior. 

The main idea is to ensure the presence of different sets of variables to study with some shared commonality.

Beyond this, the research is used when the three criteria of random distribution, a control group, and an independent variable to be manipulated by the researcher, are met.

Voxco’s omnichannel survey software helps you collect insights from multiple channels using a single platform

See the true power of using an integrated survey platform to conduct online, offline, and phone surveys along with a built-in analytical suite.

What are the advantages of true experimental design?

Let’s take a look at some advantages that make this research design conclusive and accurate research.

Concrete method of research:

The statistical nature of the experimental design makes it highly credible and accurate. The data collected from the research is subjected to statistical tools. 

This makes the results easy to understand, objective and actionable. This makes it a better alternative to observation-based studies that are subjective and difficult to make inferences from.

Easy to understand and replicate:

Since the research provides hard figures and a precise representation of the entire process, the results presented become easily comprehensible for any stakeholder. 

Further, it becomes easier for future researchers conducting studies around the same subject to get a grasp of prior takes on the same and replicate its results to supplement their own research.

Establishes comparison:

The presence of a control group in true experimental research allows researchers to compare and contrast. The degree to which a methodology is applied to a group can be studied with respect to the end result as a frame of reference.

Conclusive:

The research combines observational and statistical analysis to generate informed conclusions. This directs the flow of follow-up actions in a definite direction, thus, making the research process fruitful.

What are the disadvantages of true experimental design?

We should also learn about the disadvantages it can pose in research to help you determine when and how you should use this type of research. 

This research design is costly. It takes a lot of investment in recruiting and managing a large number of participants which is necessary for the sample to be representative. 

The high resource investment makes it highly important for the researcher to plan each aspect of the process to its minute details.

Too idealistic:

The research takes place in a completely controlled environment. Such a scenario is not representative of real-world situations and so the results may not be authentic. 

T his is one of the main limitation why open-field research is preferred over lab research, wherein the researcher can influence the study.

Time-consuming:

Setting up and conducting a true experiment is highly time-consuming. This is because of the processes like recruiting a large enough sample, gathering respondent data, random distribution into groups, monitoring the process over a span of time, tracking changes, and making adjustments. 

The amount of processes, although essential to the entire model, is not a feasible option to go for when the results are required in the near future.

Now that we’ve learned about the advantages and disadvantages let’s look at its types.

Get started with your Experimental Research

Send your survey to the right people to receive quality responses.

What are the 3 types of true experimental design?

The research design is categorized into three types based on the way you should conduct the research. Each type has its own procedure and guidelines, which you should be aware of to achieve reliable data.  

The three types are: 

1) Post-test-only control group design. 

2) Pre-test post-test control group design.

3) Solomon four group control design.

Let’s see how these three types differ. 

1) Post-test-only control group design:

In this type of true experimental research, the control as well as the experimental group that has been formed using random allocation, are not tested before applying the experimental methodology. This is so as to avoid affecting the quality of the study.

The participants are always on the lookout to identify the purpose and criteria for assessment. Pre-test conveys to them the basis on which they are being judged which can allow them to modify their end responses, compromising the quality of the entire research process. 

However, this can hinder your ability to establish a comparison between the pre-experiment and post-experiment conditions which weighs in on the changes that have taken place over the course of the research.

2) Pre-test post-test control group design:

It is a modification of the post-test control group design with an additional test carried out before the implementation of the experimental methodology. 

This two-way testing method can help in noticing significant changes brought in the research groups as a result of the experimental intervention. There is no guarantee that the results present the true picture as post-testing can be affected due to the exposure of the respondents to the pre-test.

3) Solomon four group control design:

This type of true experimental design involves the random distribution of sample members into 4 groups. These groups consist of 2 control groups that are not subjected to the experiments and changes and 2 experimental groups that the experimental methodology applies to.

Out of these 4 groups, one control and one experimental group is used for pre-testing while all four groups are subjected to post-tests.

This way researcher gets to establish pre-test post-test contrast while there remains another set of respondents that have not been exposed to pre-tests and so, provide genuine post-test responses, thus, accounting for testing effects.

Explore all the survey question types possible on Voxco.

What is the difference between pre-experimental & true experimental research design.

Pre-experimental research helps determine the researchers’ intervention on a group of people. It is a step where you design the proper experiment to address a research question. 

True experiment defines that you are conducting the research. It helps establish a cause-and-effect relationship between the variables. 

We’ll discuss the differences between the two based on four categories, which are: 

  • Observatory Vs. Statistical. 
  • Absence Vs. Presence of control groups. 
  • Non-randomization Vs. Randomization. 
  • Feasibility test Vs. Conclusive test.

Let’s find the differences to better understand the two experiments. 

Observatory vs Statistical:

Pre-experimental research  is an observation-based model i.e. it is highly subjective and qualitative in nature. 

The true experimental design  offers an accurate analysis of the data collected using statistical data analysis tools.

Absence vs Presence of control groups:

Pre-experimental research  designs do not usually employ a control group which makes it difficult to establish contrast. 

While all three types of  true experiments  employ control groups.

Non-randomization vs Randomization:

Pre-experimental research  doesn’t use randomization in certain cases whereas 

True experimental research  always adheres to a randomization approach to group distribution.

Feasibility test vs Conclusive test:

Pre-tests  are used as a feasibility mechanism to see if the methodology being applied is actually suitable for the research purpose and whether it will have an impact or not.

While  true experiments  are conclusive in nature.

Guide to Descriptive Research

Learn the key steps of conducting descriptive research to uncover breakthrough insights into your target market.

7 Steps to conduct a true experimental research

It’s important to understand the steps/guidelines of research in order to maintain research integrity and gather valid and reliable data.  

We have explained 7 steps to conducting this research in detail. The TL;DR version of it is: 

1) Identify the research objective.

2) Identify independent and dependent variables.

3) Define and group the population.

4) Conduct Pre-tests.

5) Conduct the research.

6) Conduct post-tests.

7) Analyse the collected data. 

Now let’s explore these seven steps in true experimental design. 

1) Identify the research objective:

Identify the variables which you need to analyze for a cause-and-effect relationship. Deliberate which particular relationship study will help you make effective decisions and frame this research objective in one of the following manners:

  • Determination of the impact of X on Y
  • Studying how the usage/application of X causes Y

2) Identify independent and dependent variables:

Establish clarity as to what would be your controlling/independent variable and what variable would change and would be observed by the researcher. In the above samples, for research purposes, X is an independent variable & Y is a dependent variable.

3) Define and group the population:

Define the targeted audience for the true experimental design. It is out of this target audience that a sample needs to be selected for accurate research to be carried out. It is imperative that the target population gets defined in as much detail as possible.

To narrow the field of view, a random selection of individuals from the population is carried out. These are the selected respondents that help the researcher in answering their research questions. Post their selection, this sample of individuals gets randomly subdivided into control and experimental groups.

4) Conduct Pre-tests:

Before commencing with the actual study, pre-tests are to be carried out wherever necessary. These pre-tests take an assessment of the condition of the respondent so that an effective comparison between the pre and post-tests reveals the change brought about by the research.

5) Conduct the research:

Implement your experimental procedure with the experimental group created in the previous step in the true experimental design. Provide the necessary instructions and solve any doubts or queries that the participants might have. Monitor their practices and track their progress. Ensure that the intervention is being properly complied with, otherwise, the results can be tainted.

6) Conduct post-tests:

Gauge the impact that the intervention has had on the experimental group and compare it with the pre-tests. This is particularly important since the pre-test serves as a starting point from where all the changes that have been measured in the post-test, are the effect of the experimental intervention. 

So for example: If the pre-test in the above example shows that a particular customer service employee was able to solve 10 customer problems in two hours and the post-test conducted after a month of 2-hour workouts every day shows a boost of 5 additional customer problems being solved within those 2 hours, the additional 5 customer service calls that the employee makes is the result of the additional productivity gained by the employee as a result of putting in the requisite time

7) Analyse the collected data:

Use appropriate statistical tools to derive inferences from the data observed and collected. Correlational data analysis tools and tests of significance are highly effective relationship-based studies and so are highly applicable for true experimental research.

This step also includes differentiating between the pre and the post-tests for scoping in on the impact that the independent variable has had on the dependent variable. A contrast between the control group and the experimental groups sheds light on the change brought about within the span of the experiment and how much change is brought intentionally and is not caused by chance.

Voxco is trusted by 500+ global brands and top 50 MR firms to gather insights and take actions.

See how Voxco can help enhance your research efficiency.

Wrapping up;

This sums up everything about true experimental design. While it’s often considered complex and expensive, it is also one of the most accurate research.

The true experiment uses statistical analysis which ensures that your data is reliable and has a high confidence level. Curious to learn how you can use  survey software  to conduct your experimental research,  book a meeting with us .

Market Research toolkit to start your market research surveys and studies.

  • What is true experimental research design?

True experimental research design helps investigate the cause-and-effect relationships between the variables under study. The research method requires manipulating an independent variable, random assignment of participants to different groups, and measuring the dependent variable. 

  • How does true experiment research differ from other research designs?

The true experiment uses random selection/assignment of participants in the group to minimize preexisting differences between groups. It allows researchers to make causal inferences about the influence of independent variables. This is the factor that makes it different from other research designs like correlational research. 

  • What are the key components of true experimental research designs?

The following are the important factors of a true experimental design: 

  • Manipulation of the independent variable. 
  • Control groups. 
  • Experiment groups. 
  • Dependent variable. 
  • Random assignment. 
  • What are some advantages of true experiment design?

It enables you to establish causal relationships between variables and offers control over the confounding variables. Moreover, you can generalize the research findings to the target population. 

  • What ethical considerations are important in a true experimental research design?

When conducting this research method, you must obtain informed consent from the participants. It’s important to ensure the confidentiality and privacy of the participants to minimize any risk or harm. 

Explore Voxco Survey Software

+ Omnichannel Survey Software 

+ Online Survey Software 

+ CATI Survey Software 

+ IVR Survey Software 

+ Market Research Tool

+ Customer Experience Tool 

+ Product Experience Software 

+ Enterprise Survey Software 

True Experimental Design Survey chaining

Design your surveys with survey chaining

Design your surveys with survey chaining SHARE THE ARTICLE ON Table of Contents Some survey topics require in-depth data digging and extensive questions to be

True Experimental Design Survey chaining

Using AI for verbatim analysis

Using AI For Verbatim Analysis SHARE THE ARTICLE ON Table of Contents Do you benefit from using AI for verbatim analysis? Most of the valuable

True Experimental Design Survey chaining

5 Benefits of Using Online Survey Software for Your Business

5 Benefits of Using Online Survey Software for Your Business SHARE THE ARTICLE ON Table of Contents In the fast-paced world of business, gaining a

Ratio Scale 1 1 1 1

Non-Probability Sampling: Definition, Method and Examples

Enhancing Response Rates in CATI Surveys: Strategies and Techniques SHARE THE ARTICLE ON Table of Contents Research studies often try to find correlations, differences, or

Types of Response Bias How to avoid them

Types of Response Bias: How to avoid them?

Types of Response Bias: How to avoid them? Transform your insight generation process Use our in-depth online survey guide to create an actionable feedback collection

iStock 1002736158 L

Homewood Research Institute Case Study

Case Study How HRI uses Voxco to conduct complex research studies & speed up insight generation Homewood Research Institute is an independent charitable organization dedicated

We use cookies in our website to give you the best browsing experience and to tailor advertising. By continuing to use our website, you give us consent to the use of cookies. Read More

Name Domain Purpose Expiry Type
hubspotutk www.voxco.com HubSpot functional cookie. 1 year HTTP
lhc_dir_locale amplifyreach.com --- 52 years ---
lhc_dirclass amplifyreach.com --- 52 years ---
Name Domain Purpose Expiry Type
_fbp www.voxco.com Facebook Pixel advertising first-party cookie 3 months HTTP
__hstc www.voxco.com Hubspot marketing platform cookie. 1 year HTTP
__hssrc www.voxco.com Hubspot marketing platform cookie. 52 years HTTP
__hssc www.voxco.com Hubspot marketing platform cookie. Session HTTP
Name Domain Purpose Expiry Type
_gid www.voxco.com Google Universal Analytics short-time unique user tracking identifier. 1 days HTTP
MUID bing.com Microsoft User Identifier tracking cookie used by Bing Ads. 1 year HTTP
MR bat.bing.com Microsoft User Identifier tracking cookie used by Bing Ads. 7 days HTTP
IDE doubleclick.net Google advertising cookie used for user tracking and ad targeting purposes. 2 years HTTP
_vwo_uuid_v2 www.voxco.com Generic Visual Website Optimizer (VWO) user tracking cookie. 1 year HTTP
_vis_opt_s www.voxco.com Generic Visual Website Optimizer (VWO) user tracking cookie that detects if the user is new or returning to a particular campaign. 3 months HTTP
_vis_opt_test_cookie www.voxco.com A session (temporary) cookie used by Generic Visual Website Optimizer (VWO) to detect if the cookies are enabled on the browser of the user or not. 52 years HTTP
_ga www.voxco.com Google Universal Analytics long-time unique user tracking identifier. 2 years HTTP
_uetsid www.voxco.com Microsoft Bing Ads Universal Event Tracking (UET) tracking cookie. 1 days HTTP
vuid vimeo.com Vimeo tracking cookie 2 years HTTP
Name Domain Purpose Expiry Type
__cf_bm hubspot.com Generic CloudFlare functional cookie. Session HTTP
Name Domain Purpose Expiry Type
_gcl_au www.voxco.com --- 3 months ---
_gat_gtag_UA_3262734_1 www.voxco.com --- Session ---
_clck www.voxco.com --- 1 year ---
_ga_HNFQQ528PZ www.voxco.com --- 2 years ---
_clsk www.voxco.com --- 1 days ---
visitor_id18452 pardot.com --- 10 years ---
visitor_id18452-hash pardot.com --- 10 years ---
lpv18452 pi.pardot.com --- Session ---
lhc_per www.voxco.com --- 6 months ---
_uetvid www.voxco.com --- 1 year ---

Sign up for our newsletter

Exploring causal impact evaluation without randomisation: quasi-experimental designs (QEDs)

4 December 2024

09:30 –16:30

Nesta, 58 Victoria Embankment, London EC4Y 0DS

Join our fourth session in the ‘How to evaluate’ training series, where you’ll explore how to meet the Office for Students (OfS) Type 3 (causal) standard of evidence using quasi-experimental designs (QEDs). This session is applicable to both pre-entry and post-entry access and participation (APP) work, offering a comprehensive overview of when and how to use QEDs to evaluate your interventions.

Key elements in this session

  • Learn how to identify when it is appropriate to use a QED and explore variations of this methodology.
  • Understand sample size considerations for implementing QEDs.
  • Explore how to use a QED to evaluate your new intervention or strategy.
  • Learn how to interpret and learn from the findings of QEDs, as well as how to effectively communicate these findings to stakeholders.
  • Review case studies that illustrate common issues encountered when running a QED.
  • By the end of the session, you will have a high-level understanding of when it is appropriate to use a QED, how to plan a QED for an intervention, and the knowledge of potential challenges you may face.

Who should attend?

  • Those new to evaluation.
  • Experienced evaluators seeking to refresh their understanding of causal impact methods.
  • Managers and practitioners who commission and manage evaluations.
  • Those who work closely with evaluators.

Why attend?

  • Professional development: Gain a deep understanding of the appropriate use of QEDs, and learn how to interpret and learn from their outputs.
  • Benefit for your institution: Learn which interventions within your APPs would be suitable for a QED, and effectively manage their evaluation.
  • Networking opportunities: Connect with professionals across the higher education sector, fostering collaboration and sharing best practices for effective evaluation.

Note: This session will not cover statistical techniques, therefore, no statistical or technical expertise required to attend.

Location: Nesta, 58 Victoria Embankment, London EC4Y 0DS

Standard rate

Sign up below.

Next steps:

An impact evaluation should go hand-in-hand with an implementation and process evaluation. You may also find it useful to attend our second session on ‘ Assessing process: Running a successful implementation and process evaluation (IPE) ’ to complement your understanding of QEDs.

IMAGES

  1. Quasi-experimental design: explanation, methods and FAQs

    quasi experimental design voxco

  2. Quasi-experimental design: explanation, methods and FAQs

    quasi experimental design voxco

  3. Quasi-experimental design: explanation, methods and FAQs

    quasi experimental design voxco

  4. Quasi-experimental design: explanation, methods and FAQs

    quasi experimental design voxco

  5. Quasi-experimental design: explanation, methods and FAQs

    quasi experimental design voxco

  6. PPT

    quasi experimental design voxco

VIDEO

  1. Property Show with Kazi Arif I 17 JUNE 2024

  2. Chapter 5. Alternatives to Experimentation: Correlational and Quasi Experimental Designs

  3. Quasi-experimental design #quasiexperimentaldesign

  4. Quasi Experimental Design ( ABNORMAL PSYCHOLOGY 4K )

  5. Rise of the Future Gamers Solo Gaming Challenge

  6. Quasi experimental research design|3rd yr bsc nursing #notes #nursing #research

COMMENTS

  1. What is a Quasi-Experimental Design?

    Quasi-experimental design, a fascinating method in the realm of research, offers a unique approach to uncovering cause-and-effect relationships. Unlike traditional experiments, where researchers randomly assign participants to groups, studies work with real-world constraints, employing non-random criteria for group allocation.

  2. Quasi-experimental design: explanation, methods and FAQs

    The double pre-test design is a very robust quasi-experimental design designed to rule out the internal validity problem we had with the non-equivalent design. It has two pre-tests before the program. It is when the two groups are progressing at a different pace that you should change from pre-test 1 to pre-test 2.

  3. All there is to know about Experimental Design

    Access Voxco's 'State of Research Report 2024 edition ... Quasi-Experimental Research Design. Quasi-experimental research design is partially similar to True Experimental research. In the research, the participants are not randomly selected. The subjects for the experiment are assigned based on non-random criteria.

  4. Quasi-Experimental Research Design

    Quasi-experimental design is a research method that seeks to evaluate the causal relationships between variables, but without the full control over the independent variable (s) that is available in a true experimental design. In a quasi-experimental design, the researcher uses an existing group of participants that is not randomly assigned to ...

  5. Quasi-Experimental Design

    Revised on January 22, 2024. Like a true experiment, a quasi-experimental design aims to establish a cause-and-effect relationship between an independent and dependent variable. However, unlike a true experiment, a quasi-experiment does not rely on random assignment. Instead, subjects are assigned to groups based on non-random criteria.

  6. Experimental vs Quasi-Experimental Design: Which to Choose?

    A quasi-experimental design is a non-randomized study design used to evaluate the effect of an intervention. The intervention can be a training program, a policy change or a medical treatment. Unlike a true experiment, in a quasi-experimental study the choice of who gets the intervention and who doesn't is not randomized.

  7. Quasi-Experimental Design: Types, Examples, Pros, and Cons

    Written by MasterClass. Last updated: Jun 16, 2022 • 3 min read. A quasi-experimental design can be a great option when ethical or practical concerns make true experiments impossible, but the research methodology does have its drawbacks. Learn all the ins and outs of a quasi-experimental design. Explore.

  8. Quasi Experimental Design Overview & Examples

    Quasi-experimental research is a design that closely resembles experimental research but is different. The term "quasi" means "resembling," so you can think of it as a cousin to actual experiments. In these studies, researchers can manipulate an independent variable — that is, they change one factor to see what effect it has.

  9. Use of Quasi-Experimental Research Designs in Education Research

    In the past few decades, we have seen a rapid proliferation in the use of quasi-experimental research designs in education research. This trend, stemming in part from the "credibility revolution" in the social sciences, particularly economics, is notable along with the increasing use of randomized controlled trials in the strive toward rigorous causal inference.

  10. Experimental Research

    There are three types of experimental research designs. Pre-experimental design, True experimental design, Quasi-experimental design. Your experimental design is determined by the way you classify your research conditions and groups (variables, laboratory or natural study, etc.). We will look at each of the three research designs in detail.

  11. Selecting and Improving Quasi-Experimental Designs in Effectiveness and

    Quasi-experimental designs (QEDs) are increasingly employed to achieve a better balance between internal and external validity. Although these designs are often referred to and summarized in terms of logistical benefits versus threats to internal validity, there is still uncertainty about: (1) how to select from among various QEDs, and (2 ...

  12. Experimental and Quasi-Experimental Designs in Implementation Research

    Quasi-experimental designs allow implementation scientists to conduct rigorous studies in these contexts, albeit with certain limitations. We briefly review the characteristics of these designs here; other recent review articles are available for the interested reader (e.g. Handley et al., 2018). 2.1.

  13. Quasi-experiment

    A quasi-experiment is an empirical interventional study used to estimate the causal impact of an intervention on target population without random assignment.Quasi-experimental research shares similarities with the traditional experimental design or randomized controlled trial, but it specifically lacks the element of random assignment to treatment or control.

  14. Quasi-experimental Research: What It Is, Types & Examples

    Quasi-experimental research designs are a type of research design that is similar to experimental designs but doesn't give full control over the independent variable (s) like true experimental designs do. In a quasi-experimental design, the researcher changes or watches an independent variable, but the participants are not put into groups at ...

  15. Chapter 7 Quasi-Experimental Research

    The prefix quasi means "resembling." Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions (Cook et al., 1979).Because the independent variable is manipulated before the dependent variable is ...

  16. Exploring Types of Quantitative Research Methodology

    Descriptive Research. Correlational Research. Quasi-experimental Research Design. Experimental Research. These four quantitative research types also vary due to the different procedures each type undertakes. Each approach helps gather insightful data that can help you in making confident decisions. 1.

  17. The Use and Interpretation of Quasi-Experimental Studies in Medical

    In medical informatics, the quasi-experimental, sometimes called the pre-post intervention, design often is used to evaluate the benefits of specific interventions. The increasing capacity of health care institutions to collect routine clinical data has led to the growing use of quasi-experimental study designs in the field of medical ...

  18. Quasi-experimental design: explanation, methods and FAQs

    A quasi-experimental design is pretty more different of an experimental design, except for the subject that they both apparent the cause-effect relationship between the independent and dependent variables. A quasi-experimental design is pretty very different from an exploratory design, except for the conviction that they and manifest the cause ...

  19. Pre-experimental design: Definition, types & examples

    As the name suggests, pre-experimental design happens even before the true experiment starts. This is done to determine the researchers' intervention on a group of people. This will help them tell if the investment of cost and time for conducting a true experiment is worth a while. Hence, pre-experimental design is a preliminary step to justify the presence of the researcher's intervention.

  20. Randomized Safety Inspections and Risk Exposure on the Job: Quasi

    To address these limitations, this paper employs randomly assigned workplace safety inspections to instrument for plant-level risks in a quasi-experimental design. We provide credible causal evidence for the existence of compensating wages for fatality risks and estimate a VSL between $(2016)8 million and $(2016)10 million.

  21. What is a True Experimental Design?

    True experimental design is a statistical approach to establishing a cause-and-effect relationship between variables. This research method is the most accurate forms which provides substantial backing to support the existence of relationships. There are three elements in this study that you need to fulfill in order to perform this type of research:

  22. Exploring causal impact evaluation without randomisation: quasi

    Join our fourth session in the 'How to evaluate' training series, where you'll explore how to meet the Office for Students (OfS) Type 3 (causal) standard of evidence using quasi-experimental designs (QEDs). This session is applicable to both pre-entry and post-entry access and participation (APP) work, offering a comprehensive overview of when and how to […]