National Geographic en Español

Este es el primer avión experimental totalmente eléctrico de la NASA

La primera configuración totalmente eléctrica del x-57 maxwell de la nasa está en el centro de investigación de vuelo armstrong de la agencia en edwards, california..

El X-57, el primer avión experimental totalmente eléctrico de la NASA, o avión X, y el primer avión X tripulado en dos décadas, se entregó por Empirical Systems Aerospace (ESAero) de San Luis Obispo, California, el 2 de octubre de 2019, en la primera de tres configuraciones como una aeronave totalmente eléctrica, conocida como Modificación II o Mod II.

El vehículo Mod II del X-57 presenta la sustitución de los motores de combustión tradicionales en un avión básico Tecnam P2006T por motores de crucero eléctricos.

La entrega es un hito importante para el proyecto. Ya que, permite a los ingenieros de la NASA comenzar a someter a la aeronave a pruebas en tierra, para luego realizar pruebas de vuelo.

«La entrega del avión X-57 Mod II a la NASA es un evento significativo, que marca el comienzo de una nueva fase en este emocionante proyecto de avión X eléctrico», dijo el gerente del proyecto X-57 Tom Rigney.

«Con el primer avión experimental totalmente eléctrico en nuestra posesión, el equipo X-57 pronto realizará extensas pruebas en tierra del sistema integrado de propulsión eléctrica para garantizar que la aeronave esté en condiciones de aeronavegabilidad. Planeamos compartir rápidamente lecciones valiosas aprendidas en el camino a medida que avanzamos hacia las pruebas de vuelo, ayudando a informar el creciente mercado de aeronaves eléctricas.»

Mientras que el vehículo Mod II del X-57 comienza las pruebas de validación de sistemas en el terreno, los esfuerzos en preparación para las siguientes fases del proyecto, Mods III y IV, ya están en marcha, con la reciente finalización exitosa de las pruebas de carga en el ala en el Laboratorio de Cargas de Vuelo Armstrong de la NASA. Después de completar las pruebas, el ala, que se presentará en las configuraciones Mods III y IV, se someterá a controles de ajuste en un fuselaje en ESAero, asegurando la transición oportuna de la fase Mod II del proyecto a Mod III.

«ESAero está encantado de entregar el MOD II X-57 Maxwell a la NASA AFRC», dijo el presidente y CEO de ESAero, Andrew Gibson.

“En este tiempo revolucionario, la experiencia y las lecciones aprendidas, desde los primeros requisitos hasta el desarrollo de los estándares actuales, tienen el X-57 allanando el camino. Este hito, junto con la recepción exitosa del ala MOD III probada con carga, permitirá a la NASA, ESAero y al equipo de pequeñas empresas acelerar y liderar el desarrollo de propulsión distribuida de vehículos aéreos eléctricos en las configuraciones MOD III y MOD IV con integración en nuestras instalaciones en San Luis Obispo.»

Un objetivo del proyecto X-57 es ayudar a desarrollar estándares de certificación para los mercados emergentes de aviones eléctricos, incluidos los vehículos de movilidad aérea urbana, que también se basan en complejos sistemas de propulsión eléctrica distribuida.

La NASA compartirá el diseño centrado en la propulsión eléctrica y el proceso de aeronavegabilidad de la aeronave con los supervisores y la industria, lo que promoverá los enfoques de certificación para las aeronaves que utilizan propulsión eléctrica distribuida.

El equipo del X-57 está utilizando un «controlador de diseño» como un desafío técnico, para impulsar las lecciones aprendidas y las mejores prácticas.

Este controlador de diseño, del primer avión experimental totalmente eléctrico,  incluye un aumento del 500% en la eficiencia de crucero de alta velocidad, cero emisiones de carbono en vuelo y un vuelo mucho más silencioso para las poblaciones en tierra.

NO TE PIERDAS:  Lanzarán en diciembre el primer nanosatélite totalmente desarrollado en México

La NASA graba la impactante colisión de un cometa contra el Sol

Descubren expertos de la NASA un “logotipo” de Star Trek en Marte

Este artículo, el primer avión experimental totalmente eléctrico, es una recopilación de material publicado previamente por la NASA .

La Conanp registra el primer arribo de la ballena gris en México en la temporada 2019 – 2020

El nacimiento del museo de el carmen cuenta con 47 ceriesculturas, leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

NASA captura imágenes de un asteroide, con forma de cacahuate, que se acerca a la Tierra

Marte tiene un océano que podría contener vida

Marte tiene un océano que podría contener vida, pero costará mucho confirmarlo

NASA revela capa de diamantes en el planeta más pequeño del Sistema Solar

Mercurio al descubierto: NASA revela capa de diamantes en el planeta más pequeño del Sistema Solar

la imagen que la NASA tomó en tu cumpleaños

Así puedes ver la imagen que la NASA tomó en tu cumpleaños

Estudio de la NASA revela las regiones que serán inhabitables en 2050

Estudio de la NASA revela las regiones que serán inhabitables en 2050

la-nasa-confirma-la-existencia-de-tuneles-en-la-luna-que-podrian-ser-la-clave-para-habitarla

La NASA confirma la existencia de túneles en la Luna (que podrían ser la clave para habitarla)

Privacy overview.

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are as essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.

NASA Logo

8 min de lectura

El X-59 se asemeja a una aeronave real

Un ruidoso coro de taladros de pernos y maquinaria llenaba el edificio de ensamblaje del avión de tecnología supersónica silenciosa X-59 QueSST (Quiet SuperSonic Technology), mientras los ingenieros, técnicos de sistemas y fabricantes de aviones trabajaban para integrar las secciones principales, haciéndolo parecer un avión real por primera vez desde el corte inicial de metal en 2018.

“Ahora ha pasado de ser un montón de piezas separadas tiradas en diferentes partes del piso de producción a ser un avión”, dijo Jay Brandon, ingeniero jefe de la NASA para el proyecto Low Boom Flight Demonstrator (LBFD), que podría traducirse como demostrador de vuelo de baja explosión sónica.

El X-59 QueSST de la NASA está en construcción en la fábrica Skunk Works de Lockheed Martin en Palmdale, California, y está diseñado para volar a velocidades supersónicas —aproximadamente a 1062 kph (660 mph) al nivel del mar— sin producir una explosión sónica alarmante para las personas en tierra.

La NASA trabajará con comunidades de EE.UU. para comprender su respuesta al sonido de la aeronave y proporcionar esos datos a los entes reguladores, lo que podría cambiar las reglas que actualmente prohíben los vuelos supersónicos sobre tierra, reduciendo a la mitad el tiempo de viaje para los viajeros aéreos en un futuro cercano.

La integración

Con gran precisión y exactitud, el equipo humano utilizó las características de la estructura para auto-ubicar con precisión el ala, la cola y el fuselaje o sección delantera de la aeronave, y luego empleó una serie de proyecciones láser para verificar el ajuste preciso.

“El uso extensivo de las características y de orificios para sujetadores de tamaño completo previamente taladrados ha reducido significativamente el tiempo que lleva ubicar y colocar las piezas, especialmente el acoplamiento de ensamblajes grandes como este”, explicó David Richardson, director del programa de Lockheed Martin. “Es algo así como juntar piezas de Lego. Usamos el rastreador láser para asegurarnos de que todo esté alineado según las especificaciones de ingeniería antes de atornillarlo de forma permanente”.

El acoplamiento de estos importantes componentes del soporte físico fue un soplo de aire fresco para el equipo humano.

“Un hito como este, ver el avión armándose como una sola unidad, realmente revitaliza y motiva al equipo”, dijo Dave Richwine, subdirector de proyectos de tecnología del LBFD de la NASA.

Ilsutración del avión X-59 de la NASA

El fuselaje

El fuselaje de la aeronave contiene la cabina y ayuda a definir la forma del X-59. Finalmente, la nariz de 9 metros (30 pies) de largo de la aeronave se montará en el fuselaje.

Parte de la cabina es algo que se podría ver en una oficina. El piloto verá el cielo a través de un monitor de computadora 4K, que mostrará imágenes complejas, procesadas por computadora, de dos cámaras montadas arriba y debajo de la nariz del X-59. La NASA llama a esta “ventana” orientada hacia adelante el Sistema de Visión Externa o XVS, por sus siglas en inglés.

El XVS sirve como una medida de seguridad adicional para ayudar al piloto a maniobrar con seguridad a través de los cielos. Este sistema de visión de vanguardia es necesario porque la forma deseada y la nariz larga del X-59 no permiten una cubierta de cabina sobresaliente.

La forma única del X-59 controla el modo en que el aire se desplaza lejos del avión, evitando en última instancia que una explosión sónica perturbe a las comunidades en tierra.

La parte más reconocible del avión —el ala— fue “la sección más complicada y la primera sección del X-59 que fue fabricada por Lockheed Martin”, explicó Richwine. Dentro del ala de 9 metros (29,5 pies) de ancho se encuentran los sistemas de combustible de la aeronave y una gran parte de sus sistemas de control.

El equipo de trabajadores de Lockheed Martin usó máquinas robóticas con nombres que suenan como distintivos de identificación de los pilotos —Mongoose y COBRA— para fabricar el ala antes de unirla al ensamblaje de la cola y el fuselaje.

Mongoose es una herramienta con la capacidad de tejer revestimientos de alas compuestas utilizando luz ultravioleta para unir el material compuesto. COBRA —por las siglas en inglés de Operación Combinada: Atornillado y Perforación Automática Robótica— creó de manera eficaz agujeros que permitieron al equipo unir los revestimientos de las alas a la estructura del ala.

La cola contiene el compartimiento del motor. Esta sección está construida con materiales resistentes al calor que protegen la aeronave del calor que desprende el motor GE F414 del X-59.

El motor está en la sección superior del X-59. Similar al XVS, es uno de los muchos elementos intencionales en el diseño que aseguran que la aeronave tenga la forma deseada para producir un sonido más silencioso para las personas que se encuentran abajo.

Ensamblaje del X-59

¿Cuál es el objetivo del X-59, aparte de ser genial?

El X-59 —la pieza visual central de la misión— definitivamente aporta el factor genial, pero la parte de datos de la misión de la NASA, la parte nerd, es lo que revolucionará los viajes aéreos comerciales veloces sobre tierra.

La misión supersónica silenciosa de la NASA supone la construcción del X-59 (que está sucediendo ahora) y la realización de pruebas de vuelo iniciales a partir de 2022.

En 2023, la NASA volará el X-59 sobre el campo de pruebas del Centro de Investigación de Vuelo Armstrong de la agencia en California para demostrar que puede producir un golpe sónico más silencioso y que es seguro para ser operado en el Sistema Nacional del Espacio Aéreo. Más de 175 sistemas de grabación en tierra medirán el sonido proveniente del X-59.

En 2024, la NASA volará el X-59 sobre varias comunidades en diferentes lugares del país para medir la respuesta de las personas al sonido del golpe sónico producido por la aeronave, si es que escuchan algo. Los datos recopilados se entregarán a la Administración Federal de Aviación y la Organización de Aviación Civil Internacional para que los consideren al cambiar las prohibiciones existentes para los vuelos supersónicos sobre tierra.

Esa prohibición entró en vigor en 1973 y ha incomodado a las empresas supersónicas comerciales desde entonces, restringiendo los viajes más rápidos que el sonido solo a los vuelos sobre el océano. British Airways y Air France, que volaron el Concorde, fueron dos aerolíneas que ofrecieron dicho servicio entre 1976 y 2003.

Si las reglas cambian debido a los datos de la NASA, una nueva flota de aviones supersónicos comerciales se vuelve viable, lo que permitiría a los pasajeros subirse a un avión y llegar desde destinos lejanos en la mitad del tiempo. Aunque el X-59 de un solo piloto nunca transportará pasajeros, los fabricantes de aviones pueden optar por incorporar su tecnología en sus propios diseños.

El futuro aguarda

Con la mirada puesta en el futuro, el equipo está trabajando rigurosamente en el montaje final del X-59, que marcará el final de su fabricación.

A finales de 2021, Lockheed Martin enviará el X-59 a una instalación hermana en Ft. Worth, Texas, donde se realizarán pruebas en tierra para garantizar que la aeronave pueda soportar las cargas y tensiones que ocurren típicamente durante el vuelo. Allí, el equipo también calibrará y probará los sistemas de combustible antes de que el X-59 regrese a California para realizar más pruebas.

Aunque parecen muy lejanos, los sobrevuelos a comunidades, la recopilación de datos y un posible nuevo mercado comercial para los vuelos supersónicos por tierra están a la vuelta de la esquina.

Centro de Investigación Langley, Hampton, Virginia

Leer en inglés

Términos relacionados

  • Ciencias terrestres

Explora más

motor avion experimental

La sequía deja sediento a México

Las condiciones de sequía están causando una sobrecarga adicional en los sistemas que suministran agua a la Ciudad de México.

motor avion experimental

Con la mirada en los Andes

La cordillera sudamericana intercepta la humedad, produciendo una marcada transición de la selva tropical al desierto.

motor avion experimental

Las salinas de Bolivia

Un paisaje sobrenatural en una meseta de los Andes proporciona un laboratorio natural para los científicos que estudian la Tierra y Marte.

NASA Logo

Piloted, electric propulsion-powered experimental aircraft under way

Engineers work on a wing with electric motors that is part of an integrated experimental testbed. From left are Sean Clarke, left, Kurt Papathakis at upper right and Anthony Cash in the foreground. Credit: NASA Photo/Tom Tschida.

NASA is researching ideas that could lead to developing an electric propulsion-powered aircraft that would be quieter, more efficient and environmentally friendly than today's commuter aircraft.

The proposed piloted experimental airplane is called Sceptor, short for the Scalable Convergent Electric Propulsion Technology and Operations Research. The concept involves removing the wing from an Italian-built Tecnam P2006T aircraft and replacing it with an experimental wing integrated with electric motors.

An advantage of modifying an existing aircraft is engineers will be able to compare the performance of the proposed experimental airplane with the original configuration, said Sean Clarke, Sceptor co-principal investigator at NASA's Armstrong Flight Research Center in California. The Tecnam, currently under construction, is expected to be at Armstrong in about a year for integration of the wing with the fuselage. Armstrong flew a different Tecnam P2006T in September to gather performance data on the original configuration.

NASA researchers ultimately envision a nine-passenger aircraft with a 500-kilowatt power system in 2019. To put that in perspective, 500 kilowatts (nearly 700 horsepower) is about five times as powerful as an average modern passenger car engine.

Italian-built Tecnam P2006T aircraft

However, to reach that goal NASA researchers intend to fly the Aeronautics Research Mission Directorate-funded Sceptor in about two years. Progress in three areas is happening now to enable that timeline, Clarke said.

Those areas include testing of an experimental wing on a truck, developing and using a new simulator to look at controls and handling characteristics of an electric airplane and verifying tools that will enable NASA's aeronautical innovators to design and build Sceptor. Sceptor also is part of NASA's efforts to help pioneer low-carbon propulsion and transition it to industry.

integrated experimental testbed

The first area is the Hybrid Electric Integrated Systems Testbed, or HEIST, an experimental wing initially mounted on a specially modified truck. It is used for a series of research projects intended to integrate complex electric propulsion systems.

The testbed functions like a wind tunnel on the ground, accelerating to as much as 73 mph to gather data, Clarke explained. Researchers have used the testbed to measure lift, drag, pitching moment and rolling moment that can validate research tools, Clarke said.

"By evaluating what we measured, versus what the computational fluid dynamics, or CFD, predicted, we will know if the predictions make sense," he added. "Since Sceptor is a new design, we need to validate we have good answers for the Sceptor experimental wing," Clarke said.

HEIST's first experiment was called the Leading Edge Asynchronous Propeller Technology, or Leaptech . The experiment began in May at Armstrong and consisted of 18 electric motors integrated into the carbon composite wing with lithium iron phosphate batteries.

Tests so far show the distribution of power among the 18 motors creates more than double the lift at lower speeds than traditional systems, he said. Leaptech is a collaboration of Armstrong and NASA Langley Research Center in Hampton, Virginia, and California companies Empirical Systems Aerospace of Pismo Beach and Joby Aviation of Santa Cruz.

Developing and refining research tools is another major effort.

For example, researchers are integrating Sceptor aircraft systems with an Armstrong flight simulator for pilots to evaluate handling qualities. Researchers also will be able to study balancing the power demands of the motors with batteries and then a turbine, Clarke explained. Researchers are interested if a hybrid of distributed electric motors and gas-powered turbines could provide power to extend the aircraft's range and enable the envisioned 9-place concept aircraft, Clarke explained.

Sceptor could be a solution to greater fuel efficiency, improved performance and ride quality and aircraft noise reduction. NASA will be key in developing those technologies for the future that will be with people when they fly.

Related Terms

  • Green Aviation Tech
  • Science & Research

Explore More

Middle school students and camp counselors standing in front of a tree smiling.

NASA Summer Camp Inspires Future Climate Leaders

A spiral galaxy with a bright-white core, a glowing disk thick with swirling patterns of dark dust, and a faint halo around the disk. It is on a black background with a few small, distant galaxies and some foreground stars around it.

Hubble Examines a Busy Galactic Center

An image of a celestial scene showing two bright stars against a dark background, with one star appearing larger and more luminous on the right, and a smaller, dimmer star to the left. A planet is silhouetted as it transits in front of the larger star. The background is filled with a soft glow and scattered faint stars.

Join the Eclipsing Binary Patrol and Spot Rare Stellar Pairs!

Discover more topics from nasa.

Explore Earth Science

motor avion experimental

Earth Science in Action

Earth Action

Earth Science Data

The sum of Earth's plants, on land and in the ocean, changes slightly from year to year as weather patterns shift.

Facts About Earth

motor avion experimental

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Sustainability
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

MIT engineers fly first-ever plane with no moving parts

Press contact :, media download.

A new MIT plane is propelled via ionic wind. Batteries in the fuselage (tan compartment in front of plane) supply voltage to electrodes (blue/white horizontal lines) strung along the length of the plane, generating a wind of ions that propels the plane forward.

*Terms of Use:

Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license . You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT."

A new MIT plane is propelled via ionic wind. Batteries in the fuselage (tan compartment in front of plane) supply voltage to electrodes (blue/white horizontal lines) strung along the length of the plane, generating a wind of ions that propels the plane forward.

Previous image Next image

Since the first airplane took flight over 100 years ago, virtually every aircraft in the sky has flown with the help of moving parts such as propellers, turbine blades, or fans that produce a persistent, whining buzz.

Now MIT engineers have built and flown the first-ever plane with no moving parts. Instead of propellers or turbines, the light aircraft is powered by an “ionic wind” — a silent but mighty flow of ions that is produced aboard the plane, and that generates enough thrust to propel the plane over a sustained, steady flight.

Unlike turbine-powered planes, the aircraft does not depend on fossil fuels to fly. And unlike propeller-driven drones, the new design is completely silent.

“This is the first-ever sustained flight of a plane with no moving parts in the propulsion system,” says Steven Barrett, associate professor of aeronautics and astronautics at MIT. “This has potentially opened new and unexplored possibilities for aircraft which are quieter, mechanically simpler, and do not emit combustion emissions.”

He expects that in the near-term, such ion wind propulsion systems could be used to fly less noisy drones. Further out, he envisions ion propulsion paired with more conventional combustion systems to create more fuel-efficient, hybrid passenger planes and other large aircraft.

Barrett and his team at MIT have published their results today in the journal Nature .

Hobby crafts

Barrett says the inspiration for the team’s ion plane comes partly from the movie and television series, “Star Trek,” which he watched avidly as a kid. He was particularly drawn to the futuristic shuttlecrafts that effortlessly skimmed through the air, with seemingly no moving parts and hardly any noise or exhaust.

“This made me think, in the long-term future, planes shouldn’t have propellers and turbines,” Barrett says. “They should be more like the shuttles in ‘Star Trek , ’ that have just a blue glow and silently glide.”

About nine years ago, Barrett started looking for ways to design a propulsion system for planes with no moving parts. He eventually came upon “ionic wind,” also known as electroaerodynamic thrust — a physical principle that was first identified in the 1920s and describes a wind, or thrust, that can be produced when a current is passed between a thin and a thick electrode. If enough voltage is applied, the air in between the electrodes can produce enough thrust to propel a small aircraft.

For years, electroaerodynamic thrust has mostly been a hobbyist’s project, and designs have for the most part been limited to small, desktop “lifters” tethered to large voltage supplies that create just enough wind for a small craft to hover briefly in the air. It was largely assumed that it would be impossible to produce enough ionic wind to propel a larger aircraft over a sustained flight.

“It was a sleepless night in a hotel when I was jet-lagged, and I was thinking about this and started searching for ways it could be done,” he recalls. “I did some back-of-the-envelope calculations and found that, yes, it might become a viable propulsion system,” Barrett says. “And it turned out it needed many years of work to get from that to a first test flight.”

Video thumbnail

Ions take flight

The team’s final design resembles a large, lightweight glider. The aircraft, which weighs about 5 pounds and has a 5-meter wingspan, carries an array of thin wires, which are strung like horizontal fencing along and beneath the front end of the plane’s wing. The wires act as positively charged electrodes, while similarly arranged thicker wires, running along the back end of the plane’s wing, serve as negative electrodes.

The fuselage of the plane holds a stack of lithium-polymer batteries. Barrett's ion plane team included members of Professor David Perreault’s Power Electronics Research Group in the Research Laboratory of Electronics, who designed a power supply that would convert the batteries’ output to a sufficiently high voltage to propel the plane. In this way, the batteries supply electricity at 40,000 volts to positively charge the wires via a lightweight power converter.

Once the wires are energized, they act to attract and strip away negatively charged electrons from the surrounding air molecules, like a giant magnet attracting iron filings. The air molecules that are left behind are newly ionized, and are in turn attracted to the negatively charged electrodes at the back of the plane.

As the newly formed cloud of ions flows toward the negatively charged wires, each ion collides millions of times with other air molecules, creating a thrust that propels the aircraft forward.

Undistorted camera footage from unpowered glide 2, with position and energy from camera tracking annotated. Credit: Steven Barrett

The team, which also included Lincoln Laboratory staff Thomas Sebastian and Mark Woolston, flew the plane in multiple test flights across the gymnasium in MIT’s duPont Athletic Center — the largest indoor space they could find to perform their experiments. The team flew the plane a distance of 60 meters (the maximum distance within the gym) and found the plane produced enough ionic thrust to sustain flight the entire time. They repeated the flight 10 times, with similar performance.

Undistorted camera footage from flight 9, with position and energy from camera tracking annotated. Sped up 2x. Credit: Steven Barrett

“This was the simplest possible plane we could design that could prove the concept that an ion plane could fly,” Barrett says. “It’s still some way away from an aircraft that could perform a useful mission. It needs to be more efficient, fly for longer, and fly outside.”

The new design is a “big step” toward demonstrating the feasibility of ion wind propulsion, according to Franck Plouraboue, senior researcher at the Institute of Fluid Mechanics in Toulouse, France, who notes that researchers previously weren’t able to fly anything heavier than a few grams.

“The strength of the results are a direct proof that steady flight of a drone with ionic wind is sustainable,” says Plouraboue, who was not involved in the research. “[Outside of drone applications], it is difficult to infer how much it could influence aircraft  propulsion  in the future. Nevertheless, this is not really a weakness but rather an opening for future progress, in a field which is now going to burst.”

Barrett’s team is working on increasing the efficiency of their design, to produce more ionic wind with less voltage. The researchers are also hoping to increase the design’s thrust density — the amount of thrust generated per unit area. Currently, flying the team’s lightweight plane requires a large area of electrodes, which essentially makes up the plane’s propulsion system. Ideally, Barrett would like to design an aircraft with no visible propulsion system or separate controls surfaces such as rudders and elevators.

“It took a long time to get here,” Barrett says. “Going from the basic principle to something that actually flies was a long journey of characterizing the physics, then coming up with the design and making it work. Now the possibilities for this kind of propulsion system are viable.”

This research was supported, in part, by MIT Lincoln Laboratory Autonomous Systems Line, the Professor Amar G. Bose Research Grant, and the Singapore-MIT Alliance for Research and Technology (SMART). The work was also funded through the Charles Stark Draper and Leonardo career development chairs at MIT.

Share this news article on:

Press mentions.

Prof. Steven Barrett speaks with Forbes reporter Jeremy Bogaisky about the new plane he developed that is propelled by an ion drive, noting that he is working to embed a prolusion system within the skin of the aircraft. “There’s no reason to think long-term that airplane designs with electroaerodynamic propulsion need look at all like an airplane today,” explains Barrett.

The Economist highlights how MIT researchers have developed the first plane that is powered by an ion drive and has no moving parts. “The use of an ion drive means the MIT craft contains no moving propulsion parts in the form of propellers or jet engines,” The Economist explains. “It can fly silently and without direct emissions from burning fossil fuels.”

CNN reporter Helen Regan highlights a new solid-state plane developed by MIT researchers that has no moving parts and does not require fossil fuels. “The flight is a milestone in ‘ionic wind’ technology,” explains Regan, “and could pave the way for quieter and environmentally cleaner aircraft in the future.”

Scientific American

Scientific American reporter Angus Chen writes about how Prof. Steven Barrett has created the first-ever airplane that is powered by ionic wind thrusters and has no moving parts. “[Barrett] has demonstrated something truly unique,” says Prof. Mitchell Walker of the Georgia Institute of Technology.

A Nature editorial highlights the historic breakthrough achieved by MIT researchers who developed the first plane that is propelled by ionic wind and has no moving parts. Nature writes that the plane is a “remarkable machine,” adding that “anyone who watches the machine fly can surely see glimpses of a future with cleaner and quieter aircraft.”

The Conversation

In an article for The Conversation , Prof. Steven Barrett details how he was inspired by science fiction movies to create an airplane that makes no noise, has no moving parts and does not require fossil fuels to operate. Barrett explains that he hopes the new technology “could be used in larger aircraft to reduce noise and even allow an aircraft’s exterior skin to help produce thrust.”

Popular Science

Writing for Popular Science , Rob Verger highlights how MIT researchers have built and flown “a radically different type of plane that is thrust through the air using just electricity and the movement of ions, a type of silent drive without moving parts out of science fiction.”

The Washington Post

MIT researchers have built a new electric plane that has no moving parts and is propelled by “ionic wind,” reports Joel Achenbach for The Washington Post . Franck Plouraboué of Toulouse University, explains that the new plane creates “an opening for future progress, in a field which is now going to burst.”

Reuters reporter Will Dunham writes that a new plane without moving parts developed by MIT researchers is a “radical new approach toward flying.” The plane could one day lead to “ultra-efficient and nearly silent airplanes that have no moving control surfaces like rudders or elevators, no moving propulsion system like propellers or turbines, and no direct combustion emissions like you get with burning jet fuel,” explains Prof. Steven Barrett.

Associated Press

Inspired by “Star Trek,” Prof. Steven Barrett has developed a new silent airplane that does not require fossil fuels to operate and is powered by ionic wind thrusters, reports Malcom Ritter for the AP. Ritter explains that the technology that powers the plane could eventually be used “in airplane-like drones that perform tasks like environmental monitoring and surveillance.”

Previous item Next item

Related Links

  • Flight of an aeroplane with solid-state propulsion
  • Steven Barrett
  • MIT Electric Aircraft Initiative
  • Power Electronics Research Group
  • Research Laboratory of Electronics
  • MIT Lincoln Laboratory
  • More Videos From the MIT Electric Aircraft Initiative
  • Department of Aeronautics and Astronautics

Related Topics

  • Aeronautical and astronautical engineering

Related Articles

motor avion experimental

A mighty wind

A Nov. 20 reception honored the MIT faculty receiving this year’s Professor Amar G. Bose Research Grants. The program is named for the late Amar Bose ’51, SM ’52, ScD ’56, a longtime MIT faculty member and the founder of the Bose Corporation. This year’s reception also honored his son, Vanu Bose ’87, SM ’94, PhD ’99, who passed away last month. In his opening remarks, President L. ...

Bose Grants for 2017 reward bold and unconventional research visions 

Collectively, piston-engine aircraft like this Cirrus SR22 constitute the nation’s largest remaining source of lead emissions.

Unfriendly skies: Piston engine aircraft pose a significant health threat

More mit news.

Sarah Sterling, smiling, next to barrel-shaped microscopy equipment

No detail too small

Read full story →

Colorful spikes depict neural activity at progressively higher stimulation currents. On the left, the colors are dim. On the right, they are brighter and warmer, indicating a seizure.

Study assesses seizure risk from stimulating the thalamus

A golden fluid streams across horizontally in front of a green undulating wall.

Atoms on the edge

Water flows out of a cupped hand.

New filtration material could remove long-lasting chemicals from water

Allan Shtofenmakher smiles for a photo while sitting at an office desk

Keeping the cosmos clean

Headshot of Sam Madden

Sam Madden named faculty head of computer science in EECS

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

What are you looking for?

Most popular topics.

  • Sustainable aviation fuel (SAF)

motor avion experimental

E-Fan X is a major milestone on Airbus’ decarbonisation journey. We remain fully committed to our decarbonisation ambitions and continue to explore the disruptive technologies required to achieve them over the next decade.

A complex hybrid-electric flight demonstrator

In 2017, we launched the E-Fan X demonstrator with the ambition to test the technologies that would help decarbonise our skies. In the test aircraft, one of the four jet engines was slated to be replaced by a 2MW electric motor. 

Today, we take great pride in knowing this first-of-its-kind demonstrator has been a real game-changer for the aviation industry and a key step-change in our ambition to help decarbonise aviation.

Key learnings on future flight

In less than three years, E-Fan X successfully achieved its three main initial goals:  

  • Launching and testing the possibilities – and limitations – of a serial hybrid-electric propulsion system in a demonstrator aircraft, the first of its kind in the world,
  • Gaining invaluable insights to develop a more focused roadmap on how to progress on our ambitious decarbonisation commitments,
  • Laying a foundation for the future industry-wide adoption and regulatory acceptance of alternative-propulsion commercial aircraft.

Airbus and Rolls-Royce made  the joint decision  to bring the E-Fan X demonstrator to an end in April 2020. We continue to explore new pathways for disruptive CO2 reduction and are leveraging the knowledge gained through E-Fan X to do so.

Technical specifications

E-Fan-X-infographic-webpage-with-titles

ELECTRICAL SUPPLY

3000V DC electrical distribution

Power generation system

One of four jet engines is replaced with an electric motor

ENERGY STORAGE

High-power battery pack

DATA TRANSMISSION

Flight Test Instrumentation with telemetry

Watch our E-Fan X videos

From e-fan to e-fan x.

From E-Fan to E-Fan X

E-Fan X - FTI for characterisation

E-Fan X - wind tunnel test

E-Fan X - wind tunnel test

Discover energy transition at airbus.

New-energy-ecosystem

Energy Transition

Introducing new low-emission propulsion technology to aerospace

test

Hybrid and Electric Flight

Hybrid and Electric Flight Laying the groundwork for decarbonising aviation

EcoPulse™ is a distributed hybrid-propulsion aircraft demonstrator developed in partnership with Daher and Safran with the support of France’s CORAC and DGAC.

A new approach to distributed propulsion for aircraft

Air-Race-E

The world's first all-electric airplane race

Latest news

motor avion experimental

Electrifying the Sky

motor avion experimental

Our decarbonisation journey continues: looking beyond E-Fan X

motor avion experimental

The E-Fan X puts its aerodynamic design to the test

motor avion experimental

  • North America
  • South East Asia
  • United Kingdom
  • Global contacts
  • Climate-tech centre
  • Small modular reactors
  • Micro-Reactor
  • Digital Platforms
  • Digital Twin
  • The Aletheia Framework ®
  • Sustainability
  • Purchase Parts & Services
  • Other Customers
  • Aircraft Transitions
  • Capable & Versatile
  • RB211-524G/H & -T
  • RB211-535E4
  • Tay 620 / 650
  • M250 turboshaft
  • M250 turboprop
  • Future products
  • Access our testing capabilities
  • Testbed facilities
  • Net Zero for Future Combat Air Systems
  • Developing the Next Generation
  • Digital FIRST
  • Energy Transition for Defence
  • LibertyWorks
  • Rolls-Royce LiftSystem®
  • M250 Turboshaft
  • Trent 700 MRTT
  • M250 Turboprop
  • T56 3.5 Enhancement
  • Distributed Generation Systems
  • MT30 Marine Gas Turbine
  • AG9160 Generator Set
  • AG9140 Generator Set
  • MT7 Marine Gas Turbine
  • Power Systems
  • Naval Handling Systems
  • Naval Support & Services
  • TwinAlytix®
  • Power Generation Solutions
  • Governmental
  • Power Systems Sustainability
  • Our Electrical power & propulsion portfolio
  • Our Capability
  • Advanced Air Mobility careers
  • Our business model
  • Executive Team
  • Corporate governance
  • Where We Operate
  • Advanced Manufacturing Research Centres
  • Research and University Technology Centres
  • Rolls-Royce Cybersecurity Technology Research Network
  • Our Businesses
  • Our History
  • Our Heritage Centres
  • Heritage Trust – Bristol
  • Heritage Trust – Coventry and Ansty
  • Heritage Trust – Derby and Hucknall
  • Heritage Trust – Indianapolis
  • Heritage Trust – Scottish branch
  • Become a member
  • Learn and explore
  • Contact the Trust
  • The Magazine
  • News & Insights
  • Members’ events
  • R-RHT Documents
  • Inventors & technology licensing
  • Defence aerospace business team
  • Defence team
  • Corporate sustainability team
  • Heritage team
  • Helicopters team
  • Pensions team
  • Rolls-Royce no Brasil
  • ロールス・ロイスについて
  • country-landing-navigation
  • Történeteink
  • Támogatott kezdeményezések
  • Nachrichten
  • Geschichten
  • Werde Teil des Teams in Dahlewitz bei Berlin
  • Talent Community
  • Direkteinstieg
  • Praktikanten und Werkstudenten
  • Neue Wege in der Luftfahrt, eine neue Richtung für Ihre Karriere: Advanced Air Mobility
  • Schülerpraktika
  • Tag der Ausbildung
  • Engineering
  • Manufacturing & supply chain
  • Civil Aerospace
  • Our approach
  • Our community programmes
  • Our stories
  • The wider South East Asia
  • قطاع الطيران المدني
  • أنظمة الطاقة
  • رولز-رويس التكنولوجيا والفضاء
  • رولز-رويس إس إم آر
  • معامل بيانات آر2
  • تواصلو معنا
  • Our emissions footprint
  • Decarbonising complex and critical systems
  • Creating an enabling environment
  • Materiality
  • Ethics and compliance
  • Engineering and innovation
  • Operations and facilities
  • Our Stakeholders
  • Cyber Security Interviews
  • Reporting approach
  • Target progress
  • Data charts
  • Share price
  • Analyst consensus
  • Small Modular Reactors
  • Why Rolls-Royce?
  • 2024 Half Year Results
  • Regulatory news
  • Financial Results
  • Annual Report 2023
  • Annual Reports archive
  • Financial calendar
  • General Meetings 23 May 2024
  • General Meeting archive
  • Payments to shareholders
  • Manage your shareholding
  • Shareholder fraud warning
  • Debt Securities
  • Rights issue
  • Investor contacts
  • Company announcements
  • Trade press releases
  • Press releases

We develop and deliver complex power and propulsion solutions for safety-critical applications in the air, at sea and on land.

Our products and service packages enable our customers to connect people, societies, cultures and economies together.

Products & Services

We develop and deliver complex power and propulsion solutions.

For more than 100 years we have been at the forefront of innovation. Helping to power, protect and connect the modern world.

Create your future with us

Help us deliver better power for our changing world.

Doing more with less

We have a fundamental role in meeting the environmental and societal opportunities and challenges that the world faces.

Capital Markets Day 2023

We will announce new strategic and financial priorities on 28 November 2023 at our Capital Markets Day. We are inviting investors and stakeholders to hear our new priorities and objectives from our leadership team via a livestream.

Rolls-Royce Half Year results

Rolls-Royce announced Half Year results on Thursday 1 August 2024.

View Press release

News centre

Updates and news from around the Rolls-Royce businesses.

Sign up to get the latest news

motor avion experimental

ACCEL: Accelerating the Electrification of Flight

Our zero-emission 'Spirit of Innovation' aircraft has achieved a new world record for all-electric flight of 345.4mph

Breaking records to combat climate change

We’re at the start of a new and exciting era in the future of electric aviation – building the fastest all-electric plane the world has ever seen.

It’s estimated that over 6 billion people will fly annually by 2030 and more planes in the air means more emissions. Our pioneering technology will play a fundamental role in enabling the future of low-carbon flight.

Latest News

Keep up to date on our world record attempt.

Sign up for email alerts

Inspiring the next generation

This amazing project is an exciting opportunity to engage with tomorrow’s scientists and engineers. We've produced a whole host of STEM-related activity packs for inquisitive young minds eager to learn more about cleaner sustainable aviation and have fun in the process.

Access our activity packs

Battery technology has been integral to the creation of the Spirit of Innovation, our first all-electric aircraft.

Comprised of 6,000 cells and an advanced cooling system that can withstand extreme temperatures, the plane's battery is a feat of engineering. It's a key part of our future where we aim to lead the way in sustainable power for new aviation markets; with an all-electric solution that will get us closer to a NetZero future.

Our partners in pioneering all-electric aviation

This ground-breaking project is made possible by collaborating with the UK’s finest experts in the field, along with support from the UK Government . Half of the project’s funding is provided by the Aerospace Technology Institute (ATI), in partnership with the Department for Business, Energy & Industrial Strategy and Innovate UK.

The ATI Programme is a joint Government-industry investment to maintain and grow the UK’s competitive position in civil aerospace design and manufacture. The programme, delivered through a partnership of the Aerospace Technology Institute (ATI), Department for Business, Energy & Industrial Strategy (BEIS) and Innovate UK, addresses technology, capability and supply chain challenges. www.ati.org.uk

Rolls-Royce and YASA

Rolls-Royce is working with YASA (UK), a manufacturer of high-power, lightweight electric motors and controllers used in automotive, aerospace and industrial applications.

"We’re excited to be working with Rolls-Royce on integrating our high-power, light weight electric motors into a pure electric demonstrator aircraft. Thanks to our innovative axial-flux design, YASA can deliver the smallest, lightest electric motors for a given power and torque – opening up new and exciting opportunities for electrification in aerospace." Chris Harris, CEO, YASA

Rolls-Royce and Electroflight

Rolls-Royce is supported by Electroflight (UK), a start-up specialising in high performance electric powertrains.

"We are delighted to be supporting Rolls-Royce with an integrated electric powertrain including an innovative energy storage solution. Our team comprises leading experts in electrification from the motorsport and automotive sector to assist our partners to accelerate the evolution of electric aircraft." Roger Targett, Managing Director, Electroflight

Airframer Support

For the ‘Spirit of Innovation’ airframe the team selected the Sharp Nemesis NXT specifically designed for air speed racing. For Rolls-Royce and our partners, the focus of the ACCEL project is in developing the technology and capability necessary to enable power and propulsion systems for the advanced air mobility market rather the aircraft itself. Both original designer of the aircraft John Sharp & current rights holder NXT Aero have generously supported Electroflight throughout the project.

Related stories

Your selection did not return any results. Please try another selection.

Rolls-Royce develops and delivers complex power and propulsion solutions for safety-critical applications in the air, at sea and on land.

© Rolls-Royce plc 2024. All rights reserved.

© Rolls-Royce plc . All rights reserved.

  • Products & Services
  • Country sites
  • Electrical Aviation

Vulnerability Reporting

Disclosure Policy

  • Use of cookies
  • Cookie Settings
  • Legal information
  • Data privacy
  • Anti-slavery statement
  • Accessibility

motor avion experimental

NASA Logo

Suggested Searches

  • Climate Change
  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & climate, the solar system, the universe, aeronautics, learning resources, news & events.

Hubble Examines a Busy Galactic Center

Hubble Examines a Busy Galactic Center

An aircraft is centered in the image facing the left. It is on a runway of dark gray concrete and the surroundings are primarily dry grass, with another runway at the top of the image.

NASA Earth Scientists Take Flight, Set Sail to Verify PACE Satellite Data

What’s Up: September 2024 Skywatching Tips from NASA

What’s Up: September 2024 Skywatching Tips from NASA

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe
  • Black Holes
  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved

NASA en Español

  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Guest Program
  • Image of the Day
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

NASA'S Europa Clipper Spacecraft

NASA Invites Social Creators to Experience Launch of Europa Clipper Mission

Persevering Through the Storm

Persevering Through the Storm

NASA’s Hubble, MAVEN Help Solve the Mystery of Mars’ Escaping Water

NASA’s Hubble, MAVEN Help Solve the Mystery of Mars’ Escaping Water

motor avion experimental

NASA Astronaut Don Pettit’s Science of Opportunity on Space Station

Technicians are building tooling in High Bay 2 at NASA Kennedy that will allow NASA and Boeing, the SLS core stage lead contractor, to vertically integrate the core stage.

NASA, Boeing Optimizing Vehicle Assembly Building High Bay for Future SLS Stage Production

motor avion experimental

NASA Seeks Input for Astrobee Free-flying Space Robots

NASA Summer Camp Inspires Future Climate Leaders

NASA Summer Camp Inspires Future Climate Leaders

Still image from PREFIRE animation

NASA Mission Gets Its First Snapshot of Polar Heat Emissions

The image shows a compact, handheld water dispenser device placed on a table, with several vacuum-sealed packets of food arranged in front of it. The device is white with yellow tape and has various labels and instructions on its surface. It includes a large, graduated syringe-like component marked in milliliters, used for precise water measurement. The food packets in front of the device contain different types of rehydratable meals in various colors and textures, indicating the preparation of food for consumption in a space environment. The background features a white grid pattern, enhancing the focus on the device and food packets.

Artemis IV: Gateway Gadget Fuels Deep Space Dining

NASA’s Webb Reveals Distorted Galaxy Forming Cosmic Question Mark

NASA’s Webb Reveals Distorted Galaxy Forming Cosmic Question Mark

NASA’s Mini BurstCube Mission Detects Mega Blast

NASA’s Mini BurstCube Mission Detects Mega Blast

TRACERS

NASA Tunnel Generates Decades of Icy Aircraft Safety Data

A four-engine turboprop aircraft in a red and white livery takes off from a runway on its way to be modified into a hybrid electric aircraft. Other airplanes can be seen in the distance.

Research Plane Dons New Colors for NASA Hybrid Electric Flight Tests 

A white Gulfstream IV airplane flies to the left of the frame over a tan desert landscape below and blue mountain ranges in the back of the image. The plane’s tail features the NASA logo, and its wings have winglets. Visible in the lower right third of the image, directly behind the airplane’s wingtip is the Mojave Air and Space Port in Mojave, California. 

NASA G-IV Plane Will Carry Next-Generation Science Instrument

bright blue cloud fills the scene, orange-red rings surround bright-white stars in the upper-left corner of the image

OSAM-1 Partnership Opportunity: Request for Information 

Two robotic arms wrapped in gold material sitting on top of a black and silver box.

NASA to Support DARPA Robotic Satellite Servicing Program

A prototype of a robot built to access underwater areas where Antarctic ice shelves meet land is lowered through the ice during a field test north of Alaska in March.

NASA JPL Developing Underwater Robots to Venture Deep Below Polar Ice

Learn Math with NASA Science

Learn Math with NASA Science

In this photo taken from the International Space Station, the Moon passes in front of the Sun casting its shadow, or umbra, and darkening a portion of the Earth's surface above Texas during the annular solar eclipse Oct. 14, 2023.

Eclipses Create Atmospheric Gravity Waves, NASA Student Teams Confirm

A close up image of a set of massive solar arrays measuring about 46.5 feet (14.2 meters) long and about 13.5 feet (4.1 meters) high on NASA’s Europa Clipper spacecraft inside the agency’s Payload Hazardous Servicing Facility at Kennedy Space Center in Florida.

La NASA invita a los medios al lanzamiento de Europa Clipper

A man supporting the installation of the X-59 ejection seat.

El X-59 de la NASA avanza en las pruebas de preparación para volar

Technicians tested deploying a set of massive solar arrays

La NASA invita a creadores de las redes sociales al lanzamiento de la misión Europa Clipper

 Pantalla en el respaldo de un asiento de avión que muestra el logo de aeronáutica de la NASA.

Aeronáutica en español

Bienvenidos a la página en español de aeronáutica de la NASA. Gracias a los avances tecnológicos desarrollados por la NASA, la industria de la aviación está mejor equipada que nunca para transportar a pasajeros y carga de manera segura y eficiente a destinos en todo el mundo. De hecho, todos los aviones estadounidenses que vuelan hoy día, así como todos los controles de tráfico aéreo de los Estados Unidos, utilizan, de alguna manera u otra, tecnología desarrollada por la NASA.

motor avion experimental

La presentación del X-59 de la NASA personifica la tradición aeronáutica

motor avion experimental

Las leyendas de los pilotos de pruebas de la NASA se reúnen

motor avion experimental

La NASA anticipa el primer vuelo del avión experimental X-59 para 2024 

motor avion experimental

La movilidad aérea avanzada hace que los viajes sean más accesibles

Primeras imágenes de la interacción de ondas de choque de aviones supersónicos

La NASA ha probado con éxito una avanzada tecnología fotográfica aire-aire en vuelo, capturando las primeras imágenes de la interacción de ondas de choque de dos aviones supersónicos en vuelo.

Two U.S. Air Force Test Pilot School T-38 aircraft flying in formation at supersonic speed.

¡Recursos geniales!

STEM es un acrónimo inglés que se refiere a las materias de ciencia, tecnología, ingeniería y matemáticas. Las lecciones y actividades STEM K-12 de la NASA enfocadas en la aeronáutica enseñan sobre conceptos STEM en un contexto del mundo real y ayudan a inspirar a los estudiantes y a visualizar el futuro de la aeronáutica.

Illustration of a superhero teacher in flight with books and the X-59 and X-57 aircraft in flight as well.

Explore More

motor avion experimental

Descubre más temas de la NASA

motor avion experimental

NASA en español

Explora el universo y descubre tu planeta natal con nosotros, en tu idioma.

motor avion experimental

NASA Images

motor avion experimental

Experimental Avionics

DIY avionics for experimental aircraft

Welcome to Experimental Avionics

This online resource is dedicated to Open Source avionics for experimental aviation. Our goal is to create simple, functional and affordable avionics for experimental aircraft builders and anyone interested in aviation and electronics. All the design information and software is provided for you free of charge.

Most of the projects here are based on Arduino controllers and are designed to be easily replicated by anyone with basic knowledge in electronics and software development.

motor avion experimental

Why build DIY avionics?

  • It is cheaper. A full set of flight and engine instruments can be built for under $800  (USD)
  • It is a great learning experience
  • You build what you want
  • It’s fun!

Philosophy of these projects

  • Simple The main focus of the project’s design is to make them easily repeatable. All of the projects are built with pre-assembled components, so you only need some basic soldering skills to put it together.
  • Affordable All the components used in the projects are widely available from eBay or from your local DIY electronics store.
  • Reliable There is a large community of people in the world experimenting with robotics. They all use the same components and support each other in creating reliable and efficient designs.
  • Easy to build and modify All of the projects are designed in a way that makes them easy to be replicated with basic tools, a computer, a soldering iron and a $10 multimeter.

Most of the modules are based on Arduino IDE. Why Arduino? Because it is a simple platform, very easy to learn and there is a huge community to source support and wisdom from.

Flight Data Recorder (FDR) Module is a Raspberry Pi based unit. Raspberry Pi is a bit more complex then Arduino but has a lot of power. The FDR module doubles as an interface to external displays (iPad), voice notification system (B*tching Betty), ADSB-In, etc

All the modules in the latest version of the system are interconnected via CAN-Bus.

Important notes:

  • This is an open source project – That means there is no centralised support for any of the software or hardware. The support is community-based. Fortunately, the community is quite large and most of your questions have already been answered by someone on the internet.
  • All the projects are DIY – “Y” stands for “yourself“. 🙂 You need to build and test the units yourself and assess their suitability for the purpose.

Your comments, opinions and contributions will be highly appreciated.

Feel free to contact us on [email protected]

Disclaimer:

By using any information on this website, downloading the software or purchasing any item from it, you assume full responsibility for any consequences. No warranties of any kind provided or implied.  All this information and software provided free of charge and licensed under Creative Commons Attribution Share-Alike license . 

motor avion experimental

  • Registrarse

EEUU tiene el primer avión desechable que volará de forma autónoma gracias a la IA

  • El avión supersónico XB-1 vuela a más de 400 km/h y supera con éxito su segundo vuelo de prueba
  • Así es XRQ-73: el nuevo dron silencioso del ejército de Estados Unidos que los enemigos no podrán detectar

En la imagen, el avión Model 437 Vanguard.

Scaled Composites, compañía aeroespacial propiedad de Northrop Grumman, ha creado un caza de combate desechable llamado Model 437 Vanguard .

Dicha aeronave está diseñada para operar de forma autónoma en misiones de alto riesgo, además, cuenta con una cabina para un piloto, aunque el objetivo de Northrop Grumman consiste en dotar a Model 437 Vanguard de un cerebro con inteligencia artificial (IA) para volar de manera autónoma en un futuro.

Pero dejando de lado la idea de Northrop Grumman, el avión incorpora un motor Pratt & Whitney 535 que produce aproximadamente 15,1 kN de empuje , cuenta con una envergadura y longitud de 12,5 metros, tiene un peso máximo de despegue de 4.535 kilos, puede alcanzar un rango operativo de aproximadamente 5.556 kilómetros, ofrece una autonomía de vuelo de seis horas y soporta una carga útil de hasta 907 kilos.

X-plane DARPA SPRINT

Así fue el proceso de construcción de Model 437 Vanguard

"Scaled Composites aprovechó su amplia experiencia en diseño rápido , fabricación y prueba de aeronaves experimentales para desarrollar el Modelo 437 Vanguard como plataforma para demostrar las alas diseñadas digitalmente por Northrop Grumman", informa la compañía aeroespacial en su página oficial .

Por lo tanto, "esto incluyó un diseño de aeronave desde cero, análisis aerodinámico y estructural, fabricación de fuselaje y empenaje, ensamblaje de aeronaves, integración de sistemas y ejecución de pruebas en tierra y en vuelo". Asimismo, Northrop Grumman diseñó y fabricó los conjuntos de alas desmontables utilizando herramientas y procesos de ingeniería digital avanzados.

Concepto del SR-72

Model 437 Vanguard supera su primer vuelo de prueba

Model 437 Vanguard realizó su primer vuelo a finales de agosto , según indica Scaled Composites en un comunicado .

Ante este hito para la compañía, Brian Maisler, piloto de pruebas, celebró que "el primer vuelo fue en un buen avión con un gran equipo", además, agradeció el "arduo trabajo del equipo".

Comentarios

Códigos descuento.

motor avion experimental

Queda prohibida toda reproducción sin permiso escrito de la empresa a los efectos del artículo 32.1, párrafo segundo, de la Ley de Propiedad Intelectual. Asimismo, a los efectos establecidos en el artículo 33.1 de Ley de Propiedad Intelectual, la empresa hace constar la correspondiente reserva de derechos, por sí y por medio de sus redactores o autores.

Logo

  • No products in the cart.

motor avion experimental

25 Mar Avión experimental construido en Uruguay con el motor de una Kombi

Hace 13 años, Hugo Perdigón se decidió por un modelo “Hágalo ud. mismo”. Fabricar cada parte del avión que algún día pilotearía no sólo era un gran desafío, sino también una oportunidad de aprender, experimentar y controlar el costo del proyecto.

El “Legal Eagle” es un modelo de avión monoplaza, monomotor de ala alta. Hay más de 300 volando en todas partes del mundo en cualquiera de sus cuatro variantes. Se describe como un avión fácil de comandar, extremadamente estable, de similares características a las de un Cessna entrenador. Ideal para volar sin necesidad de hacer el curso de Piloto Privado.

Luego de dominar el arte del aeromodelismo, construyendo, reparando y optimizando aviones a escala, Hugo fundó la Asociación Uruguaya Constructores de Aviación Experimental ( @aucdae ) y desde un hangar en el Aeropuerto de Melilla transformó su afición.

Actualmente el avión está recibiendo las últimas manos de pintura, preparado para recibir su inspección final por parte de los Ingenieros Aeronáuticos de la autoridad uruguaya (DINACIA) y comenzar el plan de pruebas reglamentarias para recibir su matrícula y habilitación de vuelo.

Es importante destacar que este tipo de aeronaves no son certificadas por la DINACIA. Las inspecciones tienen como objetivo evaluar las técnicas de construcción y materiales utilizados para aconsejar al constructor y velar por el cumplimiento de las normas vigentes.

La Asociación fue fundamental para impulsar el trabajo del Mayor (Av.) Pablo Lima quién promovió la creación y posteriores actualizaciones del marco legal para la Aviación Deportiva en nuestro país, en la que se enmarcan los ultralivianos, los parapentes, paramotores, etc.

En cada fase del proyecto, los planos enviados por el diseñador Leonard Milholland desde Estados Unidos , generaban la imperiosa necesidad de investigar nuevas técnicas, adquirir herramientas específicas y evaluar alternativas para algunos de los materiales sugeridos ya que los mismos no se encontraban disponibles en nuestro país.

Ese conocimiento ahora es compartido con los nuevos socios, quienes pueden aprender técnicas de carpintería, soldadura, entelado, electrónica, mecánica y recientemente sobre fibra de vidrio.

A diferencia de armar un Kit, fabricar un modelo implica un proceso artesanal, utilizando algunas técnicas similares a las que se usaban para construir aeronaves hace un siglo, pero contando con tecnología moderna.

motor avion experimental

Construir un avión como hobby significa que se debe hacer un trabajo extremadamente prolijo y profesional, pero sin tener urgencias y respetando otras prioridades familiares y laborales. Así, tal vez tome un año conseguir algunos insumos o meses de espera en la importación de sensores para los instrumentos del motor.

Podrá mantener 130 Km/h (70 nudos) y elevarse tanto como la temperatura del aire y la disponibilidad de oxígeno lo permitan (3000 metros aprox) ya que su cabina es abierta. Cuenta con un motor Volkswagen de 1600cc de 4 cilindros, hecho a 0km. Se modificaron algunas aleaciones originales para reforzar partes críticas y se agregó un filtro de aceite adicional y un disipador de temperatura.

Los motores de camioneta Kombi entregan más potencia a bajas revoluciones que los de los Fusca y por eso se utilizó ese modelo. El diseño original proponía la utilización de medio motor (2 cilindros) pero Hugo prefirió que su avión contase con potencia adicional. Los trabajos sobre el motor estuvieron a cargo de Rafael Caneto, un mecánico profesional del automovilismo de competición.

Otro de los aspectos de seguridad que el “Legal Eagle” presenta frente a modelos similares, es que la cabina es de acero y no de madera. En Uruguay no se industrializa el tipo de aleación sugerido en los planos por lo que se debió investigar y testear las características de los materiales disponibles en plaza ya que la importación era muy costosa. Decidiéndose finalmente por tubos de acero inoxidable y soldaduras TIG, la cuales a modo de ejemplo no existían hace 60 años cuando se fabricaron la mayoría de los aviones civiles que continúan volando hoy en Uruguay.

motor avion experimental

Antes de poder volar lejos de Adami, deberá cumplir con una cantidad de horas de pruebas de motor, rodaje en pista, vuelo a baja altitud y vuelos en las proximidades del Aeropuerto siguiendo una planificación ya establecida en la reglamentación aeronáutica.

José “Pepe” Ifrán es el presidente honorario de la Asociación y desde Canelones, ha sido el precursor contemporáneo de la construcción casera. En los últimos años se han terminado de armar algunos Kits en distintos aeroclubes y hay proyectos pendientes o en fases iniciales de varios tipos y modelos.

La Aviación Deportiva no es sólo una alternativa económica, es por necesidad una vía de integración donde se comparten conocimientos y el avance de uno es el avance de todos. Más allá de los innumerables foros de internet una fuente ineludible en la región es la Asociación Argentina de Aviación Experimental en la localidad de General Rodriguez al Norte de Buenos Aires, en donde se brindan diversos talleres y es posible encontrar todo tipo de máquinas voladoras.

motor avion experimental

Quienes deseen acercarse a conocer el avión, las herramientas utilizadas y las distintas técnicas que se emplearon para fabricar cada componente, pueden contactarse con Hugo a través de @aucdae y visitarlo en el sector “Wilburt Wright” del Aeropuerto Ángel S. Adami de Montevideo, que como cada sábado desde hace 13 años estará avanzando en su “Águila” con avidez por compartir sus conocimientos.

Artículos relacionados

Oferta laboral ref.133, aeropuerto internacional de carmelo - sucm, donación de libros.

motor avion experimental

Martín Filippi

Me gusta volar, me gusta su ciencia, la historia de los hombres y mujeres que hicieron realidad lo que parecía imposible. Me gusta lo que la experiencia o el anhelo del vuelo tiene el potencial de modificar en nuestra percepción de la realidad, de los límites, de los desafíos. Dedico una parte importante de mi tiempo libre a impulsar este proyecto, con la visión de que si nos lo proponemos, podemos desencadenar un cambio semejante en aquellos que todavía creen que para volar hacen falta alas.

motor avion experimental

Andrés Sosa

Como a muchos de Uds. mi sueño una vez desde mi niñez fue el querer volar, a medida que crecí también crecieron las ganas de alcanzar ese sueño, la vida me permitió ser parte de los impulsores y fundadores del Aero Club Durazno siendo secretario de este por varios años y hacer el curso de piloto privado. Al ver tanto entusiasmo a disposición de algo tan noble ¿que decir?, solamente: enhorabuena por el proyecto y adelante, esto me da mas fuerza para reflotar un viejo proyecto, sacarle el polvo y animarme también, es hora de volar! felicitaciones!! Andrés Sosa

Guardar mis datos en este navegador para usarlos la próxima vez que comente.

IMAGES

  1. El paso a paso de la construcción de un avión experimental

    motor avion experimental

  2. GE Aviation’s Advanced Turboprop Engine

    motor avion experimental

  3. GE unveils new supersonic commercial jet engine

    motor avion experimental

  4. Yak-36- Aviones Experimentales Con Despegue Y El Aterrizaje Verticales

    motor avion experimental

  5. 50 Amazing Aircraft Engines

    motor avion experimental

  6. UL Power Aircraft Engines for experimental amateurbuilt kit aircraft

    motor avion experimental

VIDEO

  1. Duxion Motors’ Successful Ground Test a Milestone for Revolutionary Electric Jet Propulsion Motor

  2. Vol expérimental de l'avion Solar Impulse sans carburant

  3. Avión Motor RC Solar #experiment #project #dcmotor #shorts

  4. ¿Por qué el avión no tiene puerta automática? #shortvideos #facts #hechos #shorts #ytshorts

  5. AVION EXPERIMENTAL FÁCIL MS 1/3, primeros vuelos

  6. Motor de avión 🛩️ #avion #avioneta #mecanica #automotriz #reparaciones #repuestos #mecanico

COMMENTS

  1. Jet Engine Installed on NASA's X-59

    A GE Aviation F414-GE-100 engine is installed in NASA's quiet supersonic X-59 aircraft, at Lockheed Martin's Skunk Works facility in Palmdale, California. The 13-foot-long engine packs 22,000 pounds of propulsion energy and will power the X-59 to speeds up to Mach 1.4. Installation of the engine marks a major milestone as the X-59 nears ...

  2. X-57 Maxwell Overview

    X-57 Maxwell Overview. This artist's concept of NASA's X-57 Maxwell aircraft shows the plane's specially designed wing and 14 electric motors. NASA's X-57 "Maxwell" is the agency's first all-electric experimental aircraft, or X-plane, and is NASA's first crewed X-plane in two decades. The primary goal of the X-57 project is to ...

  3. Electric Propulsion Technologies

    Distributed electric propulsion technology is based on the premise that closely integrating the propulsion system with the airframe and distributing multiple motors across the wing will increase efficiency, lower operating costs, and increase safety. The first of three X-57 aircraft configurations arrived at Armstrong in October 2019 for ...

  4. Este es el primer avión experimental totalmente eléctrico de la NASA

    El X-57, el primer avión experimental totalmente eléctrico de la NASA, se entregó por Empirical Systems Aerospace (ESAero) de San Luis Obispo, California. Descarga; Traveler; ... El vehículo Mod II del X-57 presenta la sustitución de los motores de combustión tradicionales en un avión básico Tecnam P2006T por motores de crucero eléctricos.

  5. NASA X-57 Maxwell

    The Leading Edge Asynchronous Propeller Technology (LEAPTech) project is a NASA project developing an experimental electric aircraft technology involving many small electric motors driving individual small propellers distributed along the edge of each aircraft wing. [8] [9] [10] To optimize performance, each motor can be operated independently at different speeds, decreasing reliance on fossil ...

  6. El X-59 se asemeja a una aeronave real

    Ilustración artística del avión X-59 QueSST, que pronto volará por los cielos como el primer avión experimental supersónico construido especialmente por la NASA en décadas. Lockheed Martin. El fuselaje. ... El motor está en la sección superior del X-59. Similar al XVS, es uno de los muchos elementos intencionales en el diseño que ...

  7. Piloted, electric propulsion-powered experimental aircraft under way

    NASA Photo/Tom Tschida. NASA is researching ideas that could lead to developing an electric propulsion-powered aircraft that would be quieter, more efficient and environmentally friendly than today's commuter aircraft. The proposed piloted experimental airplane is called Sceptor, short for the Scalable Convergent Electric Propulsion Technology ...

  8. Cómo funciona el primer aeroplano propulsado por un motor de ...

    Un equipo del MIT consigue hacer volar un prototipo que podría esconder la clave para fabricar aviones de pasajeros más silenciosos y menos contaminantes. BBC News, Mundo Ir al contenido

  9. Electric aircraft propulsion and how it works

    The motor can be the sole source of thrust or it can be used in combination with a conventional engine, by either providing another source of thrust or even a boost of power to the propulsion system during key stages of flight. In addition to the motor, a fully-integrated electric propulsion system includes other critical components like motor ...

  10. MIT engineers fly first-ever plane with no moving parts

    MIT engineers fly first-ever plane with no moving parts

  11. El regreso de los aviones X y por qué tienen la clave de los ...

    Propulsados por motores de cohetes y envueltos en secretismo, los aviones X impulsaron el programa espacial de EE.UU. Ahora tienen otra misión: transformarse en aviones silenciosos.

  12. E-Fan X

    A complex hybrid-electric flight demonstrator. In 2017, we launched the E-Fan X demonstrator with the ambition to test the technologies that would help decarbonise our skies. In the test aircraft, one of the four jet engines was slated to be replaced by a 2MW electric motor. Today, we take great pride in knowing this first-of-its-kind ...

  13. ACCEL: Accelerating the Electrification of Flight

    For the 'Spirit of Innovation' airframe the team selected the Sharp Nemesis NXT specifically designed for air speed racing. For Rolls-Royce and our partners, the focus of the ACCEL project is in developing the technology and capability necessary to enable power and propulsion systems for the advanced air mobility market rather the aircraft itself.

  14. Vought V-173

    Vought V-173

  15. El nuevo diseño de aviones de la NASA y Boeing ...

    El primer vuelo de prueba de este avión experimental se llevará adelante en 2028. El objetivo es que esa tecnología sirva a aproximadamente el 50% del mercado comercial a través de aviones de ...

  16. Aeronáutica en español

    Aeronáutica en español. Bienvenidos a la página en español de aeronáutica de la NASA. Gracias a los avances tecnológicos desarrollados por la NASA, la industria de la aviación está mejor equipada que nunca para transportar a pasajeros y carga de manera segura y eficiente a destinos en todo el mundo. De hecho, todos los aviones ...

  17. Airbus E-Fan

    The Airbus E-Fan is a prototype two-seater electric aircraft that was under development by Airbus.It was flown in front of the world press at the Farnborough Airshow in the United Kingdom in July 2014. The target market was intended to be pilot training, but production of the aircraft was cancelled in April 2017. [2]

  18. Home

    Welcome to Experimental Avionics. This online resource is dedicated to Open Source avionics for experimental aviation. Our goal is to create simple, functional and affordable avionics for experimental aircraft builders and anyone interested in aviation and electronics. All the design information and software is provided for you free of charge.

  19. EEUU tiene el primer avión desechable que volará de forma autónoma

    Pero dejando de lado la idea de Northrop Grumman, el avión incorpora un motor Pratt & Whitney 535 que produce aproximadamente 15,1 kN de empuje, cuenta con una envergadura y longitud de 12,5 ...

  20. Volemos

    25 Mar. Avión experimental construido en Uruguay con el motor de una Kombi. Hace 13 años, Hugo Perdigón se decidió por un modelo "Hágalo ud. mismo". Fabricar cada parte del avión que algún día pilotearía no sólo era un gran desafío, sino también una oportunidad de aprender, experimentar y controlar el costo del proyecto.

  21. Explosion Rocks Russia Days After Ukrainian 'Saboteurs ...

    An explosion was reported in Klintsy, a town in Bryansk Oblast, Russia, some 50 kilometers from the Ukraine border, at around 8 a.m. local time Tuesday, according to local media reports. A local ...

  22. Russia may have just lost four aircraft in one day. Here's what ...

    Smoke rises after a SU-34 warplane crashed in Bryansk, Russia on May 13. Andrei Medvedev, a deputy on Moscow city council, said Saturday four aircraft had been lost and added: "Luhansk yesterday ...

  23. Bryansk

    Bryansk - Wikipedia ... Bryansk

  24. Night drone strikes on Russia target explosives, microelectronics

    This applies to the Bryansk plant Kremniy-El, which produces electronic equipment for missiles, as well as the Redkinskiy experimental plant, where rocket fuel components are produced. "We, when practicing certain actions against facilities of the russian military-industrial complex, have only one goal: to slow down the production of Russian ...