Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Descriptive Research | Definition, Types, Methods & Examples

Descriptive Research | Definition, Types, Methods & Examples

Published on May 15, 2019 by Shona McCombes . Revised on June 22, 2023.

Descriptive research aims to accurately and systematically describe a population, situation or phenomenon. It can answer what , where , when and how   questions , but not why questions.

A descriptive research design can use a wide variety of research methods  to investigate one or more variables . Unlike in experimental research , the researcher does not control or manipulate any of the variables, but only observes and measures them.

Table of contents

When to use a descriptive research design, descriptive research methods, other interesting articles.

Descriptive research is an appropriate choice when the research aim is to identify characteristics, frequencies, trends, and categories.

It is useful when not much is known yet about the topic or problem. Before you can research why something happens, you need to understand how, when and where it happens.

Descriptive research question examples

  • How has the Amsterdam housing market changed over the past 20 years?
  • Do customers of company X prefer product X or product Y?
  • What are the main genetic, behavioural and morphological differences between European wildcats and domestic cats?
  • What are the most popular online news sources among under-18s?
  • How prevalent is disease A in population B?

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

descriptive research in case study

Descriptive research is usually defined as a type of quantitative research , though qualitative research can also be used for descriptive purposes. The research design should be carefully developed to ensure that the results are valid and reliable .

Survey research allows you to gather large volumes of data that can be analyzed for frequencies, averages and patterns. Common uses of surveys include:

  • Describing the demographics of a country or region
  • Gauging public opinion on political and social topics
  • Evaluating satisfaction with a company’s products or an organization’s services

Observations

Observations allow you to gather data on behaviours and phenomena without having to rely on the honesty and accuracy of respondents. This method is often used by psychological, social and market researchers to understand how people act in real-life situations.

Observation of physical entities and phenomena is also an important part of research in the natural sciences. Before you can develop testable hypotheses , models or theories, it’s necessary to observe and systematically describe the subject under investigation.

Case studies

A case study can be used to describe the characteristics of a specific subject (such as a person, group, event or organization). Instead of gathering a large volume of data to identify patterns across time or location, case studies gather detailed data to identify the characteristics of a narrowly defined subject.

Rather than aiming to describe generalizable facts, case studies often focus on unusual or interesting cases that challenge assumptions, add complexity, or reveal something new about a research problem .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, June 22). Descriptive Research | Definition, Types, Methods & Examples. Scribbr. Retrieved October 8, 2024, from https://www.scribbr.com/methodology/descriptive-research/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, what is quantitative research | definition, uses & methods, correlational research | when & how to use, descriptive statistics | definitions, types, examples, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

helpful professor logo

18 Descriptive Research Examples

18 Descriptive Research Examples

Dave Cornell (PhD)

Dr. Cornell has worked in education for more than 20 years. His work has involved designing teacher certification for Trinity College in London and in-service training for state governments in the United States. He has trained kindergarten teachers in 8 countries and helped businessmen and women open baby centers and kindergartens in 3 countries.

Learn about our Editorial Process

18 Descriptive Research Examples

Chris Drew (PhD)

This article was peer-reviewed and edited by Chris Drew (PhD). The review process on Helpful Professor involves having a PhD level expert fact check, edit, and contribute to articles. Reviewers ensure all content reflects expert academic consensus and is backed up with reference to academic studies. Dr. Drew has published over 20 academic articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education and holds a PhD in Education from ACU.

descriptive research in case study

Descriptive research involves gathering data to provide a detailed account or depiction of a phenomenon without manipulating variables or conducting experiments.

A scholarly definition is:

“Descriptive research is defined as a research approach that describes the characteristics of the population, sample or phenomenon studied. This method focuses more on the “what” rather than the “why” of the research subject.” (Matanda, 2022, p. 63)

The key feature of descriptive research is that it merely describes phenomena and does not attempt to manipulate variables nor determine cause and effect .

To determine cause and effect , a researcher would need to use an alternate methodology, such as experimental research design .

Common approaches to descriptive research include:

  • Cross-sectional research : A cross-sectional study gathers data on a population at a specific time to get descriptive data that could include categories (e.g. age or income brackets) to get a better understanding of the makeup of a population.
  • Longitudinal research : Longitudinal studies return to a population to collect data at several different points in time, allowing for description of changes in categories over time. However, as it’s descriptive, it cannot infer cause and effect (Erickson, 2017).

Methods that could be used include:

  • Surveys: For example, sending out a census survey to be completed at the exact same date and time by everyone in a population.
  • Case Study : For example, an in-depth description of a specific person or group of people to gain in-depth qualitative information that can describe a phenomenon but cannot be generalized to other cases.
  • Observational Method : For example, a researcher taking field notes in an ethnographic study. (Siedlecki, 2020)

Descriptive Research Examples

1. Understanding Autism Spectrum Disorder (Psychology): Researchers analyze various behavior patterns, cognitive skills, and social interaction abilities specific to children with Autism Spectrum Disorder to comprehensively describe the disorder’s symptom spectrum. This detailed description classifies it as descriptive research, rather than analytical or experimental, as it merely records what is observed without altering any variables or trying to establish causality.

2. Consumer Purchase Decision Process in E-commerce Marketplaces (Marketing): By documenting and describing all the factors that influence consumer decisions on online marketplaces, researchers don’t attempt to predict future behavior or establish causes—just describe observed behavior—making it descriptive research.

3. Impacts of Climate Change on Agricultural Practices (Environmental Studies): Descriptive research is seen as scientists outline how climate changes influence various agricultural practices by observing and then meticulously categorizing the impacts on crop variability, farming seasons, and pest infestations without manipulating any variables in real-time.

4. Work Environment and Employee Performance (Human Resources Management): A study of this nature, describing the correlation between various workplace elements and employee performance, falls under descriptive research as it merely narrates the observed patterns without altering any conditions or testing hypotheses.

5. Factors Influencing Student Performance (Education): Researchers describe various factors affecting students’ academic performance, such as studying techniques, parental involvement, and peer influence. The study is categorized as descriptive research because its principal aim is to depict facts as they stand without trying to infer causal relationships.

6. Technological Advances in Healthcare (Healthcare): This research describes and categorizes different technological advances (such as telemedicine, AI-enabled tools, digital collaboration) in healthcare without testing or modifying any parameters, making it an example of descriptive research.

7. Urbanization and Biodiversity Loss (Ecology): By describing the impact of rapid urban expansion on biodiversity loss, this study serves as a descriptive research example. It observes the ongoing situation without manipulating it, offering a comprehensive depiction of the existing scenario rather than investigating the cause-effect relationship.

8. Architectural Styles across Centuries (Art History): A study documenting and describing various architectural styles throughout centuries essentially represents descriptive research. It aims to narrate and categorize facts without exploring the underlying reasons or predicting future trends.

9. Media Usage Patterns among Teenagers (Sociology): When researchers document and describe the media consumption habits among teenagers, they are performing a descriptive research study. Their main intention is to observe and report the prevailing trends rather than establish causes or predict future behaviors.

10. Dietary Habits and Lifestyle Diseases (Nutrition Science): By describing the dietary patterns of different population groups and correlating them with the prevalence of lifestyle diseases, researchers perform descriptive research. They merely describe observed connections without altering any diet plans or lifestyles.

11. Shifts in Global Energy Consumption (Environmental Economics): When researchers describe the global patterns of energy consumption and how they’ve shifted over the years, they conduct descriptive research. The focus is on recording and portraying the current state without attempting to infer causes or predict the future.

12. Literacy and Employment Rates in Rural Areas (Sociology): A study aims at describing the literacy rates in rural areas and correlating it with employment levels. It falls under descriptive research because it maps the scenario without manipulating parameters or proving a hypothesis.

13. Women Representation in Tech Industry (Gender Studies): A detailed description of the presence and roles of women across various sectors of the tech industry is a typical case of descriptive research. It merely observes and records the status quo without establishing causality or making predictions.

14. Impact of Urban Green Spaces on Mental Health (Environmental Psychology): When researchers document and describe the influence of green urban spaces on residents’ mental health, they are undertaking descriptive research. They seek purely to understand the current state rather than exploring cause-effect relationships.

15. Trends in Smartphone usage among Elderly (Gerontology): Research describing how the elderly population utilizes smartphones, including popular features and challenges encountered, serves as descriptive research. Researcher’s aim is merely to capture what is happening without manipulating variables or posing predictions.

16. Shifts in Voter Preferences (Political Science): A study describing the shift in voter preferences during a particular electoral cycle is descriptive research. It simply records the preferences revealed without drawing causal inferences or suggesting future voting patterns.

17. Understanding Trust in Autonomous Vehicles (Transportation Psychology): This comprises research describing public attitudes and trust levels when it comes to autonomous vehicles. By merely depicting observed sentiments, without engineering any situations or offering predictions, it’s considered descriptive research.

18. The Impact of Social Media on Body Image (Psychology): Descriptive research to outline the experiences and perceptions of individuals relating to body image in the era of social media. Observing these elements without altering any variables qualifies it as descriptive research.

Descriptive vs Experimental Research

Descriptive research merely observes, records, and presents the actual state of affairs without manipulating any variables, while experimental research involves deliberately changing one or more variables to determine their effect on a particular outcome.

De Vaus (2001) succinctly explains that descriptive studies find out what is going on , but experimental research finds out why it’s going on /

Simple definitions are below:

  • Descriptive research is primarily about describing the characteristics or behaviors in a population, often through surveys or observational methods. It provides rich detail about a specific phenomenon but does not allow for conclusive causal statements; however, it can offer essential leads or ideas for further experimental research (Ivey, 2016).
  • Experimental research , often conducted in controlled environments, aims to establish causal relationships by manipulating one or more independent variables and observing the effects on dependent variables (Devi, 2017; Mukherjee, 2019).

Experimental designs often involve a control group and random assignment . While it can provide compelling evidence for cause and effect, its artificial setting might not perfectly mirror real-worldly conditions, potentially affecting the generalizability of its findings.

These two types of research are complementary, with descriptive studies often leading to hypotheses that are then tested experimentally (Devi, 2017; Zhao et al., 2021).

ParameterDescriptive ResearchExperimental Research
To describe and explore phenomena without influencing variables (Monsen & Van Horn, 2007).To investigate cause-and-effect relationships by manipulating variables.
Observational and non-intrusive.Manipulative and controlled.
Typically not aimed at testing a hypothesis.Generally tests a hypothesis (Mukherjee, 2019).
No variables are manipulated (Erickson, 2017).Involves manipulation of one or more variables (independent variables).
No control over variables and environment.Strict control over variables and environment.
Does not establish causal relationships.Aims to establish causal relationships.
Not focused on predicting outcomes.Often seeks to predict outcomes based on variable manipulation (Zhao et al., 2021).
Uses surveys, observations, and case studies (Ivey, 2016).Employs controlled experiments often with experimental and control groups.
Typically fewer ethical concerns due to non-interference.Potential ethical considerations due to manipulation and intervention (Devi, 2017).

Benefits and Limitations of Descriptive Research

Descriptive research offers several benefits: it allows researchers to gather a vast amount of data and present a complete picture of the situation or phenomenon under study, even within large groups or over long time periods.

It’s also flexible in terms of the variety of methods used, such as surveys, observations, and case studies, and it can be instrumental in identifying patterns or trends and generating hypotheses (Erickson, 2017).

However, it also has its limitations.

The primary drawback is that it can’t establish cause-effect relationships, as no variables are manipulated. This lack of control over variables also opens up possibilities for bias, as researchers might inadvertently influence responses during data collection (De Vaus, 2001).

Additionally, the findings of descriptive research are often not generalizable since they are heavily reliant on the chosen sample’s characteristics.

Provides a comprehensive and detailed profile of the subject or issue through rich data, offering a thorough understanding (Gresham, 2016). Cannot or external factors, potentially influencing the accuracy and reliability of the data.
Helps to identify patterns, trends, and variables for subsequent experimental or correlational research – Krishnaswamy et al. (2009) call it “fact finding” research, setting the groundwork for future experimental studies. Cannot establish causal relationships due to its observational nature, limiting the explanatory power.

See More Types of Research Design Here

De Vaus, D. A. (2001). Research Design in Social Research . SAGE Publications.

Devi, P. S. (2017). Research Methodology: A Handbook for Beginners . Notion Press.

Erickson, G. S. (2017). Descriptive research design. In  New Methods of Market Research and Analysis  (pp. 51-77). Edward Elgar Publishing.

Gresham, B. B. (2016). Concepts of Evidence-based Practice for the Physical Therapist Assistant . F.A. Davis Company.

Ivey, J. (2016). Is descriptive research worth doing?.  Pediatric nursing ,  42 (4), 189. ( Source )

Krishnaswamy, K. N., Sivakumar, A. I., & Mathirajan, M. (2009). Management Research Methodology: Integration of Principles, Methods and Techniques . Pearson Education.

Matanda, E. (2022). Research Methods and Statistics for Cross-Cutting Research: Handbook for Multidisciplinary Research . Langaa RPCIG.

Monsen, E. R., & Van Horn, L. (2007). Research: Successful Approaches . American Dietetic Association.

Mukherjee, S. P. (2019). A Guide to Research Methodology: An Overview of Research Problems, Tasks and Methods . CRC Press.

Siedlecki, S. L. (2020). Understanding descriptive research designs and methods.  Clinical Nurse Specialist ,  34 (1), 8-12. ( Source )

Zhao, P., Ross, K., Li, P., & Dennis, B. (2021). Making Sense of Social Research Methodology: A Student and Practitioner Centered Approach . SAGE Publications.

Dave

  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 23 Achieved Status Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 25 Defense Mechanisms Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 15 Theory of Planned Behavior Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 18 Adaptive Behavior Examples

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 23 Achieved Status Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Ableism Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 25 Defense Mechanisms Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Theory of Planned Behavior Examples

1 thought on “18 Descriptive Research Examples”

' src=

Very nice, educative article. I appreciate the efforts.

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

  • Privacy Policy

Research Method

Home » Descriptive Research Design – Types, Methods and Examples

Descriptive Research Design – Types, Methods and Examples

Table of Contents

Descriptive Research Design

Descriptive Research Design

Definition:

Descriptive research design is a type of research methodology that aims to describe or document the characteristics, behaviors, attitudes, opinions, or perceptions of a group or population being studied.

Descriptive research design does not attempt to establish cause-and-effect relationships between variables or make predictions about future outcomes. Instead, it focuses on providing a detailed and accurate representation of the data collected, which can be useful for generating hypotheses, exploring trends, and identifying patterns in the data.

Types of Descriptive Research Design

Types of Descriptive Research Design are as follows:

Cross-sectional Study

This involves collecting data at a single point in time from a sample or population to describe their characteristics or behaviors. For example, a researcher may conduct a cross-sectional study to investigate the prevalence of certain health conditions among a population, or to describe the attitudes and beliefs of a particular group.

Longitudinal Study

This involves collecting data over an extended period of time, often through repeated observations or surveys of the same group or population. Longitudinal studies can be used to track changes in attitudes, behaviors, or outcomes over time, or to investigate the effects of interventions or treatments.

This involves an in-depth examination of a single individual, group, or situation to gain a detailed understanding of its characteristics or dynamics. Case studies are often used in psychology, sociology, and business to explore complex phenomena or to generate hypotheses for further research.

Survey Research

This involves collecting data from a sample or population through standardized questionnaires or interviews. Surveys can be used to describe attitudes, opinions, behaviors, or demographic characteristics of a group, and can be conducted in person, by phone, or online.

Observational Research

This involves observing and documenting the behavior or interactions of individuals or groups in a natural or controlled setting. Observational studies can be used to describe social, cultural, or environmental phenomena, or to investigate the effects of interventions or treatments.

Correlational Research

This involves examining the relationships between two or more variables to describe their patterns or associations. Correlational studies can be used to identify potential causal relationships or to explore the strength and direction of relationships between variables.

Data Analysis Methods

Descriptive research design data analysis methods depend on the type of data collected and the research question being addressed. Here are some common methods of data analysis for descriptive research:

Descriptive Statistics

This method involves analyzing data to summarize and describe the key features of a sample or population. Descriptive statistics can include measures of central tendency (e.g., mean, median, mode) and measures of variability (e.g., range, standard deviation).

Cross-tabulation

This method involves analyzing data by creating a table that shows the frequency of two or more variables together. Cross-tabulation can help identify patterns or relationships between variables.

Content Analysis

This method involves analyzing qualitative data (e.g., text, images, audio) to identify themes, patterns, or trends. Content analysis can be used to describe the characteristics of a sample or population, or to identify factors that influence attitudes or behaviors.

Qualitative Coding

This method involves analyzing qualitative data by assigning codes to segments of data based on their meaning or content. Qualitative coding can be used to identify common themes, patterns, or categories within the data.

Visualization

This method involves creating graphs or charts to represent data visually. Visualization can help identify patterns or relationships between variables and make it easier to communicate findings to others.

Comparative Analysis

This method involves comparing data across different groups or time periods to identify similarities and differences. Comparative analysis can help describe changes in attitudes or behaviors over time or differences between subgroups within a population.

Applications of Descriptive Research Design

Descriptive research design has numerous applications in various fields. Some of the common applications of descriptive research design are:

  • Market research: Descriptive research design is widely used in market research to understand consumer preferences, behavior, and attitudes. This helps companies to develop new products and services, improve marketing strategies, and increase customer satisfaction.
  • Health research: Descriptive research design is used in health research to describe the prevalence and distribution of a disease or health condition in a population. This helps healthcare providers to develop prevention and treatment strategies.
  • Educational research: Descriptive research design is used in educational research to describe the performance of students, schools, or educational programs. This helps educators to improve teaching methods and develop effective educational programs.
  • Social science research: Descriptive research design is used in social science research to describe social phenomena such as cultural norms, values, and beliefs. This helps researchers to understand social behavior and develop effective policies.
  • Public opinion research: Descriptive research design is used in public opinion research to understand the opinions and attitudes of the general public on various issues. This helps policymakers to develop effective policies that are aligned with public opinion.
  • Environmental research: Descriptive research design is used in environmental research to describe the environmental conditions of a particular region or ecosystem. This helps policymakers and environmentalists to develop effective conservation and preservation strategies.

Descriptive Research Design Examples

Here are some real-time examples of descriptive research designs:

  • A restaurant chain wants to understand the demographics and attitudes of its customers. They conduct a survey asking customers about their age, gender, income, frequency of visits, favorite menu items, and overall satisfaction. The survey data is analyzed using descriptive statistics and cross-tabulation to describe the characteristics of their customer base.
  • A medical researcher wants to describe the prevalence and risk factors of a particular disease in a population. They conduct a cross-sectional study in which they collect data from a sample of individuals using a standardized questionnaire. The data is analyzed using descriptive statistics and cross-tabulation to identify patterns in the prevalence and risk factors of the disease.
  • An education researcher wants to describe the learning outcomes of students in a particular school district. They collect test scores from a representative sample of students in the district and use descriptive statistics to calculate the mean, median, and standard deviation of the scores. They also create visualizations such as histograms and box plots to show the distribution of scores.
  • A marketing team wants to understand the attitudes and behaviors of consumers towards a new product. They conduct a series of focus groups and use qualitative coding to identify common themes and patterns in the data. They also create visualizations such as word clouds to show the most frequently mentioned topics.
  • An environmental scientist wants to describe the biodiversity of a particular ecosystem. They conduct an observational study in which they collect data on the species and abundance of plants and animals in the ecosystem. The data is analyzed using descriptive statistics to describe the diversity and richness of the ecosystem.

How to Conduct Descriptive Research Design

To conduct a descriptive research design, you can follow these general steps:

  • Define your research question: Clearly define the research question or problem that you want to address. Your research question should be specific and focused to guide your data collection and analysis.
  • Choose your research method: Select the most appropriate research method for your research question. As discussed earlier, common research methods for descriptive research include surveys, case studies, observational studies, cross-sectional studies, and longitudinal studies.
  • Design your study: Plan the details of your study, including the sampling strategy, data collection methods, and data analysis plan. Determine the sample size and sampling method, decide on the data collection tools (such as questionnaires, interviews, or observations), and outline your data analysis plan.
  • Collect data: Collect data from your sample or population using the data collection tools you have chosen. Ensure that you follow ethical guidelines for research and obtain informed consent from participants.
  • Analyze data: Use appropriate statistical or qualitative analysis methods to analyze your data. As discussed earlier, common data analysis methods for descriptive research include descriptive statistics, cross-tabulation, content analysis, qualitative coding, visualization, and comparative analysis.
  • I nterpret results: Interpret your findings in light of your research question and objectives. Identify patterns, trends, and relationships in the data, and describe the characteristics of your sample or population.
  • Draw conclusions and report results: Draw conclusions based on your analysis and interpretation of the data. Report your results in a clear and concise manner, using appropriate tables, graphs, or figures to present your findings. Ensure that your report follows accepted research standards and guidelines.

When to Use Descriptive Research Design

Descriptive research design is used in situations where the researcher wants to describe a population or phenomenon in detail. It is used to gather information about the current status or condition of a group or phenomenon without making any causal inferences. Descriptive research design is useful in the following situations:

  • Exploratory research: Descriptive research design is often used in exploratory research to gain an initial understanding of a phenomenon or population.
  • Identifying trends: Descriptive research design can be used to identify trends or patterns in a population, such as changes in consumer behavior or attitudes over time.
  • Market research: Descriptive research design is commonly used in market research to understand consumer preferences, behavior, and attitudes.
  • Health research: Descriptive research design is useful in health research to describe the prevalence and distribution of a disease or health condition in a population.
  • Social science research: Descriptive research design is used in social science research to describe social phenomena such as cultural norms, values, and beliefs.
  • Educational research: Descriptive research design is used in educational research to describe the performance of students, schools, or educational programs.

Purpose of Descriptive Research Design

The main purpose of descriptive research design is to describe and measure the characteristics of a population or phenomenon in a systematic and objective manner. It involves collecting data that describe the current status or condition of the population or phenomenon of interest, without manipulating or altering any variables.

The purpose of descriptive research design can be summarized as follows:

  • To provide an accurate description of a population or phenomenon: Descriptive research design aims to provide a comprehensive and accurate description of a population or phenomenon of interest. This can help researchers to develop a better understanding of the characteristics of the population or phenomenon.
  • To identify trends and patterns: Descriptive research design can help researchers to identify trends and patterns in the data, such as changes in behavior or attitudes over time. This can be useful for making predictions and developing strategies.
  • To generate hypotheses: Descriptive research design can be used to generate hypotheses or research questions that can be tested in future studies. For example, if a descriptive study finds a correlation between two variables, this could lead to the development of a hypothesis about the causal relationship between the variables.
  • To establish a baseline: Descriptive research design can establish a baseline or starting point for future research. This can be useful for comparing data from different time periods or populations.

Characteristics of Descriptive Research Design

Descriptive research design has several key characteristics that distinguish it from other research designs. Some of the main characteristics of descriptive research design are:

  • Objective : Descriptive research design is objective in nature, which means that it focuses on collecting factual and accurate data without any personal bias. The researcher aims to report the data objectively without any personal interpretation.
  • Non-experimental: Descriptive research design is non-experimental, which means that the researcher does not manipulate any variables. The researcher simply observes and records the behavior or characteristics of the population or phenomenon of interest.
  • Quantitative : Descriptive research design is quantitative in nature, which means that it involves collecting numerical data that can be analyzed using statistical techniques. This helps to provide a more precise and accurate description of the population or phenomenon.
  • Cross-sectional: Descriptive research design is often cross-sectional, which means that the data is collected at a single point in time. This can be useful for understanding the current state of the population or phenomenon, but it may not provide information about changes over time.
  • Large sample size: Descriptive research design typically involves a large sample size, which helps to ensure that the data is representative of the population of interest. A large sample size also helps to increase the reliability and validity of the data.
  • Systematic and structured: Descriptive research design involves a systematic and structured approach to data collection, which helps to ensure that the data is accurate and reliable. This involves using standardized procedures for data collection, such as surveys, questionnaires, or observation checklists.

Advantages of Descriptive Research Design

Descriptive research design has several advantages that make it a popular choice for researchers. Some of the main advantages of descriptive research design are:

  • Provides an accurate description: Descriptive research design is focused on accurately describing the characteristics of a population or phenomenon. This can help researchers to develop a better understanding of the subject of interest.
  • Easy to conduct: Descriptive research design is relatively easy to conduct and requires minimal resources compared to other research designs. It can be conducted quickly and efficiently, and data can be collected through surveys, questionnaires, or observations.
  • Useful for generating hypotheses: Descriptive research design can be used to generate hypotheses or research questions that can be tested in future studies. For example, if a descriptive study finds a correlation between two variables, this could lead to the development of a hypothesis about the causal relationship between the variables.
  • Large sample size : Descriptive research design typically involves a large sample size, which helps to ensure that the data is representative of the population of interest. A large sample size also helps to increase the reliability and validity of the data.
  • Can be used to monitor changes : Descriptive research design can be used to monitor changes over time in a population or phenomenon. This can be useful for identifying trends and patterns, and for making predictions about future behavior or attitudes.
  • Can be used in a variety of fields : Descriptive research design can be used in a variety of fields, including social sciences, healthcare, business, and education.

Limitation of Descriptive Research Design

Descriptive research design also has some limitations that researchers should consider before using this design. Some of the main limitations of descriptive research design are:

  • Cannot establish cause and effect: Descriptive research design cannot establish cause and effect relationships between variables. It only provides a description of the characteristics of the population or phenomenon of interest.
  • Limited generalizability: The results of a descriptive study may not be generalizable to other populations or situations. This is because descriptive research design often involves a specific sample or situation, which may not be representative of the broader population.
  • Potential for bias: Descriptive research design can be subject to bias, particularly if the researcher is not objective in their data collection or interpretation. This can lead to inaccurate or incomplete descriptions of the population or phenomenon of interest.
  • Limited depth: Descriptive research design may provide a superficial description of the population or phenomenon of interest. It does not delve into the underlying causes or mechanisms behind the observed behavior or characteristics.
  • Limited utility for theory development: Descriptive research design may not be useful for developing theories about the relationship between variables. It only provides a description of the variables themselves.
  • Relies on self-report data: Descriptive research design often relies on self-report data, such as surveys or questionnaires. This type of data may be subject to biases, such as social desirability bias or recall bias.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Triangulation

Triangulation in Research – Types, Methods and...

Phenomenology

Phenomenology – Methods, Examples and Guide

Correlational Research Design

Correlational Research – Methods, Types and...

Quantitative Research

Quantitative Research – Methods, Types and...

Textual Analysis

Textual Analysis – Types, Examples and Guide

One-to-One Interview in Research

One-to-One Interview – Methods and Guide

Copyright © SurveySparrow Inc. 2024 Privacy Policy Terms of Service SurveySparrow Inc.

Descriptive Research 101: Definition, Methods and Examples

blog author

Parvathi Vijayamohan

Last Updated: 16 July 2024

10 min read

Descriptive Research 101: Definition, Methods and Examples

Table Of Contents

  • Descriptive Research 101: The Definitive Guide

What is Descriptive Research?

  • Key Characteristics
  • Observation
  • Case Studies
  • Types of Descriptive Research
  • Question Examples
  • Real-World Examples

Tips to Excel at Descriptive Research

  • More Interesting Reads

Imagine you are a detective called to a crime scene. Your job is to study the scene and report whatever you find: whether that’s the half-smoked cigarette on the table or the large “RACHE” written in blood on the wall. That, in a nutshell, is  descriptive research .

Researchers often need to do descriptive research on a problem before they attempt to solve it. So in this guide, we’ll take you through:

  • What is descriptive research + its characteristics
  • Descriptive research methods
  • Types of descriptive research
  • Descriptive research examples
  • Tips to excel at the descriptive method

Click to jump to the section that interests you.

Let’s begin by going through what descriptive studies can and cannot do.

Definition: As its name says, descriptive research  describes  the characteristics of the problem, phenomenon, situation, or group under study.

So the goal of all descriptive studies is to  explore  the background, details, and existing patterns in the problem to fully understand it. In other words, preliminary research.

However, descriptive research can be both  preliminary and conclusive . You can use the data from a descriptive study to make reports and get insights for further planning.

What descriptive research isn’t: Descriptive research finds the  what/when/where  of a problem, not the  why/how .

Because of this, we can’t use the descriptive method to explore cause-and-effect relationships where one variable (like a person’s job role) affects another variable (like their monthly income).

Key Characteristics of Descriptive Research

  • Answers the “what,” “when,” and “where”  of a research problem. For this reason, it is popularly used in  market research ,  awareness surveys , and  opinion polls .
  • Sets the stage  for a research problem. As an early part of the research process, descriptive studies help you dive deeper into the topic.
  • Opens the door  for further research. You can use descriptive data as the basis for more profound research, analysis and studies.
  • Qualitative and quantitative research . It is possible to get a balanced mix of numerical responses and open-ended answers from the descriptive method.
  • No control or interference with the variables . The researcher simply observes and reports on them. However, specific research software has filters that allow her to zoom in on one variable.
  • Done in natural settings . You can get the best results from descriptive research by talking to people, surveying them, or observing them in a suitable environment. For example, suppose you are a website beta testing an app feature. In that case, descriptive research invites users to try the feature, tracking their behavior and then asking their opinions .
  • Can be applied to many research methods and areas. Examples include healthcare, SaaS, psychology, political studies, education, and pop culture.

Descriptive Research Methods: The Top Three You Need to Know!

In short, survey research is a brief interview or conversation with a set of prepared questions about a topic. So you create a questionnaire, share it, and analyze the data you collect for further action.

Read more : The difference between surveys vs questionnaires

  • Surveys can be hyper-local, regional, or global, depending on your objectives.
  • Share surveys in-person, offline, via SMS, email, or QR codes – so many options!
  • Easy to automate if you want to conduct many surveys over a period.

FYI: If you’re looking for the perfect tool to conduct descriptive research, SurveySparrow’s got you covered. Our AI-powered text and sentiment analysis help you instantly capture detailed insights for your studies.

With 1,000+ customizable (and free) survey templates , 20+ question types, and 1500+ integrations , SurveySparrow makes research super-easy.

Want to try out our platform? Click on the template below to start using it.👇

Product Market Research Survey Template

Preview Template

 Product Market Research Survey Template

2. Observation

The observational method is a type of descriptive research in which you, the researcher, observe ongoing behavior.

Now, there are several (non-creepy) ways you can observe someone. In fact, observational research has three main approaches:

  • Covert observation: In true spy fashion, the researcher mixes in with the group undetected or observes from a distance.
  • Overt observation : The researcher identifies himself as a researcher – “The name’s Bond. J. Bond.” – and explains the purpose of the study.
  • Participatory observation : The researcher participates in what he is observing to understand his topic better.
  • Observation is one of the most accurate ways to get data on a subject’s behavior in a natural setting.
  • You don’t need to rely on people’s willingness to share information.
  • Observation is a universal method that can be applied to any area of research.

3. Case Studies

In the case study method, you do a detailed study of a specific group, person, or event over a period.

This brings us to a frequently asked question: “What’s the difference between case studies and longitudinal studies?”

A case study will go  very in-depth into the subject with one-on-one interviews, observations, and archival research. They are also qualitative, though sometimes they will use numbers and stats.

An example of longitudinal research would be a study of the health of night shift employees vs. general shift employees over a decade. An example of a case study would involve in-depth interviews with Casey, an assistant director of nursing who’s handled the night shift at the hospital for ten years now.

  • Due to the focus on a few people, case studies can give you a tremendous amount of information.
  • Because of the time and effort involved, a case study engages both researchers and participants.
  • Case studies are helpful for ethically investigating unusual, complex, or challenging subjects. An example would be a study of the habits of long-term cocaine users.

7 Types of Descriptive Research

Cross-sectional researchStudies a particular group of people or their sections at a given point in time. Example: current social attitudes of Gen Z in the US
Longitudinal researchStudies a group of people over a long period of time. Example: tracking changes in social attitudes among Gen-Zers from 2022 – 2032.
Normative researchCompares the results of a study against the existing norms. Example: comparing a verdict in a legal case against similar cases.
Correlational/relational researchInvestigates the type of relationship and patterns between 2 variables. Example: music genres and mental states.
Comparative researchCompares 2 or more similar people, groups or conditions based on specific traits. Example: job roles of employees in similar positions from two different companies.
Classification researchArranges the data into classes according to certain criteria for better analysis. Example: the classification of newly discovered insects into species.
Archival researchSearching for and extracting information from past records. Example: Tracking US Census data over the decades.

Descriptive Research Question Examples

  • How have teen social media habits changed in 10 years?
  • What causes high employee turnover in tech?
  • How do urban and rural diets differ in India?
  • What are consumer preferences for electric vs. gasoline cars in Germany?
  • How common is smartphone addiction among UK college students?
  • What drives customer satisfaction in banking?
  • How have adolescent mental health issues changed in 15 years?
  • What leisure activities are popular among retirees in Japan?
  • How do commute times vary in US metro areas?
  • What makes e-commerce websites successful?

Descriptive Research: Real-World Examples To Build Your Next Study

1. case study: airbnb’s growth strategy.

In an excellent case study, Tam Al Saad, Principal Consultant, Strategy + Growth at Webprofits, deep dives into how Airbnb attracted and retained 150 million users .

“What Airbnb offers isn’t a cheap place to sleep when you’re on holiday; it’s the opportunity to experience your destination as a local would. It’s the chance to meet the locals, experience the markets, and find non-touristy places.

Sure, you can visit the Louvre, see Buckingham Palace, and climb the Empire State Building, but you can do it as if it were your hometown while staying in a place that has character and feels like a home.” – Tam al Saad, Principal Consultant, Strategy + Growth at Webprofits

2. Observation – Better Tech Experiences for the Elderly

We often think that our elders are so hopeless with technology. But we’re not getting any younger either, and tech is changing at a hair trigger! This article by Annemieke Hendricks shares a wonderful example where researchers compare the levels of technological familiarity between age groups and how that influences usage.

“It is generally assumed that older adults have difficulty using modern electronic devices, such as mobile telephones or computers. Because this age group is growing in most countries, changing products and processes to adapt to their needs is increasingly more important. “ – Annemieke Hendricks, Marketing Communication Specialist, Noldus

3. Surveys – Decoding Sleep with SurveySparrow

SRI International (formerly Stanford Research Institute) – an independent, non-profit research center – wanted to investigate the impact of stress on an adolescent’s sleep. To get those insights, two actions were essential: tracking sleep patterns through wearable devices and sending surveys at a pre-set time – the pre-sleep period.

“With SurveySparrow’s recurring surveys feature, SRI was able to share engaging surveys with their participants exactly at the time they wanted and at the frequency they preferred.”

Read more about this project : How SRI International decoded sleep patterns with SurveySparrow

1: Answer the six Ws –

  • Who should we consider?
  • What information do we need?
  • When should we collect the information?
  • Where should we collect the information?
  • Why are we obtaining the information?
  • Way to collect the information

#2: Introduce and explain your methodological approach

#3: Describe your methods of data collection and/or selection.

#4: Describe your methods of analysis.

#5: Explain the reasoning behind your choices.

#6: Collect data.

#7: Analyze the data. Use software to speed up the process and reduce overthinking and human error.

#8: Report your conclusions and how you drew the results.

Wrapping Up

Whether it’s social media habits, consumer preferences, or mental health trends, descriptive research provides a clear snapshot into what people actually think.

If you want to know more about feedback methodology, or research, check out some of our other articles below.

👉 Desk Research 101: Definition, Methods, and Examples

👉 Exploratory Research: Your Guide to Unraveling Insights

👉 Design Research: Types, Methods, and Importance

blog author image

Content marketer at SurveySparrow.

Parvathi is a sociologist turned marketer. After 6 years as a copywriter, she pivoted to B2B, diving into growth marketing for SaaS. Now she uses content and conversion optimization to fuel growth - focusing on CX, reputation management and feedback methodology for businesses.

You Might Also Like

How To Write Overall Performance Review Comments

How To Write Overall Performance Review Comments

70+ eCommerce Survey Questions To Level Up Your Business

Customer Experience

70+ eCommerce Survey Questions To Level Up Your Business

Employee Evaluation Process: The 8 Great Dos and Don'ts

Employee Experience

Employee Evaluation Process: The 8 Great Dos and Don'ts

banner-image-for-competitive-benchmarking

Competitive Benchmarking: Best Practice Guide for 2024

Turn every feedback into a growth opportunity.

14-day free trial • Cancel Anytime • No Credit Card Required • Need a Demo?

Instant insights, infinite possibilities

  • What is descriptive research?

Last updated

5 February 2023

Reviewed by

Cathy Heath

Short on time? Get an AI generated summary of this article instead

Descriptive research is a common investigatory model used by researchers in various fields, including social sciences, linguistics, and academia.

Read on to understand the characteristics of descriptive research and explore its underlying techniques, processes, and procedures.

Analyze your descriptive research

Dovetail streamlines analysis to help you uncover and share actionable insights

Descriptive research is an exploratory research method. It enables researchers to precisely and methodically describe a population, circumstance, or phenomenon.

As the name suggests, descriptive research describes the characteristics of the group, situation, or phenomenon being studied without manipulating variables or testing hypotheses . This can be reported using surveys , observational studies, and case studies. You can use both quantitative and qualitative methods to compile the data.

Besides making observations and then comparing and analyzing them, descriptive studies often develop knowledge concepts and provide solutions to critical issues. It always aims to answer how the event occurred, when it occurred, where it occurred, and what the problem or phenomenon is.

  • Characteristics of descriptive research

The following are some of the characteristics of descriptive research:

Quantitativeness

Descriptive research can be quantitative as it gathers quantifiable data to statistically analyze a population sample. These numbers can show patterns, connections, and trends over time and can be discovered using surveys, polls, and experiments.

Qualitativeness

Descriptive research can also be qualitative. It gives meaning and context to the numbers supplied by quantitative descriptive research .

Researchers can use tools like interviews, focus groups, and ethnographic studies to illustrate why things are what they are and help characterize the research problem. This is because it’s more explanatory than exploratory or experimental research.

Uncontrolled variables

Descriptive research differs from experimental research in that researchers cannot manipulate the variables. They are recognized, scrutinized, and quantified instead. This is one of its most prominent features.

Cross-sectional studies

Descriptive research is a cross-sectional study because it examines several areas of the same group. It involves obtaining data on multiple variables at the personal level during a certain period. It’s helpful when trying to understand a larger community’s habits or preferences.

Carried out in a natural environment

Descriptive studies are usually carried out in the participants’ everyday environment, which allows researchers to avoid influencing responders by collecting data in a natural setting. You can use online surveys or survey questions to collect data or observe.

Basis for further research

You can further dissect descriptive research’s outcomes and use them for different types of investigation. The outcomes also serve as a foundation for subsequent investigations and can guide future studies. For example, you can use the data obtained in descriptive research to help determine future research designs.

  • Descriptive research methods

There are three basic approaches for gathering data in descriptive research: observational, case study, and survey.

You can use surveys to gather data in descriptive research. This involves gathering information from many people using a questionnaire and interview .

Surveys remain the dominant research tool for descriptive research design. Researchers can conduct various investigations and collect multiple types of data (quantitative and qualitative) using surveys with diverse designs.

You can conduct surveys over the phone, online, or in person. Your survey might be a brief interview or conversation with a set of prepared questions intended to obtain quick information from the primary source.

Observation

This descriptive research method involves observing and gathering data on a population or phenomena without manipulating variables. It is employed in psychology, market research , and other social science studies to track and understand human behavior.

Observation is an essential component of descriptive research. It entails gathering data and analyzing it to see whether there is a relationship between the two variables in the study. This strategy usually allows for both qualitative and quantitative data analysis.

Case studies

A case study can outline a specific topic’s traits. The topic might be a person, group, event, or organization.

It involves using a subset of a larger group as a sample to characterize the features of that larger group.

You can generalize knowledge gained from studying a case study to benefit a broader audience.

This approach entails carefully examining a particular group, person, or event over time. You can learn something new about the study topic by using a small group to better understand the dynamics of the entire group.

  • Types of descriptive research

There are several types of descriptive study. The most well-known include cross-sectional studies, census surveys, sample surveys, case reports, and comparison studies.

Case reports and case series

In the healthcare and medical fields, a case report is used to explain a patient’s circumstances when suffering from an uncommon illness or displaying certain symptoms. Case reports and case series are both collections of related cases. They have aided the advancement of medical knowledge on countless occasions.

The normative component is an addition to the descriptive survey. In the descriptive–normative survey, you compare the study’s results to the norm.

Descriptive survey

This descriptive type of research employs surveys to collect information on various topics. This data aims to determine the degree to which certain conditions may be attained.

You can extrapolate or generalize the information you obtain from sample surveys to the larger group being researched.

Correlative survey

Correlative surveys help establish if there is a positive, negative, or neutral connection between two variables.

Performing census surveys involves gathering relevant data on several aspects of a given population. These units include individuals, families, organizations, objects, characteristics, and properties.

During descriptive research, you gather different degrees of interest over time from a specific population. Cross-sectional studies provide a glimpse of a phenomenon’s prevalence and features in a population. There are no ethical challenges with them and they are quite simple and inexpensive to carry out.

Comparative studies

These surveys compare the two subjects’ conditions or characteristics. The subjects may include research variables, organizations, plans, and people.

Comparison points, assumption of similarities, and criteria of comparison are three important variables that affect how well and accurately comparative studies are conducted.

For instance, descriptive research can help determine how many CEOs hold a bachelor’s degree and what proportion of low-income households receive government help.

  • Pros and cons

The primary advantage of descriptive research designs is that researchers can create a reliable and beneficial database for additional study. To conduct any inquiry, you need access to reliable information sources that can give you a firm understanding of a situation.

Quantitative studies are time- and resource-intensive, so knowing the hypotheses viable for testing is crucial. The basic overview of descriptive research provides helpful hints as to which variables are worth quantitatively examining. This is why it’s employed as a precursor to quantitative research designs.

Some experts view this research as untrustworthy and unscientific. However, there is no way to assess the findings because you don’t manipulate any variables statistically.

Cause-and-effect correlations also can’t be established through descriptive investigations. Additionally, observational study findings cannot be replicated, which prevents a review of the findings and their replication.

The absence of statistical and in-depth analysis and the rather superficial character of the investigative procedure are drawbacks of this research approach.

  • Descriptive research examples and applications

Several descriptive research examples are emphasized based on their types, purposes, and applications. Research questions often begin with “What is …” These studies help find solutions to practical issues in social science, physical science, and education.

Here are some examples and applications of descriptive research:

Determining consumer perception and behavior

Organizations use descriptive research designs to determine how various demographic groups react to a certain product or service.

For example, a business looking to sell to its target market should research the market’s behavior first. When researching human behavior in response to a cause or event, the researcher pays attention to the traits, actions, and responses before drawing a conclusion.

Scientific classification

Scientific descriptive research enables the classification of organisms and their traits and constituents.

Measuring data trends

A descriptive study design’s statistical capabilities allow researchers to track data trends over time. It’s frequently used to determine the study target’s current circumstances and underlying patterns.

Conduct comparison

Organizations can use a descriptive research approach to learn how various demographics react to a certain product or service. For example, you can study how the target market responds to a competitor’s product and use that information to infer their behavior.

  • Bottom line

A descriptive research design is suitable for exploring certain topics and serving as a prelude to larger quantitative investigations. It provides a comprehensive understanding of the “what” of the group or thing you’re investigating.

This research type acts as the cornerstone of other research methodologies . It is distinctive because it can use quantitative and qualitative research approaches at the same time.

What is descriptive research design?

Descriptive research design aims to systematically obtain information to describe a phenomenon, situation, or population. More specifically, it helps answer the what, when, where, and how questions regarding the research problem rather than the why.

How does descriptive research compare to qualitative research?

Despite certain parallels, descriptive research concentrates on describing phenomena, while qualitative research aims to understand people better.

How do you analyze descriptive research data?

Data analysis involves using various methodologies, enabling the researcher to evaluate and provide results regarding validity and reliability.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 30 September 2024

Last updated: 16 August 2024

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Descriptive Research Design | Definition, Methods & Examples

Descriptive Research Design | Definition, Methods & Examples

Published on 5 May 2022 by Shona McCombes . Revised on 10 October 2022.

Descriptive research aims to accurately and systematically describe a population, situation or phenomenon. It can answer what , where , when , and how   questions , but not why questions.

A descriptive research design can use a wide variety of research methods  to investigate one or more variables . Unlike in experimental research , the researcher does not control or manipulate any of the variables, but only observes and measures them.

Table of contents

When to use a descriptive research design, descriptive research methods.

Descriptive research is an appropriate choice when the research aim is to identify characteristics, frequencies, trends, and categories.

It is useful when not much is known yet about the topic or problem. Before you can research why something happens, you need to understand how, when, and where it happens.

  • How has the London housing market changed over the past 20 years?
  • Do customers of company X prefer product Y or product Z?
  • What are the main genetic, behavioural, and morphological differences between European wildcats and domestic cats?
  • What are the most popular online news sources among under-18s?
  • How prevalent is disease A in population B?

Prevent plagiarism, run a free check.

Descriptive research is usually defined as a type of quantitative research , though qualitative research can also be used for descriptive purposes. The research design should be carefully developed to ensure that the results are valid and reliable .

Survey research allows you to gather large volumes of data that can be analysed for frequencies, averages, and patterns. Common uses of surveys include:

  • Describing the demographics of a country or region
  • Gauging public opinion on political and social topics
  • Evaluating satisfaction with a company’s products or an organisation’s services

Observations

Observations allow you to gather data on behaviours and phenomena without having to rely on the honesty and accuracy of respondents. This method is often used by psychological, social, and market researchers to understand how people act in real-life situations.

Observation of physical entities and phenomena is also an important part of research in the natural sciences. Before you can develop testable hypotheses , models, or theories, it’s necessary to observe and systematically describe the subject under investigation.

Case studies

A case study can be used to describe the characteristics of a specific subject (such as a person, group, event, or organisation). Instead of gathering a large volume of data to identify patterns across time or location, case studies gather detailed data to identify the characteristics of a narrowly defined subject.

Rather than aiming to describe generalisable facts, case studies often focus on unusual or interesting cases that challenge assumptions, add complexity, or reveal something new about a research problem .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, October 10). Descriptive Research Design | Definition, Methods & Examples. Scribbr. Retrieved 8 October 2024, from https://www.scribbr.co.uk/research-methods/descriptive-research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, a quick guide to experimental design | 5 steps & examples, correlational research | guide, design & examples, qualitative vs quantitative research | examples & methods.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

The PMC website is updating on October 15, 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • HHS Author Manuscripts

Logo of nihpa

Characteristics of Qualitative Descriptive Studies: A Systematic Review

MSN, CRNP, Doctoral Candidate, University of Pennsylvania School of Nursing

Justine S. Sefcik

MS, RN, Doctoral Candidate, University of Pennsylvania School of Nursing

Christine Bradway

PhD, CRNP, FAAN, Associate Professor of Gerontological Nursing, University of Pennsylvania School of Nursing

Qualitative description (QD) is a term that is widely used to describe qualitative studies of health care and nursing-related phenomena. However, limited discussions regarding QD are found in the existing literature. In this systematic review, we identified characteristics of methods and findings reported in research articles published in 2014 whose authors identified the work as QD. After searching and screening, data were extracted from the sample of 55 QD articles and examined to characterize research objectives, design justification, theoretical/philosophical frameworks, sampling and sample size, data collection and sources, data analysis, and presentation of findings. In this review, three primary findings were identified. First, despite inconsistencies, most articles included characteristics consistent with limited, available QD definitions and descriptions. Next, flexibility or variability of methods was common and desirable for obtaining rich data and achieving understanding of a phenomenon. Finally, justification for how a QD approach was chosen and why it would be an appropriate fit for a particular study was limited in the sample and, therefore, in need of increased attention. Based on these findings, recommendations include encouragement to researchers to provide as many details as possible regarding the methods of their QD study so that readers can determine whether the methods used were reasonable and effective in producing useful findings.

Qualitative description (QD) is a label used in qualitative research for studies which are descriptive in nature, particularly for examining health care and nursing-related phenomena ( Polit & Beck, 2009 , 2014 ). QD is a widely cited research tradition and has been identified as important and appropriate for research questions focused on discovering the who, what, and where of events or experiences and gaining insights from informants regarding a poorly understood phenomenon. It is also the label of choice when a straight description of a phenomenon is desired or information is sought to develop and refine questionnaires or interventions ( Neergaard et al., 2009 ; Sullivan-Bolyai et al., 2005 ).

Despite many strengths and frequent citations of its use, limited discussions regarding QD are found in qualitative research textbooks and publications. To the best of our knowledge, only seven articles include specific guidance on how to design, implement, analyze, or report the results of a QD study ( Milne & Oberle, 2005 ; Neergaard, Olesen, Andersen, & Sondergaard, 2009 ; Sandelowski, 2000 , 2010 ; Sullivan-Bolyai, Bova, & Harper, 2005 ; Vaismoradi, Turunen, & Bondas, 2013 ; Willis, Sullivan-Bolyai, Knafl, & Zichi-Cohen, 2016 ). Furthermore, little is known about characteristics of QD as reported in journal-published, nursing-related, qualitative studies. Therefore, the purpose of this systematic review was to describe specific characteristics of methods and findings of studies reported in journal articles (published in 2014) self-labeled as QD. In this review, we did not have a goal to judge whether QD was done correctly but rather to report on the features of the methods and findings.

Features of QD

Several QD design features and techniques have been described in the literature. First, researchers generally draw from a naturalistic perspective and examine a phenomenon in its natural state ( Sandelowski, 2000 ). Second, QD has been described as less theoretical compared to other qualitative approaches ( Neergaard et al., 2009 ), facilitating flexibility in commitment to a theory or framework when designing and conducting a study ( Sandelowski, 2000 , 2010 ). For example, researchers may or may not decide to begin with a theory of the targeted phenomenon and do not need to stay committed to a theory or framework if their investigations take them down another path ( Sandelowski, 2010 ). Third, data collection strategies typically involve individual and/or focus group interviews with minimal to semi-structured interview guides ( Neergaard et al., 2009 ; Sandelowski, 2000 ). Fourth, researchers commonly employ purposeful sampling techniques such as maximum variation sampling which has been described as being useful for obtaining broad insights and rich information ( Neergaard et al., 2009 ; Sandelowski, 2000 ). Fifth, content analysis (and in many cases, supplemented by descriptive quantitative data to describe the study sample) is considered a primary strategy for data analysis ( Neergaard et al., 2009 ; Sandelowski, 2000 ). In some instances thematic analysis may also be used to analyze data; however, experts suggest care should be taken that this type of analysis is not confused with content analysis ( Vaismoradi et al., 2013 ). These data analysis approaches allow researchers to stay close to the data and as such, interpretation is of low-inference ( Neergaard et al., 2009 ), meaning that different researchers will agree more readily on the same findings even if they do not choose to present the findings in the same way ( Sandelowski, 2000 ). Finally, representation of study findings in published reports is expected to be straightforward, including comprehensive descriptive summaries and accurate details of the data collected, and presented in a way that makes sense to the reader ( Neergaard et al., 2009 ; Sandelowski, 2000 ).

It is also important to acknowledge that variations in methods or techniques may be appropriate across QD studies ( Sandelowski, 2010 ). For example, when consistent with the study goals, decisions may be made to use techniques from other qualitative traditions, such as employing a constant comparative analytic approach typically associated with grounded theory ( Sandelowski, 2000 ).

Search Strategy and Study Screening

The PubMed electronic database was searched for articles written in English and published from January 1, 2014 to December 31, 2014, using the terms, “qualitative descriptive study,” “qualitative descriptive design,” and “qualitative description,” combined with “nursing.” This specific publication year, “2014,” was chosen because it was the most recent full year at the time of beginning this systematic review. As we did not intend to identify trends in QD approaches over time, it seemed reasonable to focus on the nursing QD studies published in a certain year. The inclusion criterion for this review was data-based, nursing-related, research articles in which authors used the terms QD, qualitative descriptive study, or qualitative descriptive design in their titles or abstracts as well as in the main texts of the publication.

All articles yielded through an initial search in PubMed were exported into EndNote X7 ( Thomson Reuters, 2014 ), a reference management software, and duplicates were removed. Next, titles and abstracts were reviewed to determine if the publication met inclusion criteria; all articles meeting inclusion criteria were then read independently in full by two authors (HK and JS) to determine if the terms – QD or qualitative descriptive study/design – were clearly stated in the main texts. Any articles in which researchers did not specifically state these key terms in the main text were then excluded, even if the terms had been used in the study title or abstract. In one article, for example, although “qualitative descriptive study” was reported in the published abstract, the researchers reported a “qualitative exploratory design” in the main text of the article ( Sundqvist & Carlsson, 2014 ); therefore, this article was excluded from our review. Despite the possibility that there may be other QD studies published in 2014 that were not labeled as such, to facilitate our screening process we only included articles where the researchers clearly used our search terms for their approach. Finally, the two authors compared, discussed, and reconciled their lists of articles with a third author (CB).

Study Selection

Initially, although the year 2014 was specifically requested, 95 articles were identified (due to ahead of print/Epub) and exported into the EndNote program. Three duplicate publications were removed and the 20 articles with final publication dates of 2015 were also excluded. The remaining 72 articles were then screened by examining titles, abstracts, and full-texts. Based on our inclusion criteria, 15 (of 72) were then excluded because QD or QD design/study was not identified in the main text. We then re-examined the remaining 57 articles and excluded two additional articles that did not meet inclusion criteria (e.g., QD was only reported as an analytic approach in the data analysis section). The remaining 55 publications met inclusion criteria and comprised the sample for our systematic review (see Figure 1 ).

An external file that holds a picture, illustration, etc.
Object name is nihms832592f1.jpg

Flow Diagram of Study Selection

Of the 55 publications, 23 originated from North America (17 in the United States; 6 in Canada), 12 from Asia, 11 from Europe, 7 from Australia and New Zealand, and 2 from South America. Eleven studies were part of larger research projects and two of them were reported as part of larger mixed-methods studies. Four were described as a secondary analysis.

Quality Appraisal Process

Following the identification of the 55 publications, two authors (HK and JS) independently examined each article using the Critical Appraisal Skills Programme (CASP) qualitative checklist ( CASP, 2013 ). The CASP was chosen to determine the general adequacy (or rigor) of the qualitative studies included in this review as the CASP criteria are generic and intend to be applied to qualitative studies in general. In addition, the CASP was useful because we were able to examine the internal consistency between study aims and methods and between study aims and findings as well as the usefulness of findings ( CASP, 2013 ). The CASP consists of 10 main questions with several sub-questions to consider when making a decision about the main question ( CASP, 2013 ). The first two questions have reviewers examine the clarity of study aims and appropriateness of using qualitative research to achieve the aims. With the next eight questions, reviewers assess study design, sampling, data collection, and analysis as well as the clarity of the study’s results statement and the value of the research. We used the seven questions and 17 sub-questions related to methods and statement of findings to evaluate the articles. The results of this process are presented in Table 1 .

CASP Questions and Quality Appraisal Results (N = 55)

CASP Questions
• CASP Subquestions
Results
YesNoCan’t tell
Was the research design appropriate to address the aims of the research?
• Did the researcher justify the research design?2647.32850.911.8
Was the recruitment strategy appropriate to the aims of the research?
• Did the researcher explain how the participants were selected?4480610.959.1
Was the data collected in a way that addressed the research issue?
• Was the setting for data collection justified?3156.42138.235.4
• Was it clear how data were collected e.g., focus group, semistructured interview etc.?5510000.000.0
• Did the researcher justify the methods chosen?1323.64174.511.8
• Did the researcher make the methods explicit e.g., for the interview method, was there an indication of how interviews were conducted, or did they use a topic guide?5192.747.300.0
• Was the form of data clear e.g., tape recordings, video materials, notes, etc.?5498.200.011.8
• Did the researcher discuss saturation of data?2036.43563.600.0
Has the relationship between researcher and participants been adequately considered?
• Did the researcher critically examine their own role, potential bias, and influence during data collection, including sample recruitment and choice of location47.35090.911.8
Have ethical issues been taken into consideration?
• Was there sufficient detail about how the research was explained to participants for the reader to assess whether ethical standards were maintained?4989.147.323.6
• Was approval sought from an ethics committee?5192.747.300.0
Was the data analysis sufficiently rigorous?
• Was there an in-depth description of the analysis process?4683.6916.400.0
• Was thematic or content analysis used. If so, was it clear how the categories/themes derived from the data?5192.735.511.8
• Did the researcher critically examine their own role, potential bias and influence during analysis and selection of data for presentation?2036.43054.559.1
Was there a clear statement of findings?
• Were the findings explicit?551000000
• Did the researcher discuss the credibility of their findings (e.g., triangulation)4683.6814.511.8
• Were the findings discussed in relation to the original research question?551000000

Note . The CASP questions are adapted from “10 questions to help you make sense of qualitative research,” by Critical Appraisal Skills Programme, 2013, retrieved from http://media.wix.com/ugd/dded87_29c5b002d99342f788c6ac670e49f274.pdf . Its license can be found at http://creativecommons.org/licenses/by-nc-sa/3.0/

Once articles were assessed by the two authors independently, all three authors discussed and reconciled our assessment. No articles were excluded based on CASP results; rather, results were used to depict the general adequacy (or rigor) of all 55 articles meeting inclusion criteria for our systematic review. In addition, the CASP was included to enhance our examination of the relationship between the methods and the usefulness of the findings documented in each of the QD articles included in this review.

Process for Data Extraction and Analysis

To further assess each of the 55 articles, data were extracted on: (a) research objectives, (b) design justification, (c) theoretical or philosophical framework, (d) sampling and sample size, (e) data collection and data sources, (f) data analysis, and (g) presentation of findings (see Table 2 ). We discussed extracted data and identified common and unique features in the articles included in our systematic review. Findings are described in detail below and in Table 3 .

Elements for Data Extraction

ElementsData Extraction
Research objectives• Verbs used in objectives or aims
• Focuses of study
Design justification• If the article cited references for qualitative description
• If the article offered rationale to choose qualitative description
• References cited
• Rationale reported
Theoretical or philosophical
frameworks
• If the article has theoretical or philosophical frameworks for study
• Theoretical or philosophical frameworks reported
• How the frameworks were used in data collection and analysis
Sampling and sample sizes• Sampling strategies (e.g., purposeful sampling, maximum variation)
• Sample size
Data collection and sources• Data collection techniques (e.g., individual or focus-group interviews, interview guide, surveys, field notes)
Data analysis• Data analysis techniques (e.g., qualitative content analysis, thematic analysis, constant comparison)
• If data saturation was achieved
Presentation of findings• Statement of findings
• Consistency with research objectives

Data Extraction and Analysis Results

Authors
Country
Research
Objectives
Design
justification
Theoretical/
philosophical
frameworks
Sampling/
sample size
Data collection
and data sources
Data analysisFindings

• USA
• Explore
• Responses to
communication
strategies
• (-) Reference
• (-) Rationale
Not reported
(NR)
• Purposive
sampling/
maximum
variation
• 32 family
members
• Interviews
• Observations
• Review of
daily flow sheet
• Demographics
• Inductive and
deductive
qualitative content
analysis
• (-) Data saturation
Five themes about
family members’
perceptions of
nursing
communication
approaches

• Sweden
• Describe
• Experiences of
using guidelines
in daily practice
• (-) Reference
• (+) Rationale
• Part of a
research
program
NR• Unspecified
• 8 care
providers
• Semistructured,
individual
interviews
• Interview guide
• Qualitative content
analysis
• (-) Data saturation
One theme and
seven subthemes
about care
providers’
experiences of
using guidelines in
daily practice

• USA
• Examine
• Culturally
specific views of
processes and
causes of midlife
weight gain
• (-) Reference
• (-) Rationale
Health belief
model and
Kleiman’s
explanatory
model
• Unspecified
• 19 adults
• Semistructured,
individual
interview
• Conventional
content analysis
• (-) Data saturation
Three main
categories (from the
model) and eight
subthemes about
causes of weight
gain in midlife

• Iran
• Explore
• Factors initiating
responsibility
among medical
trainees
• (-) Reference
• (+) Rationale
NR• Convenience,
snowball, and
maximum
variation
sampling
• 15 trainees
and other
professionals
• Semistructured,
individual
interview
• Interview guide
• Conventional
content analysis
• Constant
comparison
• (+) Data saturation
Two themes and
individual and non-
individual-based
factors per theme

• Iran
• Explore
• Factors related
to job satisfaction
and dissatisfaction
• (-) Reference
• (-) Rationale
NR• Convenience
sampling
• 85 nurses
• Semistructured
focus group
interviews
• Interview guide
• Thematic analysis
• (+) Data saturation
Three main themes
and associated
factors regarding
job satisfaction and
dissatisfaction

• Norway
• Describe
• Perceptions on
simulation-based
team training
• (-) Reference
• (-) Rationale
NR• Strategic
sampling
• 18 registered
nurses
• Semistructured
individual
interviews
• Inductive content
analysis
• (-) Data saturation
One main category,
three categories,
and six sub-
categories
regarding nurses’
perceptions on
simulation-based
team training

• USA
• Determine
• Barriers and
supports for
attending college
and nursing
school
• (-) Reference
• (-) Rationale
NR• Unspecified
• 45 students
• Focus-group
interviews
• Using
Photovoice and
SHOWeD
• Constant
comparison
• (-) Data saturation
Five themes about
facilitators and
barriers

• USA
• Explore
• Reasons for
choosing home
birth and birth
experiences
• (-) Reference
• (-) Rationale
NR• Purposeful
sampling
• 20 women
• Semistructured
focus-group
interviews
• Interview guide
• Field notes
• Qualitative content
analysis
• (+) Data saturation
Five common themes
and concepts about
reasons for choosing
home birth based on
their birth
experiences

• New Zealand
• Explore
• Normal fetal
activity related to
hunger and
satiation
• (+) Reference
• (+) Rationale

• Denzin & Lincoln (2011)
NR• Purposive
sampling
• 19 pregnant
women
• Semistructured
individual
interviews
• Open-ended
questions
• Inductive
qualitative content
analysis
• Descriptive
statistical analysis
• (+) Data saturation
Four patterns
regarding fetal
activities in
relation to meal
anticipation,
maternal hunger,
maternal meal
consummation,
and maternal
satiety

• Italy
• Explore,
describe, and
compare
• perceptions of
nursing caring
• (+) Reference
• (-) Rationale
NR• Purposive
sampling
• 20 nurses and
20 patients
• Semistructured
individual
interviews
• Interview guide
• Field notes
during
interviews
• Unspecified
various analytic
strategies including
constant comparison
• (-) Data saturation
Nursing caring
from both patients’
and nurses’
perspectives – a
summary of data in
visible caring and
invisible caring

• Hong Kong
• Address
• How to reduce
coronary heart
disease risks
• (+) Reference
• (+) Rationale
• Secondary
analysis

NR• Convenience
and snowball
sampling
• 105 patients
• Focus-group
interviews
• Interview guide
• Content analysis
• (+) Data saturation
Four categories about
patients’ abilities to
reduce coronary heart
disease

• Taiwan
• Explore
• Reasons for
young–old people
not killing
themselves
• (-) Reference
• (-) Rationale
NR• Convenience
sampling
• 31 older
adults
• Semistructured
individual
interviews
• Interview guide
• Observation
with
memos/reflective
journal
• Content analysis
• (+) Data saturation
Six themes regarding
reasons for not
committing to suicide

• USA
• Explore
• Neonatal
intensive care unit
experiences
• (+) Reference
• (+) Rationale
NR• Purposive
sampling and
convenience
sample
• 15 mothers
• Semistructured
individual
interviews
• Interview guide
• Qualitative content
analysis
• (+) Data saturation
Four themes about
participants’
experiences of
neonatal intensive
care unit

• Colombia
• Investigate
• Barriers/facilitators
to implementing
evidence-based
nursing
• (+) Reference
• (-) Rationale
Ottawa model
for research
use:
knowledge
translation
framework
• Convenience
sampling
• 13 nursing
professionals
• Semistructured
individual
interviews
• Interview guide
• Inductive
qualitative content
analysis
• Constant
comparison
• (-) Data saturation
Four main barriers
and potential
facilitators to
evidence-based
nursing

• Australia
• Explore
• Perceptions and
utilization of
diaries
• (+) Reference
• (-) Rationale
NR• Unspecified
• 19 patients
and families
• Responses to
open-ended
questions on
survey
• Unspecified
analysis strategy
• (-) Data saturation
Five themes
regarding perceptions
on use of diaries and
descriptive statistics
using frequencies of
utilization

• USA
• Explore
• Knowledge,
attitudes, and
beliefs about
sexual consent
• (-) Reference
• (-) Rationale
• Part of a larger
mixed-method
study
Theory of
planned
behavior
• Purposive
sampling
• snowball
sampling
• 26 women
• Semistructured
focus-group
interviews
• Interview guide
• Content analysis
• (+) Data saturation
Three main
categories and
subthemes regarding
sexual consent

• Sweden
• Describe
• Experiences of
knowledge
development in
wound
management
• (+) Reference
• (+) Rationale:
weak
NR• Purposive
sampling
• 16 district
nurses
• Individual
interviews
• Interview guide
• Qualitative content
analysis
• (-) Data saturation
Three categories and
eleven sub-categories
about knowledge
development
experiences in wound
management

• USA
• Describe
• Parental-pain
journey, beliefs
about pain, and
attitudes/behaviors
related to
children’s
responses
• (+) Reference
• (+) Rationale


• Part of a larger
mixed methods
study
NR• Purposive
sampling
• 9 parents
• Individual
interviews
• One open-
ended question
• Qualitative content
analysis
• (+) Data saturation
Two main themes,
categories, and
subcategories about
parents’ experiences
of observing
children’s pain

• USA
• Describe
• Challenges and
barriers in
providing
culturally
competent care
• (+) Reference
• (+) Rationale

• Secondary
analysis
NR• Stratified
sampling
• 253 nurses
• Written
responses to 2
open-ended
questions on
survey
• Thematic analysis
• (-) Data saturation
Three themes
regarding
challenges/barriers

• Denmark
• Describe
• Experiences of
childbirth
• (-) Reference
• (-) Rationale
• A substudy
NR• Purposive
sampling with
maximum
variation
• Partners of 10
women
• Semistructured,
individual
interviews
• Interview guide
• Thematic analysis
• (+) Data saturation
Three themes and
four subthemes about
partners’ experiences
of women’s
childbirth

• Australia
• Explore
• Perceptions
about medical
nutrition and
hydration at the
end of life
• (+) Reference
• (+) Rationale
NR• Purposeful
sampling
• 10 nurses
• Focus-group
interviews
• “analyzed
thematically”
• (-) Data saturation
One main theme and
four subthemes
regarding nurses’
perceptions on EOL-
related medical
nutrition and
hydration

• USA
• Describe
• Reasons for
leaving a home
visiting program
early
• (-) Reference
• (-) Rationale
NR• Convenience
sample
• 32 mothers,
nurses, and
nurse
supervisors
• Semistructured,
individual
interviews
• Focus-group
interviews
• Interview guide
• Inductive content
analysis
• Constant
comparison
approach
• (+) Data saturation
Three sets of reasons
for leaving a home
visiting program

• Sweden
• Explore and
describe
• Beliefs and
attitudes around
the decision for a
caesarean section
• (+) Reference
• (+) Rationale

NR• Unspecified
• 21 males
• Individual
telephone
interviews
• Thematic analysis
• Constant
comparison
approach
• (-) Data saturation
Two themes and
subthemes in relation
to the research
objective

• Taiwan
• Explore
• Illness
experiences of
early onset of
knee osteoarthritis
• (+) Reference
• (+) Rationale


• Part of a large
research series
NR• Purposive
sampling
• 17 adults
• Semistructured,
Individual
interviews
• Interview guide
• Memo/field
notes
(observations)
• Inductive content
analysis
• (+) Data saturation
Three major themes
and nine subthemes
regarding
experiences of early
onset-knee
osteoarthritis

• Australia
• Explore
• Perceptions
about bedside
handover (new
model) by nurses
• (+) Reference
• (+) Rationale

NR• Purposive
sampling
• 30 patients
• Semistructured,
individual
interviews
• Interview guide
• Thematic content
analysis
• (-) Data analysis
Two dominant
themes and related
subthemes regarding
patients’ thoughts
about nurses’ bedside
handover

• Sweden
• Identify
• Patterns in
learning when
living with
diabetes
• (-) Reference
• (-) Rationale
NR• Purposive
sampling with
variations in
age and sex
• 13
participants
• Semistructured,
individual interviews (3
times over 3
years)

analysis process
• Inductive
qualitative content
analysis
• (-) Data saturation
Five main patterns of
learning when living
with diabetes for
three years following
diagnosis

• Canada
• Evaluate
• Book chat
intervention based
on a novel
• (-) Reference
• (-) Rationale
• Part of a larger
research project
NR• Unspecified
• 11 long-term-
care staff
• Questionnaire
with two open-
ended questions
• Thematic content
analysis
• (-) Data saturation
Five themes (positive
comments) about the
book chat with brief
description

• Taiwan
• Explore
• Facilitators and
barriers to
implementing
smoking-
cessation
counseling
services
• (-) Reference
• (-) Rationale
NR• Unspecified
• 16 nurse-
counselors
• Semistructured
individual
interviews
• Interview guide
• Inductive content
analysis
• Constant
comparison
• (-) Data saturation
Two themes and
eight subthemes
about facilitators and
barriers described
using 2-4 quotations
per subtheme

• USA
• Identify
• Educational
strategies to
manage disruptive
behavior
• (-) Reference
• (-) Rationale
• Part of a larger
study
NR• Unspecified
• 9 nurses
• Semistructured,
individual
interviews
• Interview guide
• Content analysis
procedures
• (-) Data saturation
Two main themes
regarding education
strategies for nurse
educators

• USA
• Explore
• Experiences of
difficulty
resolving patient-
related concerns
• (-) Reference
• (-) Rationale
• Secondary
analysis
NR• Unspecified
• 1932
physician,
nursing, and
midwifery
professionals
• E-mail survey
with multiple-
choice and free-
text responses
• Inductive thematic
analysis
• Descriptive
statistics
• (-) Data saturation
One overarching
theme and four
subthemes about
professionals’
experiences of
difficulty resolving
patient-related
concerns

• Singapore
• Explicate
• Experience of
quality of life for
older adults
• (+) Reference
• (+) Rationale
Parse’s human
becoming
paradigm
• Unspecified
• 10 elderly
residents
• Individual
interviews
• Interview
questions
presented (Parse)
• Unspecified
analysis techniques
• (-) Data saturation
Three themes
presented using both
participants’
language and the
researcher’s language

• China
• Explore
• Perspectives on
learning about
caring
• (-) Reference
• (-) Rationale
NR• Purposeful
sampling
• 20 nursing
students
• Focus-group
interviews
• Interview guide
• Conventional
content analysis
• (-) Data saturation
Four categories and
associated
subcategories about
facilitators and
challenges to learning
about caring

• Poland
• Describe and
assess
• Components of
the patient–nurse
relationship and
pediatric-ward
amenities
• (+) Reference
• (-) Rationale
NR• Purposeful,
maximum
variation
sampling
• 26 parents or
caregivers and
22 children
• Individual
interviews
• Qualitative content
analysis
• (-) Data saturation
Five main topics
described from the
perspectives of
children and parents

• Canada
• Evaluate
• Acceptability
and feasibility of
hand-massage
therapy
• (-) Reference
• (-) Rationale
• Secondary to a
RCT
Focused on
feasibility and
acceptability
• Unspecified
• 40 patients
• Semistructured,
individual
interviews
• Field notes
• Video
recording
• Thematic analysis
for acceptability
• Quantitative
ratings of video
items for feasibility
• (-) Data analysis
Summary of data
focusing on
predetermined
indicators of
acceptability and
descriptive statistics
to present feasibility

• USA
• Understand
• Challenges
occurring during
transitions of care
• (+) Reference
• (+) Rationale

• Part of a larger study
NR• Convenience
sample
• 22 nurses
• Focus groups
• Interview guide
• Qualitative content
analysis methods
• (+) Data analysis
Three themes about
challenges regarding
transitions of care:

• Canada
• Understand
• Factors that
influence nurses’
retention in their
current job
• (-) Reference
• (-) Rationale
NR• Purposeful
sampling
• 41 nurses
• Focus-group
interviews
• Interview guide
• Directed content
analysis
• (+) Data saturation
Nurses’ reasons to
stay and leave their
current job

• Australia
• Extend
• Understanding
of caregivers’
views on advance
care planning
• (+) Reference
• (+) Rationale

• Grounded
theory overtone
NR• Theoretical
sampling
• 18 caregivers
• Semistructured
focus group and
individual
interviews
• Interview guide
• Vignette
technique
• Inductive, cyclic,
and constant
comparative
analysis
• (-) Data analysis
Three themes
regarding caregivers’
perceptions on
advance care
planning

• USA
• Describe
• Outcomes older
adults with
epilepsy hope to
achieve in
management
• (-) Reference
• (-) Rationale
NR• Unspecified
• 20 patients
• Individual
interview
• Conventional
content analysis
• (-) Data saturation
Six main themes and
associated subthemes
regarding what older
adults hoped to
achieve in
management of their
epilepsy

• The Netherlands
• Gain
• Experience of
personal dignity
and factors
influencing it
• (+) Reference
• (-) Rationale
Model of
dignity in
illness
• Maximum
variation
sampling
• 30 nursing
home residents
• Individual
interviews
• Interview guide
• Thematic analysis
• Constant
comparison
• (+) Data saturation
The threatening
effect of illness and
three domains being
threatened by illness
in relation to
participants’
experiences of
personal dignity

• USA
• Identify and
describe
• Needs in mental
health services
and “ideal”
program
• (+) Reference
• (+) Rationale

• There is a
primary study
NR• Unspecified
• 52 family
members
• Semistructured,
individual and
focus-group
interviews
• “Standard content
analytic procedures”
with case-ordered
meta-matrix
• (-) Data saturation
Two main topics –
(a) intervention
modalities that would
fit family members’
needs in mental
health services and
(b) topics that
programs should
address

• USA
• “What are the
perceptions of
staff nurses
regarding
palliative
care…?”
• (-) Reference
• (-) Rationale
NR• Purposive,
convenience
sampling
• 18 nurses
• Semistructured
and focus-group
interviews
• Interview guide
• Ritchie and
Spencer’s
framework for data
analysis
• (-) Data saturation
Five thematic
categories and
associated
subcategories about
nurses’ perceptions
of palliative care

• Canada
• Describe
• Experience of
caring for a
relative with
dementia
• (+) Reference
• (+) Rationale
• Sandelowski ( ; )
• Secondary
analysis
• Phenomenological
overtone
NR• Purposive
sampling
• 11 bereaved
family
members
• Individual
interviews
• 27 transcripts
from the primary
study
• Unspecified
• (-) Data saturation
Five major themes
regarding the journey
with dementia from
the time prior to
diagnosis and into
bereavement

• Canada
• Describe
Experience of
fetal fibronectin
testing
• (+) Reference
• (+) Rationale

NR• Unspecified
• 17 women
• Semistructured
individual
interviews
• Interview guide
• Conventional
content analysis
• (+) Data saturation
One overarching
theme, three themes,
and six subthemes
about women’s
experiences of fetal
fibronectin testing

• New Zealand
• Explore
• Role of nurses in
providing
palliative and
end-of-life care
• (+) Reference
• (+) Rationale

• Part of a larger study
NR• Purposeful
sampling
• 21 nurses
• Semistructured
individual
interviews
• Thematic analysis
• (-) Data saturation
Three themes about
practice nurses’
experiences in
providing palliative
and end-of-life care

• Brazil
• Understand
• Experience with
postnatal
depression
• (+) Reference
• (-) Rationale
NR• Purposeful,
criterion
sampling
• 15 women
with postnatal
depression
• Minimally
structured,
individual
interviews
• Thematic analysis
• (+) Data saturation
Two themes –
women’s “bad
thoughts” and their
four types of
responses to fear of
harm (with
frequencies)

• Australia
• Understand
• Experience of
peripherally
inserted central
catheter insertion
• (+) Reference
• (+) Rationale
NR• Purposeful
sampling
• 10 patients
• Semistructured,
individual
interviews
• Interview guide
• Thematic analysis
• (+) Data saturation
Four themes
regarding patients’
experiences of
peripherally inserted
central catheter
insertion

• USA
• Discover
• Context, values,
and background
meaning of
cultural
competency
• (+) Reference
• (+) Rationale
Focused on
cultural
competence
• Purposive,
maximum
variation, and
network
• 20 experts
• Semistructured,
individual
interviews
• Within-case and
across-case analysis
• (-) Data saturation
Three themes
regarding cultural
competency

• USA
• Explore and
describe
• Cancer experience
• (+) Reference
• (+) Rationale
NR• Unspecified
• 15 patients
• Longitudinal
individual
interviews (4
time points)
• 40 interviews
• Inductive content
analysis
• (-) Data saturation
Processes and themes
about adolescent
identify work and
cancer identify work
across the illness
trajectory

• Sweden
• Explore
• Experiences of
giving support to
patients during
the transition
• (-) Reference
• (-) Rationale
Focused on
support and
transition
• Unspecified
(but likely
purposeful
sampling)
• 8 nurses
• Semistructured
Individual
interviews
• Interview guide
• Content analysis
• (-) Data saturation
One theme, three
main categories, and
eight associated
categories

• Taiwan
• Describe
• Process of
women’s recovery
from stillbirth
• (+) Reference
• (+) Rationale
NR• Purposeful
sampling
• 21 women
• Individual
interview
techniques
• Inductive analytic
approaches ( )
• (+) Data saturation
Three stages (themes)
regarding the
recovery process of
Taiwanese women
with stillbirth

• Iran
• Describe
• Perspectives of
causes of
medication errors
• (+) Reference
• (+) Rationale
NR• Purposeful
sampling
• 24 nursing
students
• Focus-group
interviews
• Observations
with notes
• Content analysis
• (-) Data saturation
Two main themes
about nursing
students’ perceptions
on causes of
medication errors

• Iran
• Explore
• Image of nursing
• (-) Reference
• (-) Rationale
NR• Purposeful
sampling
• 18 male
nurses
• Semistructured
individual,
interviews
• Field notes
• Content analysis
• (-) Data saturation
Two main views
(themes) on nursing
presented with
subthemes per view

• Spain
• Ascertain
• Barriers to
sexual expression
• (-) Reference
• (-) Rationale
NR• Maximum
variation
• 100 staff and
residents
• Semistructured,
individual
interview
• Content analysis
• (-) Data saturation
40% of participants
without identification
of barriers and 60%
with seven most cited
barriers to sexual
expression in the
long-term care setting

• Canada
• Explore
• Perceptions of
empowerment in
academic nursing
environments
• (+) Reference
• (+) Rationale
• Sandelowski ( , )
Theories of
structural
power in
organizations
and
psychological
empowerment
• Unspecified
• 8 clinical
instructors
• Semistructured,
individual
• interview guide
• Unspecified (but
used pre-determined
concepts)
• (+) Data saturation
Structural
empowerment and
psychological
empowerment
described using
predetermined
concepts

• China
• Investigate
• Meaning of life
and health
experience with
chronic illness
• (+) Reference
• (+) Rationale
• Sandelowski ( , )
Positive health
philosophy
• Purposive,
convenience
sampling
• 11 patients
• Individual
interviews
• Observations
of daily behavior
with field notes
• Thematic analysis
• (-) Data saturation
Four themes
regarding the
meaning of life and
health when living
with chronic illnesses

Note . NR = not reported

Quality Appraisal Results

Justification for use of a QD design was evident in close to half (47.3%) of the 55 publications. While most researchers clearly described recruitment strategies (80%) and data collection methods (100%), justification for how the study setting was selected was only identified in 38.2% of the articles and almost 75% of the articles did not include any reason for the choice of data collection methods (e.g., focus-group interviews). In the vast majority (90.9%) of the articles, researchers did not explain their involvement and positionality during the process of recruitment and data collection or during data analysis (63.6%). Ethical standards were reported in greater than 89% of all articles and most articles included an in-depth description of data analysis (83.6%) and development of categories or themes (92.7%). Finally, all researchers clearly stated their findings in relation to research questions/objectives. Researchers of 83.3% of the articles discussed the credibility of their findings (see Table 1 ).

Research Objectives

In statements of study objectives and/or questions, the most frequently used verbs were “explore” ( n = 22) and “describe” ( n = 17). Researchers also used “identify” ( n = 3), “understand” ( n = 4), or “investigate” ( n = 2). Most articles focused on participants’ experiences related to certain phenomena ( n = 18), facilitators/challenges/factors/reasons ( n = 14), perceptions about specific care/nursing practice/interventions ( n = 11), and knowledge/attitudes/beliefs ( n = 3).

Design Justification

A total of 30 articles included references for QD. The most frequently cited references ( n = 23) were “Whatever happened to qualitative description?” ( Sandelowski, 2000 ) and “What’s in a name? Qualitative description revisited” ( Sandelowski, 2010 ). Other references cited included “Qualitative description – the poor cousin of health research?” ( Neergaard et al., 2009 ), “Reaching the parts other methods cannot reach: an introduction to qualitative methods in health and health services research” ( Pope & Mays, 1995 ), and general research textbooks ( Polit & Beck, 2004 , 2012 ).

In 26 articles (and not necessarily the same as those citing specific references to QD), researchers provided a rationale for selecting QD. Most researchers chose QD because this approach aims to produce a straight description and comprehensive summary of the phenomenon of interest using participants’ language and staying close to the data (or using low inference).

Authors of two articles distinctly stated a QD design, yet also acknowledged grounded-theory or phenomenological overtones by adopting some techniques from these qualitative traditions ( Michael, O'Callaghan, Baird, Hiscock, & Clayton, 2014 ; Peacock, Hammond-Collins, & Forbes, 2014 ). For example, Michael et al. (2014 , p. 1066) reported:

The research used a qualitative descriptive design with grounded theory overtones ( Sandelowski, 2000 ). We sought to provide a comprehensive summary of participants’ views through theoretical sampling; multiple data sources (focus groups [FGs] and interviews); inductive, cyclic, and constant comparative analysis; and condensation of data into thematic representations ( Corbin & Strauss, 1990 , 2008 ).

Authors of four additional articles included language suggestive of a grounded-theory or phenomenological tradition, e.g., by employing a constant comparison technique or translating themes stated in participants’ language into the primary language of the researchers during data analysis ( Asemani et al., 2014 ; Li, Lee, Chen, Jeng, & Chen, 2014 ; Ma, 2014 ; Soule, 2014 ). Additionally, Li et al. (2014) specifically reported use of a grounded-theory approach.

Theoretical or Philosophical Framework

In most (n = 48) articles, researchers did not specify any theoretical or philosophical framework. Of those articles in which a framework or philosophical stance was included, the authors of five articles described the framework as guiding the development of an interview guide ( Al-Zadjali, Keller, Larkey, & Evans, 2014 ; DeBruyn, Ochoa-Marin, & Semenic, 2014 ; Fantasia, Sutherland, Fontenot, & Ierardi, 2014 ; Ma, 2014 ; Wiens, Babenko-Mould, & Iwasiw, 2014 ). In two articles, data analysis was described as including key concepts of a framework being used as pre-determined codes or categories ( Al-Zadjali et al., 2014 ; Wiens et al., 2014 ). Oosterveld-Vlug et al. (2014) and Zhang, Shan, and Jiang (2014) discussed a conceptual model and underlying philosophy in detail in the background or discussion section, although the model and philosophy were not described as being used in developing interview questions or analyzing data.

Sampling and Sample Size

In 38 of the 55 articles, researchers reported ‘purposeful sampling’ or some derivation of purposeful sampling such as convenience ( n = 10), maximum variation ( n = 8), snowball ( n = 3), and theoretical sampling ( n = 1). In three instances ( Asemani et al., 2014 ; Chan & Lopez, 2014 ; Soule, 2014 ), multiple sampling strategies were described, for example, a combination of snowball, convenience, and maximum variation sampling. In articles where maximum variation sampling was employed, “variation” referred to seeking diversity in participants’ demographics ( n = 7; e.g., age, gender, and education level), while one article did not include details regarding how their maximum variation sampling strategy was operationalized ( Marcinowicz, Abramowicz, Zarzycka, Abramowicz, & Konstantynowicz, 2014 ). Authors of 17 articles did not specify their sampling techniques.

Sample sizes ranged from 8 to 1,932 with nine studies in the 8–10 participant range and 24 studies in the 11–20 participant range. The participant range of 21–30 and 31–50 was reported in eight articles each. Six studies included more than 50 participants. Two of these articles depicted quite large sample sizes (N=253, Hart & Mareno, 2014 ; N=1,932, Lyndon et al., 2014 ) and the authors of these articles described the use of survey instruments and analysis of responses to open-ended questions. This was in contrast to studies with smaller sample sizes where individual interviews and focus groups were more commonly employed.

Data Collection and Data Sources

In a majority of studies, researchers collected data through individual ( n = 39) and/or focus-group ( n = 14) interviews that were semistructured. Most researchers reported that interviews were audiotaped ( n = 51) and interview guides were described as the primary data collection tool in 29 of the 51 studies. In some cases, researchers also described additional data sources, for example, taking memos or field notes during participant observation sessions or as a way to reflect their thoughts about interviews ( n = 10). Written responses to open-ended questions in survey questionnaires were another type of data source in a small number of studies ( n = 4).

Data Analysis

The analysis strategy most commonly used in the QD studies included in this review was qualitative content analysis ( n = 30). Among the studies where this technique was used, most researchers described an inductive approach; researchers of two studies analyzed data both inductively and deductively. Thematic analysis was adopted in 14 studies and the constant comparison technique in 10 studies. In nine studies, researchers employed multiple techniques to analyze data including qualitative content analysis with constant comparison ( Asemani et al., 2014 ; DeBruyn et al., 2014 ; Holland, Christensen, Shone, Kearney, & Kitzman, 2014 ; Li et al., 2014 ) and thematic analysis with constant comparison ( Johansson, Hildingsson, & Fenwick, 2014 ; Oosterveld-Vlug et al., 2014 ). In addition, five teams conducted descriptive statistical analysis using both quantitative and qualitative data and counting the frequencies of codes/themes ( Ewens, Chapman, Tulloch, & Hendricks, 2014 ; Miller, 2014 ; Santos, Sandelowski, & Gualda, 2014 ; Villar, Celdran, Faba, & Serrat, 2014 ) or targeted events through video monitoring ( Martorella, Boitor, Michaud, & Gelinas, 2014 ). Tseng, Chen, and Wang (2014) cited Thorne, Reimer Kirkham, and O’Flynn-Magee (2004)’s interpretive description as the inductive analytic approach. In five out of 55 articles, researchers did not specifically name their analysis strategies, despite including descriptions about procedural aspects of data analysis. Researchers of 20 studies reported that data saturation for their themes was achieved.

Presentation of Findings

Researchers described participants’ experiences of health care, interventions, or illnesses in 18 articles and presented straightforward, focused, detailed descriptions of facilitators, challenges, factors, reasons, and causes in 15 articles. Participants’ perceptions of specific care, interventions, or programs were described in detail in 11 articles. All researchers presented their findings with extensive descriptions including themes or categories. In 25 of 55 articles, figures or tables were also presented to illustrate or summarize the findings. In addition, the authors of three articles summarized, organized, and described their data using key concepts of conceptual models ( Al-Zadjali et al., 2014 ; Oosterveld-Vlug et al., 2014 ; Wiens et al., 2014 ). Martorella et al. (2014) assessed acceptability and feasibility of hand massage therapy and arranged their findings in relation to pre-determined indicators of acceptability and feasibility. In one longitudinal QD study ( Kneck, Fagerberg, Eriksson, & Lundman, 2014 ), the researchers presented the findings as several key patterns of learning for persons living with diabetes; in another longitudinal QD study ( Stegenga & Macpherson, 2014 ), findings were presented as processes and themes regarding patients’ identity work across the cancer trajectory. In another two studies, the researchers described and compared themes or categories from two different perspectives, such as patients and nurses ( Canzan, Heilemann, Saiani, Mortari, & Ambrosi, 2014 ) or parents and children ( Marcinowicz et al., 2014 ). Additionally, Ma (2014) reported themes using both participants’ language and the researcher’s language.

In this systematic review, we examined and reported specific characteristics of methods and findings reported in journal articles self-identified as QD and published during one calendar year. To accomplish this we identified 55 articles that met inclusion criteria, performed a quality appraisal following CASP guidelines, and extracted and analyzed data focusing on QD features. In general, three primary findings emerged. First, despite inconsistencies, most QD publications had the characteristics that were originally observed by Sandelowski (2000) and summarized by other limited available QD literature. Next, there are no clear boundaries in methods used in the QD studies included in this review; in a number of studies, researchers adopted and combined techniques originating from other qualitative traditions to obtain rich data and increase their understanding of the phenomenon under investigation. Finally, justification for how QD was chosen and why it would be an appropriate fit for a particular study is an area in need of increased attention.

In general, the overall characteristics were consistent with design features of QD studies described in the literature ( Neergaard et al., 2009 ; Sandelowski, 2000 , 2010 ; Vaismoradi et al., 2013 ). For example, many authors reported that study objectives were to describe or explore participants’ experiences and factors related to certain phenomena, events, or interventions. In most cases, these authors cited Sandelowski (2000) as a reference for this particular characteristic. It was rare that theoretical or philosophical frameworks were identified, which also is consistent with descriptions of QD. In most studies, researchers used purposeful sampling and its derivative sampling techniques, collected data through interviews, and analyzed data using qualitative content analysis or thematic analysis. Moreover, all researchers presented focused or comprehensive, descriptive summaries of data including themes or categories answering their research questions. These characteristics do not indicate that there are correct ways to do QD studies; rather, they demonstrate how others designed and produced QD studies.

In several studies, researchers combined techniques that originated from other qualitative traditions for sampling, data collection, and analysis. This flexibility or variability, a key feature of recently published QD studies, may indicate that there are no clear boundaries in designing QD studies. Sandelowski (2010) articulated: “in the actual world of research practice, methods bleed into each other; they are so much messier than textbook depictions” (p. 81). Hammersley (2007) also observed:

“We are not so much faced with a set of clearly differentiated qualitative approaches as with a complex landscape of variable practice in which the inhabitants use a range of labels (‘ethnography’, ‘discourse analysis’, ‘life history work’, narrative study’, ……, and so on) in diverse and open-ended ways in order to characterize their orientation, and probably do this somewhat differently across audiences and occasions” (p. 293).

This concept of having no clear boundaries in methods when designing a QD study should enable researchers to obtain rich data and produce a comprehensive summary of data through various data collection and analysis approaches to answer their research questions. For example, using an ethnographical approach (e.g., participant observation) in data collection for a QD study may facilitate an in-depth description of participants’ nonverbal expressions and interactions with others and their environment as well as situations or events in which researchers are interested ( Kawulich, 2005 ). One example found in our review is that Adams et al. (2014) explored family members’ responses to nursing communication strategies for patients in intensive care units (ICUs). In this study, researchers conducted interviews with family members, observed interactions between healthcare providers, patients, and family members in ICUs, attended ICU rounds and family meetings, and took field notes about their observations and reflections. Accordingly, the variability in methods provided Adams and colleagues (2014) with many different aspects of data that were then used to complement participants’ interviews (i.e., data triangulation). Moreover, by using a constant comparison technique in addition to qualitative content analysis or thematic analysis in QD studies, researchers compare each case with others looking for similarities and differences as well as reasoning why differences exist, to generate more general understanding of phenomena of interest ( Thorne, 2000 ). In fact, this constant comparison analysis is compatible with qualitative content analysis and thematic analysis and we found several examples of using this approach in studies we reviewed ( Asemani et al., 2014 ; DeBruyn et al., 2014 ; Holland et al., 2014 ; Johansson et al., 2014 ; Li et al., 2014 ; Oosterveld-Vlug et al., 2014 ).

However, this flexibility or variability in methods of QD studies may cause readers’ as well as researchers’ confusion in designing and often labeling qualitative studies ( Neergaard et al., 2009 ). Especially, it could be difficult for scholars unfamiliar with qualitative studies to differentiate QD studies with “hues, tones, and textures” of qualitative traditions ( Sandelowski, 2000 , p. 337) from grounded theory, phenomenological, and ethnographical research. In fact, the major difference is in the presentation of the findings (or outcomes of qualitative research) ( Neergaard et al., 2009 ; Sandelowski, 2000 ). The final products of grounded theory, phenomenological, and ethnographical research are a generation of a theory, a description of the meaning or essence of people’s lived experience, and an in-depth, narrative description about certain culture, respectively, through researchers’ intensive/deep interpretations, reflections, and/or transformation of data ( Streubert & Carpenter, 2011 ). In contrast, QD studies result in “a rich, straight description” of experiences, perceptions, or events using language from the collected data ( Neergaard et al., 2009 ) through low-inference (or data-near) interpretations during data analysis ( Sandelowski, 2000 , 2010 ). This feature is consistent with our finding regarding presentation of findings: in all QD articles included in this systematic review, the researchers presented focused or comprehensive, descriptive summaries to their research questions.

Finally, an explanation or justification of why a QD approach was chosen or appropriate for the study aims was not found in more than half of studies in the sample. While other qualitative approaches, including grounded theory, phenomenology, ethnography, and narrative analysis, are used to better understand people’s thoughts, behaviors, and situations regarding certain phenomena ( Sullivan-Bolyai et al., 2005 ), as noted above, the results will likely read differently than those for a QD study ( Carter & Little, 2007 ). Therefore, it is important that researchers accurately label and justify their choices of approach, particularly for studies focused on participants’ experiences, which could be addressed with other qualitative traditions. Justifying one’s research epistemology, methodology, and methods allows readers to evaluate these choices for internal consistency, provides context to assist in understanding the findings, and contributes to the transparency of choices, all of which enhance the rigor of the study ( Carter & Little, 2007 ; Wu, Thompson, Aroian, McQuaid, & Deatrick, 2016 ).

Use of the CASP tool drew our attention to the credibility and usefulness of the findings of the QD studies included in this review. Although justification for study design and methods was lacking in many articles, most authors reported techniques of recruitment, data collection, and analysis that appeared. Internal consistencies among study objectives, methods, and findings were achieved in most studies, increasing readers’ confidence that the findings of these studies are credible and useful in understanding under-explored phenomenon of interest.

In summary, our findings support the notion that many scholars employ QD and include a variety of commonly observed characteristics in their study design and subsequent publications. Based on our review, we found that QD as a scholarly approach allows flexibility as research questions and study findings emerge. We encourage authors to provide as many details as possible regarding how QD was chosen for a particular study as well as details regarding methods to facilitate readers’ understanding and evaluation of the study design and rigor. We acknowledge the challenge of strict word limitation with submissions to print journals; potential solutions include collaboration with journal editors and staff to consider creative use of charts or tables, or using more citations and less text in background sections so that methods sections are robust.

Limitations

Several limitations of this review deserve mention. First, only articles where researchers explicitly stated in the main body of the article that a QD design was employed were included. In contrast, articles labeled as QD in only the title or abstract, or without their research design named were not examined due to the lack of certainty that the researchers actually carried out a QD study. As a result, we may have excluded some studies where a QD design was followed. Second, only one database was searched and therefore we did not identify or describe potential studies following a QD approach that were published in non-PubMed databases. Third, our review is limited by reliance on what was included in the published version of a study. In some cases, this may have been a result of word limits or specific styles imposed by journals, or inconsistent reporting preferences of authors and may have limited our ability to appraise the general adequacy with the CASP tool and examine specific characteristics of these studies.

Conclusions

A systematic review was conducted by examining QD research articles focused on nursing-related phenomena and published in one calendar year. Current patterns include some characteristics of QD studies consistent with the previous observations described in the literature, a focus on the flexibility or variability of methods in QD studies, and a need for increased explanations of why QD was an appropriate label for a particular study. Based on these findings, recommendations include encouragement to authors to provide as many details as possible regarding the methods of their QD study. In this way, readers can thoroughly consider and examine if the methods used were effective and reasonable in producing credible and useful findings.

Acknowledgments

This work was supported in part by the John A. Hartford Foundation’s National Hartford Centers of Gerontological Nursing Excellence Award Program.

Hyejin Kim is a Ruth L. Kirschstein NRSA Predoctoral Fellow (F31NR015702) and 2013–2015 National Hartford Centers of Gerontological Nursing Excellence Patricia G. Archbold Scholar. Justine Sefcik is a Ruth L. Kirschstein Predoctoral Fellow (F31NR015693) through the National Institutes of Health, National Institute of Nursing Research.

Conflict of Interest Statement

The Authors declare that there is no conflict of interest.

Contributor Information

Hyejin Kim, MSN, CRNP, Doctoral Candidate, University of Pennsylvania School of Nursing.

Justine S. Sefcik, MS, RN, Doctoral Candidate, University of Pennsylvania School of Nursing.

Christine Bradway, PhD, CRNP, FAAN, Associate Professor of Gerontological Nursing, University of Pennsylvania School of Nursing.

  • Adams JA, Anderson RA, Docherty SL, Tulsky JA, Steinhauser KE, Bailey DE., Jr Nursing strategies to support family members of ICU patients at high risk of dying. Heart & Lung. 2014; 43 (5):406–415. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Ahlin J, Ericson-Lidman E, Norberg A, Strandberg G. Care providers' experiences of guidelines in daily work at a municipal residential care facility for older people. Scandinavian Journal of Caring Sciences. 2014; 28 (2):355–363. [ PubMed ] [ Google Scholar ]
  • Al-Zadjali M, Keller C, Larkey L, Evans B. GCC women: causes and processes of midlife weight gain. Health Care for Women International. 2014; 35 (11–12):1267–1286. [ PubMed ] [ Google Scholar ]
  • Asemani O, Iman MT, Moattari M, Tabei SZ, Sharif F, Khayyer M. An exploratory study on the elements that might affect medical students' and residents' responsibility during clinical training. Journal of Medical Ethics and History of Medicine. 2014; 7 :8. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Atefi N, Abdullah KL, Wong LP, Mazlom R. Factors influencing registered nurses perception of their overall job satisfaction: a qualitative study. International Nursing Review. 2014; 61 (3):352–360. [ PubMed ] [ Google Scholar ]
  • Ballangrud R, Hall-Lord ML, Persenius M, Hedelin B. Intensive care nurses' perceptions of simulation-based team training for building patient safety in intensive care: a descriptive qualitative study. Intensive and Critical Care Nursing. 2014; 30 (4):179–187. [ PubMed ] [ Google Scholar ]
  • Benavides-Vaello S, Katz JR, Peterson JC, Allen CB, Paul R, Charette-Bluff AL, Morris P. Nursing and health sciences workforce diversity research using. PhotoVoice: a college and high school student participatory project. Journal of Nursing Education. 2014; 53 (4):217–222. [ PubMed ] [ Google Scholar ]
  • Bernhard C, Zielinski R, Ackerson K, English J. Home birth after hospital birth: women's choices and reflections. Journal of Midwifery and Women's Health. 2014; 59 (2):160–166. [ PubMed ] [ Google Scholar ]
  • Borbasi S, Jackson D, Langford RW. Navigating the maze of nursing research: An interactive learning adventure. 2nd. New South Wales, Australia: Mosby/Elsevier; 2008. [ Google Scholar ]
  • Bradford B, Maude R. Fetal response to maternal hunger and satiation - novel finding from a qualitative descriptive study of maternal perception of fetal movements. BMC Pregnancy and Childbirth. 2014; 14 :288. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Burns N, Grove SK. The practice of nursing research: Conduct, critique, & utilization. 5th. Philadelphia, PA: Elsevier/Saunders; 2005. [ Google Scholar ]
  • Canzan F, Heilemann MV, Saiani L, Mortari L, Ambrosi E. Visible and invisible caring in nursing from the perspectives of patients and nurses in the gerontological context. Scandinavian Journal of Caring Sciences. 2014; 28 (4):732–740. [ PubMed ] [ Google Scholar ]
  • Carter SM, Littler M. Justifying knowledge, justifying methods, taking action: Epistemologies, methodologies, and methods in qualitative research. Qualitative Health Research. 2007; 17 (10):1316–1328. [ PubMed ] [ Google Scholar ]
  • Critical Appraisal Skills Programme (CASP 2013) 10 questions to help you make sense of qualitative research. Oxford: CASP; 2013. Retrieved from http://media.wix.com/ugd/dded87_29c5b002d99342f788c6ac670e49f274.pdf . [ Google Scholar ]
  • Chan CW, Lopez V. A qualitative descriptive study of risk reduction for coronary disease among the Hong Kong Chinese. Public Health Nursing. 2014; 31 (4):327–335. [ PubMed ] [ Google Scholar ]
  • Chen YJ, Tsai YF, Lee SH, Lee HL. Protective factors against suicide among young-old Chinese outpatients. BMC Public Health. 2014; 14 :372. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Cleveland LM, Bonugli R. Experiences of mothers of infants with neonatal abstinence syndrome in the neonatal intensive care unit. Journal of Obstetric Gynecologic, & Neonatal Nursing. 2014; 43 (3):318–329. [ PubMed ] [ Google Scholar ]
  • Corbin J, Strauss A. Basics of qualitative research: Techniques and procedures for developing grounded theory. 3rd. Thousand Oaks, CA: Sage Publications; 2008. [ Google Scholar ]
  • Corbin JM, Strauss A. Grounded theory research: Procedures, canons and evaluation criteria. Qualitative Sociology. 1990; 13 (1):3–21. [ Google Scholar ]
  • DeBruyn RR, Ochoa-Marin SC, Semenic S. Barriers and facilitators to evidence-based nursing in Colombia: perspectives of nurse educators, nurse researchers and graduate students. Investigación y Educación en Enfermería. 2014; 32 (1):9–21. [ PubMed ] [ Google Scholar ]
  • Denzin NK, Lincoln YS. The Discipline and practice of qualitative research. In: Denzin NK, Lincoln YS, editors. Handbook of qualitative research. 2nd. Thousand Oaks, CA: Sage Publications; 2000. pp. 1–28. [ Google Scholar ]
  • Ewens B, Chapman R, Tulloch A, Hendricks JM. ICU survivors' utilisation of diaries post discharge: a qualitative descriptive study. Australian Critical Care. 2014; 27 (1):28–35. [ PubMed ] [ Google Scholar ]
  • Fantasia HC, Sutherland MA, Fontenot H, Ierardi JA. Knowledge, attitudes and beliefs about contraceptive and sexual consent negotiation among college women. Journal of Forensic Nursing. 2014; 10 (4):199–207. [ PubMed ] [ Google Scholar ]
  • Friman A, Wahlberg AC, Mattiasson AC, Ebbeskog B. District nurses' knowledge development in wound management: ongoing learning without organizational support. Primary Health Care Research & Development. 2014; 15 (4):386–395. [ PubMed ] [ Google Scholar ]
  • Gaughan V, Logan D, Sethna N, Mott S. Parents' perspective of their journey caring for a child with chronic neuropathic pain. Pain Management Nursing. 2014; 15 (1):246–257. [ PubMed ] [ Google Scholar ]
  • Hammersley M. The issue of quality in qualitative research. International Journal of Research & Method in Education. 2007; 30 (3):287–305. [ Google Scholar ]
  • Hart PL, Mareno N. Cultural challenges and barriers through the voices of nurses. Journal of Clinical Nursing. 2014; 23 (15–16):2223–2232. [ PubMed ] [ Google Scholar ]
  • Hasman K, Kjaergaard H, Esbensen BA. Fathers' experience of childbirth when non-progressive labour occurs and augmentation is established. A qualitative study. Sexual & Reproductive HealthCare. 2014; 5 (2):69–73. [ PubMed ] [ Google Scholar ]
  • Higgins I, van der Riet P, Sneesby L, Good P. Nutrition and hydration in dying patients: the perceptions of acute care nurses. Journal of Clinical Nursing. 2014; 23 (17–18):2609–2617. [ PubMed ] [ Google Scholar ]
  • Holland ML, Christensen JJ, Shone LP, Kearney MH, Kitzman HJ. Women's reasons for attrition from a nurse home visiting program. Journal of Obstetric, Gynecologic, & Neonatal Nursing. 2014; 43 (1):61–70. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Johansson M, Hildingsson I, Fenwick J. 'As long as they are safe--birth mode does not matter' Swedish fathers' experiences of decision-making around caesarean section. Women and Birth. 2014; 27 (3):208–213. [ PubMed ] [ Google Scholar ]
  • Kao MH, Tsai YF. Illness experiences in middle-aged adults with early-stage knee osteoarthritis: findings from a qualitative study. Journal of Advanced Nursing. 2014; 70 (7):1564–1572. [ PubMed ] [ Google Scholar ]
  • Kawulich BB. Participant observation as a data collection method. Forum: Qualitative Social Research. 2005; 6 (2) Art. 43. Retrieved from http://www.qualitative-research.net/index.php/fqs/article/view/466/997 . [ Google Scholar ]
  • Kerr D, McKay K, Klim S, Kelly AM, McCann T. Attitudes of emergency department patients about handover at the bedside. Journal of Clinical Nursing. 2014; 23 (11–12):1685–1693. [ PubMed ] [ Google Scholar ]
  • Kneck A, Fagerberg I, Eriksson LE, Lundman B. Living with diabetes - development of learning patterns over a 3-year period. International Journal of Qualitative Studies on Health and Well-being. 2014; 9 :24375. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Krippendorf K. Content analysis: An introduction to its methodology. 2nd. Thousand Oaks, CA: Sage Publications; 2004. [ Google Scholar ]
  • Larocque N, Schotsman C, Kaasalainen S, Crawshaw D, McAiney C, Brazil E. Using a book chat to improve attitudes and perceptions of long-term care staff about dementia. Journal of Gerontological Nursing. 2014; 40 (5):46–52. [ PubMed ] [ Google Scholar ]
  • Li IC, Lee SY, Chen CY, Jeng YQ, Chen YC. Facilitators and barriers to effective smoking cessation: counselling services for inpatients from nurse-counsellors' perspectives--a qualitative study. International Journal of Environmental Research and Public Health. 2014; 11 (5):4782–4798. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Lux KM, Hutcheson JB, Peden AR. Ending disruptive behavior: staff nurse recommendations to nurse educators. Nurse Education in Practice. 2014; 14 (1):37–42. [ PubMed ] [ Google Scholar ]
  • Lyndon A, Zlatnik MG, Maxfield DG, Lewis A, McMillan C, Kennedy HP. Contributions of clinical disconnections and unresolved conflict to failures in intrapartum safety. Journal of Obstetric, Gynecologic, & Neonatal Nursing. 2014; 43 (1):2–12. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Ma F, Li J, Liang H, Bai Y, Song J. Baccalaureate nursing students' perspectives on learning about caring in China: a qualitative descriptive study. BMC Medical Education. 2014; 14 :42. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Ma L. A humanbecoming qualitative descriptive study on quality of life with older adults. Nursing Science Quarterly. 2014; 27 (2):132–141. [ PubMed ] [ Google Scholar ]
  • Marcinowicz L, Abramowicz P, Zarzycka D, Abramowicz M, Konstantynowicz J. How hospitalized children and parents perceive nurses and hospital amenities: A qualitative descriptive study in Poland. Journal of Child Health Care. 2014 [ PubMed ] [ Google Scholar ]
  • Martorella G, Boitor M, Michaud C, Gelinas C. Feasibility and acceptability of hand massage therapy for pain management of postoperative cardiac surgery patients in the intensive care unit. Heart & Lung. 2014; 43 (5):437–444. [ PubMed ] [ Google Scholar ]
  • McDonough A, Callans KM, Carroll DL. Understanding the challenges during transitions of care for children with critical airway conditions. ORL Head and Neck Nursing. 2014; 32 (4):12–17. [ PubMed ] [ Google Scholar ]
  • McGilton KS, Boscart VM, Brown M, Bowers B. Making tradeoffs between the reasons to leave and reasons to stay employed in long-term care homes: perspectives of licensed nursing staff. International Journal of Nursing Studies. 2014; 51 (6):917–926. [ PubMed ] [ Google Scholar ]
  • Michael N, O'Callaghan C, Baird A, Hiscock N, Clayton J. Cancer caregivers advocate a patient- and family-centered approach to advance care planning. Journal of Pain and Symptom Management. 2014; 47 (6):1064–1077. [ PubMed ] [ Google Scholar ]
  • Miller WR. Patient-centered outcomes in older adults with epilepsy. Seizure. 2014; 23 (8):592–597. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Milne J, Oberle K. Enhancing rigor in qualitative description: a case study. Journal of Wound Ostomy & Continence Nursing. 2005; 32 (6):413–420. [ PubMed ] [ Google Scholar ]
  • Neergaard MA, Olesen F, Andersen RS, Sondergaard J. Qualitative description - the poor cousin of health research? BMC Medical Research Methodology. 2009; 9 :52. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • O'Shea MF. Staff nurses' perceptions regarding palliative care for hospitalized older adults. The American Journal of Nursing. 2014; 114 (11):26–34. [ PubMed ] [ Google Scholar ]
  • Oosterveld-Vlug MG, Pasman HR, van Gennip IE, Muller MT, Willems DL, Onwuteaka-Philipsen BD. Dignity and the factors that influence it according to nursing home residents: a qualitative interview study. Journal of Advanced Nursing. 2014; 70 (1):97–106. [ PubMed ] [ Google Scholar ]
  • Oruche UM, Draucker C, Alkhattab H, Knopf A, Mazurcyk J. Interventions for family members of adolescents with disruptive behavior disorders. Journal of Child and Adolescent Psychiatric Nursing. 2014; 27 (3):99–108. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Parse RR. Qualitative inquiry: The path of sciencing. Sudbury, MA: Jones and Barlett; 2001. [ Google Scholar ]
  • Peacock SC, Hammond-Collins K, Forbes DA. The journey with dementia from the perspective of bereaved family caregivers: a qualitative descriptive study. BMC Nursing. 2014; 13 (1):42. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Peterson WE, Sprague AE, Reszel J, Walker M, Fell DB, Perkins SL, Johnson M. Women's perspectives of the fetal fibronectin testing process: a qualitative descriptive study. BMC Pregnancy and Childbirth. 2014; 14 :190. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Polit DF, Beck CT. Nursing research: principles and methods. 7. Philadelphia, PA: Lippincott Williams & Wilkins; 2004. [ Google Scholar ]
  • Polit DF, Beck CT. International differences in nursing research, 2005–2006. Journal of Nursing Scholarship. 2009; 41 (1):44–53. [ PubMed ] [ Google Scholar ]
  • Polit DF, Beck CT. Nursing research: generating and assessing evidence for nursing practice. 9. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012. [ Google Scholar ]
  • Polit DF, Beck CT. Essentials of Nursing Research: Appraising Evidence for Nursing Practice. 8. Philadelphia, PA: Wolters Kluwer Health; Lippincott Willians & Wilkins; 2014. Supplement for Chapter 14: Qualitative Descriptive Studies. Retrieved from http://downloads.lww.com/wolterskluwer_vitalstream_com/sample-content/9781451176797_Polit/samples/CS_Chapter_14.pdf . [ Google Scholar ]
  • Pope C, Mays N. Qualitative research in health care. 3rd. Victoria, Australia: Blackwell Publishing; 2006. [ Google Scholar ]
  • Pope C, Mays N. Reaching the parts other methods cannot reach: an introduction to qualitative methods in health and health services research. BMJ. 1995; 311 (6996):42–45. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Raphael D, Waterworth S, Gott M. The role of practice nurses in providing palliative and end-of-life care to older patients with long-term conditions. International Journal of Palliative Nursing. 2014; 20 (8):373–379. [ PubMed ] [ Google Scholar ]
  • Saldana J. Longitudinal qualitative research: Analyzing change through time. Walnut Creek, CA: AltaMira Press; 2003. [ Google Scholar ]
  • Sandelowski M. Whatever happened to qualitative description? Research in Nursing & Health. 2000; 23 (4):334–340. [ PubMed ] [ Google Scholar ]
  • Sandelowski M. What's in a name? Qualitative description revisited. Research in Nursing & Health. 2010; 33 (1):77–84. [ PubMed ] [ Google Scholar ]
  • Santos HP, Jr, Sandelowski M, Gualda DM. Bad thoughts: Brazilian women's responses to mothering while experiencing postnatal depression. Midwifery. 2014; 30 (6):788–794. [ PubMed ] [ Google Scholar ]
  • Sharp R, Grech C, Fielder A, Mikocka-Walus A, Cummings M, Esterman A. The patient experience of a peripherally inserted central catheter (PICC): A qualitative descriptive study. Contemporary Nurse. 2014; 48 (1):26–35. [ PubMed ] [ Google Scholar ]
  • Soule I. Cultural competence in health care: an emerging theory. ANS Advances in Nursing Science. 2014; 37 (1):48–60. [ PubMed ] [ Google Scholar ]
  • Stegenga K, Macpherson CF. "I'm a survivor, go study that word and you'll see my name": adolescent and cancer identity work over the first year after diagnosis. Cancer Nursing. 2014; 37 (6):418–428. [ PubMed ] [ Google Scholar ]
  • Streubert HJ, Carpenter DR. Qualitative research in nursing: Advancing the humanistic imperative. 5th. Philadelphia, PA: Lippincott Williams & Wilkins; 2011. [ Google Scholar ]
  • Sturesson A, Ziegert K. Prepare the patient for future challenges when facing hemodialysis: nurses' experiences. International Journal of Qualitative Studies on Health and Well-being. 2014; 9 :22952. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Sullivan-Bolyai S, Bova C, Harper D. Developing and refining interventions in persons with health disparities: the use of qualitative description. Nursing Outlook. 2005; 53 (3):127–133. [ PubMed ] [ Google Scholar ]
  • Sundqvist AS, Carlsson AA. Holding the patient's life in my hands: Swedish registered nurse anaesthetists' perspective of advocacy. Scandinavian Journal of Caring Sciences. 2014; 28 (2):281–288. [ PubMed ] [ Google Scholar ]
  • Thomson Reuters. EndNote X7. 2014 Retrieved from http://endnote.com/product-details/x7 .
  • Thorne S. Data analysis in qualitative research. Evidence Based Nursing. 2000; 3 :68–70. [ Google Scholar ]
  • Thorne S, Reimer Kirkham S, O’Flynn-Magee K. The analytic challenge in interpretive description. International Journal of Qualitative Methods. 2004; 3 (1):1–11. [ Google Scholar ]
  • Tseng YF, Chen CH, Wang HH. Taiwanese women's process of recovery from stillbirth: a qualitative descriptive study. Research in Nursing & Health. 2014; 37 (3):219–228. [ PubMed ] [ Google Scholar ]
  • Vaismoradi M, Jordan S, Turunen H, Bondas T. Nursing students' perspectives of the cause of medication errors. Nurse Education Today. 2014; 34 (3):434–440. [ PubMed ] [ Google Scholar ]
  • Vaismoradi M, Turunen H, Bondas T. Content analysis and thematic analysis: Implications for conducting a qualitative descriptive study. Nursing & Health Sciences. 2013; 15 (3):398–405. [ PubMed ] [ Google Scholar ]
  • Valizadeh L, Zamanzadeh V, Fooladi MM, Azadi A, Negarandeh R, Monadi M. The image of nursing, as perceived by Iranian male nurses. Nursing & Health Sciences. 2014; 16 (3):307–313. [ PubMed ] [ Google Scholar ]
  • Villar F, Celdran M, Faba J, Serrat R. Barriers to sexual expression in residential aged care facilities (RACFs): comparison of staff and residents' views. Journal of Advanced Nursing. 2014; 70 (11):2518–2527. [ PubMed ] [ Google Scholar ]
  • Wiens S, Babenko-Mould Y, Iwasiw C. Clinical instructors' perceptions of structural and psychological empowerment in academic nursing environments. Journal of Nursing Education. 2014; 53 (5):265–270. [ PubMed ] [ Google Scholar ]
  • Willis DG, Sullivan-Bolyai S, Knafl K, Zichi-Cohen M. Distinguishing Features and Similarities Between Descriptive Phenomenological and Qualitative Description Research. West J Nurs Res. 2016 [ PubMed ] [ Google Scholar ]
  • Wu YP, Thompson D, Aroian KJ, McQuaid EL, Deatrick JA. Commentary: Writing and Evaluating Qualitative Research Reports. J Pediatr Psychol. 2016; 41 (5):493–505. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Zhang H, Shan W, Jiang A. The meaning of life and health experience for the Chinese elderly with chronic illness: a qualitative study from positive health philosophy. International Journal of Nursing Practice. 2014; 20 (5):530–539. [ PubMed ] [ Google Scholar ]

IMAGES

  1. Introduction to Psychology: Descriptive Research: Case Studies

    descriptive research in case study

  2. Descriptive Research Design Definition

    descriptive research in case study

  3. 18 Descriptive Research Examples (2024)

    descriptive research in case study

  4. What is Descriptive Research? Examples & Detailed Case Study

    descriptive research in case study

  5. What is Descriptive Research? Examples & Detailed Case Study

    descriptive research in case study

  6. PPT

    descriptive research in case study

VIDEO

  1. II.2 Research 101 (11) Qualitative/Descriptive Research

  2. Business Research Case Study Roleplay

  3. Research Methods Descriptive (Case Studies, Surveys, Naturalistic Observation)

  4. Descriptive Research and Application of Descriptive Research (Ex Post Facto Research)

  5. Descriptive Study designs: Case report, case series, Ecological and cross-sectional study designs

  6. Lecture 43: Quantitative Research

COMMENTS

  1. Descriptive Research | Definition, Types, Methods & Examples

    Descriptive research aims to accurately and systematically describe a population, situation or phenomenon. It can answer what, where, when and how questions, but not why questions. A descriptive research design can use a wide variety of research methods to investigate one or more variables.

  2. 18 Descriptive Research Examples - Helpful Professor

    Case Study: For example, an in-depth description of a specific person or group of people to gain in-depth qualitative information that can describe a phenomenon but cannot be generalized to other cases. Observational Method: For example, a researcher taking field notes in an ethnographic study.

  3. Study designs: Part 2 – Descriptive studies - PMC

    Descriptive studies can be of several types, namely, case reports, case series, cross-sectional studies, and ecological studies. In the first three of these, data are collected on individuals, whereas the last one uses aggregated data for groups.

  4. The 3 Descriptive Research Methods of Psychology - Psych Central

    Descriptive research is often the first step in forming a hypothesis or answering a question. Each method of descriptive research has risks and benefits, including the possibility of bias,...

  5. Descriptive Research Design - Types, Methods and Examples

    Descriptive research design is a type of research methodology that aims to describe or document the characteristics, behaviors, attitudes, opinions, or perceptions of a group or population being studied.

  6. Comparing the Five Approaches - SAGE Publications Inc

    A theory, often portrayed in a visual model, emerges in grounded theory, and a holistic view of how a culture-sharing group works results in an ethnography. An in-depth study of a bounded system or a case (or several cases) becomes a case study.

  7. Descriptive Research 101: Definition, Methods and Examples

    Definition: As its name says, descriptive research describes the characteristics of the problem, phenomenon, situation, or group under study. So the goal of all descriptive studies is to explore the background, details, and existing patterns in the problem to fully understand it. In other words, preliminary research.

  8. Descriptive Research: Design, Methods, Examples, and FAQs

    As the name suggests, descriptive research describes the characteristics of the group, situation, or phenomenon being studied without manipulating variables or testing hypotheses. This can be reported using surveys, observational studies, and case studies.

  9. Descriptive Research Design | Definition, Methods & Examples

    Revised on 10 October 2022. Descriptive research aims to accurately and systematically describe a population, situation or phenomenon. It can answer what, where, when, and how questions, but not why questions. A descriptive research design can use a wide variety of research methods to investigate one or more variables.

  10. Characteristics of Qualitative Descriptive Studies: A ...

    The research used a qualitative descriptive design with grounded theory overtones (Sandelowski, 2000). We sought to provide a comprehensive summary of participants’ views through theoretical sampling; multiple data sources (focus groups [FGs] and interviews); inductive, cyclic, and constant comparative analysis; and condensation of data into ...