• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

definition of a research study

Home Market Research

What is Research: Definition, Methods, Types & Examples

What is Research

The search for knowledge is closely linked to the object of study; that is, to the reconstruction of the facts that will provide an explanation to an observed event and that at first sight can be considered as a problem. It is very human to seek answers and satisfy our curiosity. Let’s talk about research.

Content Index

What is Research?

What are the characteristics of research.

  • Comparative analysis chart

Qualitative methods

Quantitative methods, 8 tips for conducting accurate research.

Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, “research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.”

Inductive methods analyze an observed event, while deductive methods verify the observed event. Inductive approaches are associated with qualitative research , and deductive methods are more commonly associated with quantitative analysis .

Research is conducted with a purpose to:

  • Identify potential and new customers
  • Understand existing customers
  • Set pragmatic goals
  • Develop productive market strategies
  • Address business challenges
  • Put together a business expansion plan
  • Identify new business opportunities
  • Good research follows a systematic approach to capture accurate data. Researchers need to practice ethics and a code of conduct while making observations or drawing conclusions.
  • The analysis is based on logical reasoning and involves both inductive and deductive methods.
  • Real-time data and knowledge is derived from actual observations in natural settings.
  • There is an in-depth analysis of all data collected so that there are no anomalies associated with it.
  • It creates a path for generating new questions. Existing data helps create more research opportunities.
  • It is analytical and uses all the available data so that there is no ambiguity in inference.
  • Accuracy is one of the most critical aspects of research. The information must be accurate and correct. For example, laboratories provide a controlled environment to collect data. Accuracy is measured in the instruments used, the calibrations of instruments or tools, and the experiment’s final result.

What is the purpose of research?

There are three main purposes:

  • Exploratory: As the name suggests, researchers conduct exploratory studies to explore a group of questions. The answers and analytics may not offer a conclusion to the perceived problem. It is undertaken to handle new problem areas that haven’t been explored before. This exploratory data analysis process lays the foundation for more conclusive data collection and analysis.

LEARN ABOUT: Descriptive Analysis

  • Descriptive: It focuses on expanding knowledge on current issues through a process of data collection. Descriptive research describe the behavior of a sample population. Only one variable is required to conduct the study. The three primary purposes of descriptive studies are describing, explaining, and validating the findings. For example, a study conducted to know if top-level management leaders in the 21st century possess the moral right to receive a considerable sum of money from the company profit.

LEARN ABOUT: Best Data Collection Tools

  • Explanatory: Causal research or explanatory research is conducted to understand the impact of specific changes in existing standard procedures. Running experiments is the most popular form. For example, a study that is conducted to understand the effect of rebranding on customer loyalty.

Here is a comparative analysis chart for a better understanding:

 
Approach used Unstructured Structured Highly structured
Conducted throughAsking questions Asking questions By using hypotheses.
TimeEarly stages of decision making Later stages of decision makingLater stages of decision making

It begins by asking the right questions and choosing an appropriate method to investigate the problem. After collecting answers to your questions, you can analyze the findings or observations to draw reasonable conclusions.

When it comes to customers and market studies, the more thorough your questions, the better the analysis. You get essential insights into brand perception and product needs by thoroughly collecting customer data through surveys and questionnaires . You can use this data to make smart decisions about your marketing strategies to position your business effectively.

To make sense of your study and get insights faster, it helps to use a research repository as a single source of truth in your organization and manage your research data in one centralized data repository .

Types of research methods and Examples

what is research

Research methods are broadly classified as Qualitative and Quantitative .

Both methods have distinctive properties and data collection methods .

Qualitative research is a method that collects data using conversational methods, usually open-ended questions . The responses collected are essentially non-numerical. This method helps a researcher understand what participants think and why they think in a particular way.

Types of qualitative methods include:

  • One-to-one Interview
  • Focus Groups
  • Ethnographic studies
  • Text Analysis

Quantitative methods deal with numbers and measurable forms . It uses a systematic way of investigating events or data. It answers questions to justify relationships with measurable variables to either explain, predict, or control a phenomenon.

Types of quantitative methods include:

  • Survey research
  • Descriptive research
  • Correlational research

LEARN MORE: Descriptive Research vs Correlational Research

Remember, it is only valuable and useful when it is valid, accurate, and reliable. Incorrect results can lead to customer churn and a decrease in sales.

It is essential to ensure that your data is:

  • Valid – founded, logical, rigorous, and impartial.
  • Accurate – free of errors and including required details.
  • Reliable – other people who investigate in the same way can produce similar results.
  • Timely – current and collected within an appropriate time frame.
  • Complete – includes all the data you need to support your business decisions.

Gather insights

What is a research - tips

  • Identify the main trends and issues, opportunities, and problems you observe. Write a sentence describing each one.
  • Keep track of the frequency with which each of the main findings appears.
  • Make a list of your findings from the most common to the least common.
  • Evaluate a list of the strengths, weaknesses, opportunities, and threats identified in a SWOT analysis .
  • Prepare conclusions and recommendations about your study.
  • Act on your strategies
  • Look for gaps in the information, and consider doing additional inquiry if necessary
  • Plan to review the results and consider efficient methods to analyze and interpret results.

Review your goals before making any conclusions about your study. Remember how the process you have completed and the data you have gathered help answer your questions. Ask yourself if what your analysis revealed facilitates the identification of your conclusions and recommendations.

LEARN MORE ABOUT OUR SOFTWARE         FREE TRIAL

MORE LIKE THIS

data discovery

Data Discovery: What it is, Importance, Process + Use Cases

Sep 16, 2024

competitive insights

Competitive Insights : Importance, How to Get + Usage

Sep 13, 2024

Participant Engagement

Participant Engagement: Strategies + Improving Interaction

Sep 12, 2024

Employee Recognition Programs

Employee Recognition Programs: A Complete Guide

Sep 11, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

definition of a research study

Research Design 101

By: Derek Jansen (MBA) | Reviewers: Eunice Rautenbach (DTech) & Kerryn Warren (PhD) | April 2023

Dissertation Coaching

Overview: Research Design 101

What is research design.

  • Research design types for quantitative studies
  • Video explainer : quantitative research design
  • Research design types for qualitative studies
  • Video explainer : qualitative research design
  • How to choose a research design
  • Key takeaways

Research design refers to the overall plan, structure or strategy that guides a research project , from its conception to the final data analysis. A good research design serves as the blueprint for how you, as the researcher, will collect and analyse data while ensuring consistency, reliability and validity throughout your study.

Understanding different types of research designs is essential as helps ensure that your approach is suitable  given your research aims, objectives and questions , as well as the resources you have available to you. Without a clear big-picture view of how you’ll design your research, you run the risk of potentially making misaligned choices in terms of your methodology – especially your sampling , data collection and data analysis decisions.

The problem with defining research design…

One of the reasons students struggle with a clear definition of research design is because the term is used very loosely across the internet, and even within academia.

Some sources claim that the three research design types are qualitative, quantitative and mixed methods , which isn’t quite accurate (these just refer to the type of data that you’ll collect and analyse). Other sources state that research design refers to the sum of all your design choices, suggesting it’s more like a research methodology . Others run off on other less common tangents. No wonder there’s confusion!

In this article, we’ll clear up the confusion. We’ll explain the most common research design types for both qualitative and quantitative research projects, whether that is for a full dissertation or thesis, or a smaller research paper or article.

Research methodology webinar

Research Design: Quantitative Studies

Quantitative research involves collecting and analysing data in a numerical form. Broadly speaking, there are four types of quantitative research designs: descriptive , correlational , experimental , and quasi-experimental .

As the name suggests, descriptive research design focuses on describing existing conditions, behaviours, or characteristics by systematically gathering information without manipulating any variables. In other words, there is no intervention on the researcher’s part – only data collection.

For example, if you’re studying smartphone addiction among adolescents in your community, you could deploy a survey to a sample of teens asking them to rate their agreement with certain statements that relate to smartphone addiction. The collected data would then provide insight regarding how widespread the issue may be – in other words, it would describe the situation.

The key defining attribute of this type of research design is that it purely describes the situation . In other words, descriptive research design does not explore potential relationships between different variables or the causes that may underlie those relationships. Therefore, descriptive research is useful for generating insight into a research problem by describing its characteristics . By doing so, it can provide valuable insights and is often used as a precursor to other research design types.

Correlational Research Design

Correlational design is a popular choice for researchers aiming to identify and measure the relationship between two or more variables without manipulating them . In other words, this type of research design is useful when you want to know whether a change in one thing tends to be accompanied by a change in another thing.

For example, if you wanted to explore the relationship between exercise frequency and overall health, you could use a correlational design to help you achieve this. In this case, you might gather data on participants’ exercise habits, as well as records of their health indicators like blood pressure, heart rate, or body mass index. Thereafter, you’d use a statistical test to assess whether there’s a relationship between the two variables (exercise frequency and health).

As you can see, correlational research design is useful when you want to explore potential relationships between variables that cannot be manipulated or controlled for ethical, practical, or logistical reasons. It is particularly helpful in terms of developing predictions , and given that it doesn’t involve the manipulation of variables, it can be implemented at a large scale more easily than experimental designs (which will look at next).

Need a helping hand?

definition of a research study

Experimental research design is used to determine if there is a causal relationship between two or more variables . With this type of research design, you, as the researcher, manipulate one variable (the independent variable) while controlling others (dependent variables). Doing so allows you to observe the effect of the former on the latter and draw conclusions about potential causality.

For example, if you wanted to measure if/how different types of fertiliser affect plant growth, you could set up several groups of plants, with each group receiving a different type of fertiliser, as well as one with no fertiliser at all. You could then measure how much each plant group grew (on average) over time and compare the results from the different groups to see which fertiliser was most effective.

Overall, experimental research design provides researchers with a powerful way to identify and measure causal relationships (and the direction of causality) between variables. However, developing a rigorous experimental design can be challenging as it’s not always easy to control all the variables in a study. This often results in smaller sample sizes , which can reduce the statistical power and generalisability of the results.

Moreover, experimental research design requires random assignment . This means that the researcher needs to assign participants to different groups or conditions in a way that each participant has an equal chance of being assigned to any group (note that this is not the same as random sampling ). Doing so helps reduce the potential for bias and confounding variables . This need for random assignment can lead to ethics-related issues . For example, withholding a potentially beneficial medical treatment from a control group may be considered unethical in certain situations.

Quasi-Experimental Research Design

Quasi-experimental research design is used when the research aims involve identifying causal relations , but one cannot (or doesn’t want to) randomly assign participants to different groups (for practical or ethical reasons). Instead, with a quasi-experimental research design, the researcher relies on existing groups or pre-existing conditions to form groups for comparison.

For example, if you were studying the effects of a new teaching method on student achievement in a particular school district, you may be unable to randomly assign students to either group and instead have to choose classes or schools that already use different teaching methods. This way, you still achieve separate groups, without having to assign participants to specific groups yourself.

Naturally, quasi-experimental research designs have limitations when compared to experimental designs. Given that participant assignment is not random, it’s more difficult to confidently establish causality between variables, and, as a researcher, you have less control over other variables that may impact findings.

The four most common quantitative research design types are descriptive, correlational, experimental and quasi-experimental.

Research Design: Qualitative Studies

There are many different research design types when it comes to qualitative studies, but here we’ll narrow our focus to explore the “Big 4”. Specifically, we’ll look at phenomenological design, grounded theory design, ethnographic design, and case study design.

Phenomenological design involves exploring the meaning of lived experiences and how they are perceived by individuals. This type of research design seeks to understand people’s perspectives , emotions, and behaviours in specific situations. Here, the aim for researchers is to uncover the essence of human experience without making any assumptions or imposing preconceived ideas on their subjects.

For example, you could adopt a phenomenological design to study why cancer survivors have such varied perceptions of their lives after overcoming their disease. This could be achieved by interviewing survivors and then analysing the data using a qualitative analysis method such as thematic analysis to identify commonalities and differences.

Phenomenological research design typically involves in-depth interviews or open-ended questionnaires to collect rich, detailed data about participants’ subjective experiences. This richness is one of the key strengths of phenomenological research design but, naturally, it also has limitations. These include potential biases in data collection and interpretation and the lack of generalisability of findings to broader populations.

Grounded Theory Research Design

Grounded theory (also referred to as “GT”) aims to develop theories by continuously and iteratively analysing and comparing data collected from a relatively large number of participants in a study. It takes an inductive (bottom-up) approach, with a focus on letting the data “speak for itself”, without being influenced by preexisting theories or the researcher’s preconceptions.

As an example, let’s assume your research aims involved understanding how people cope with chronic pain from a specific medical condition, with a view to developing a theory around this. In this case, grounded theory design would allow you to explore this concept thoroughly without preconceptions about what coping mechanisms might exist. You may find that some patients prefer cognitive-behavioural therapy (CBT) while others prefer to rely on herbal remedies. Based on multiple, iterative rounds of analysis, you could then develop a theory in this regard, derived directly from the data (as opposed to other preexisting theories and models).

Grounded theory typically involves collecting data through interviews or observations and then analysing it to identify patterns and themes that emerge from the data. These emerging ideas are then validated by collecting more data until a saturation point is reached (i.e., no new information can be squeezed from the data). From that base, a theory can then be developed .

Private Coaching

Ethnographic design involves observing and studying a culture-sharing group of people in their natural setting to gain insight into their behaviours, beliefs, and values. The focus here is on observing participants in their natural environment (as opposed to a controlled environment). This typically involves the researcher spending an extended period of time with the participants in their environment, carefully observing and taking field notes .

All of this is not to say that ethnographic research design relies purely on observation. On the contrary, this design typically also involves in-depth interviews to explore participants’ views, beliefs, etc. However, unobtrusive observation is a core component of the ethnographic approach.

As an example, an ethnographer may study how different communities celebrate traditional festivals or how individuals from different generations interact with technology differently. This may involve a lengthy period of observation, combined with in-depth interviews to further explore specific areas of interest that emerge as a result of the observations that the researcher has made.

As you can probably imagine, ethnographic research design has the ability to provide rich, contextually embedded insights into the socio-cultural dynamics of human behaviour within a natural, uncontrived setting. Naturally, however, it does come with its own set of challenges, including researcher bias (since the researcher can become quite immersed in the group), participant confidentiality and, predictably, ethical complexities . All of these need to be carefully managed if you choose to adopt this type of research design.

Case Study Design

With case study research design, you, as the researcher, investigate a single individual (or a single group of individuals) to gain an in-depth understanding of their experiences, behaviours or outcomes. Unlike other research designs that are aimed at larger sample sizes, case studies offer a deep dive into the specific circumstances surrounding a person, group of people, event or phenomenon, generally within a bounded setting or context .

As an example, a case study design could be used to explore the factors influencing the success of a specific small business. This would involve diving deeply into the organisation to explore and understand what makes it tick – from marketing to HR to finance. In terms of data collection, this could include interviews with staff and management, review of policy documents and financial statements, surveying customers, etc.

While the above example is focused squarely on one organisation, it’s worth noting that case study research designs can have different variation s, including single-case, multiple-case and longitudinal designs. As you can see in the example, a single-case design involves intensely examining a single entity to understand its unique characteristics and complexities. Conversely, in a multiple-case design , multiple cases are compared and contrasted to identify patterns and commonalities. Lastly, in a longitudinal case design , a single case or multiple cases are studied over an extended period of time to understand how factors develop over time.

Case study design often involves investigating an individual to gain an in-depth understanding of their experiences, behaviours or outcomes.

How To Choose A Research Design

Having worked through all of these potential research designs, you’d be forgiven for feeling a little overwhelmed and wondering, “ But how do I decide which research design to use? ”. While we could write an entire post covering that alone, here are a few factors to consider that will help you choose a suitable research design for your study.

Data type: The first determining factor is naturally the type of data you plan to be collecting – i.e., qualitative or quantitative. This may sound obvious, but we have to be clear about this – don’t try to use a quantitative research design on qualitative data (or vice versa)!

Research aim(s) and question(s): As with all methodological decisions, your research aim and research questions will heavily influence your research design. For example, if your research aims involve developing a theory from qualitative data, grounded theory would be a strong option. Similarly, if your research aims involve identifying and measuring relationships between variables, one of the experimental designs would likely be a better option.

Time: It’s essential that you consider any time constraints you have, as this will impact the type of research design you can choose. For example, if you’ve only got a month to complete your project, a lengthy design such as ethnography wouldn’t be a good fit.

Resources: Take into account the resources realistically available to you, as these need to factor into your research design choice. For example, if you require highly specialised lab equipment to execute an experimental design, you need to be sure that you’ll have access to that before you make a decision.

Keep in mind that when it comes to research, it’s important to manage your risks and play as conservatively as possible. If your entire project relies on you achieving a huge sample, having access to niche equipment or holding interviews with very difficult-to-reach participants, you’re creating risks that could kill your project. So, be sure to think through your choices carefully and make sure that you have backup plans for any existential risks. Remember that a relatively simple methodology executed well generally will typically earn better marks than a highly-complex methodology executed poorly.

definition of a research study

Recap: Key Takeaways

We’ve covered a lot of ground here. Let’s recap by looking at the key takeaways:

  • Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data.
  • Research designs for quantitative studies include descriptive , correlational , experimental and quasi-experimenta l designs.
  • Research designs for qualitative studies include phenomenological , grounded theory , ethnographic and case study designs.
  • When choosing a research design, you need to consider a variety of factors, including the type of data you’ll be working with, your research aims and questions, your time and the resources available to you.

If you need a helping hand with your research design (or any other aspect of your research), check out our private coaching services .

Research Bootcamps

Learn More About Quantitative:

Triangulation: The Ultimate Credibility Enhancer

Triangulation: The Ultimate Credibility Enhancer

Triangulation is one of the best ways to enhance the credibility of your research. Learn about the different options here.

Inferential Statistics 101: Simple Explainer (With Examples)

Inferential Statistics 101: Simple Explainer (With Examples)

Quant Analysis 101: Inferential Statistics Everything You Need To Get Started (With...

Descriptive Statistics 101: Simple Explainer (With Examples)

Descriptive Statistics 101: Simple Explainer (With Examples)

Quant Analysis 101: Descriptive Statistics Everything You Need To Get Started (With...

Validity & Reliability: Explained Simply

Validity & Reliability: Explained Simply

Validity & Reliability In Research A Plain-Language Explanation (With Examples)By:...

How To Write The Results/Findings Chapter (Quantitative)

How To Write The Results/Findings Chapter (Quantitative)

How To Write The Results/Findings Chapter For Quantitative Studies (Dissertations &...

📄 FREE TEMPLATES

Research Topic Ideation

Proposal Writing

Literature Review

Methodology & Analysis

Academic Writing

Referencing & Citing

Apps, Tools & Tricks

The Grad Coach Podcast

15 Comments

Wei Leong YONG

Is there any blog article explaining more on Case study research design? Is there a Case study write-up template? Thank you.

Solly Khan

Thanks this was quite valuable to clarify such an important concept.

hetty

Thanks for this simplified explanations. it is quite very helpful.

Belz

This was really helpful. thanks

Imur

Thank you for your explanation. I think case study research design and the use of secondary data in researches needs to be talked about more in your videos and articles because there a lot of case studies research design tailored projects out there.

Please is there any template for a case study research design whose data type is a secondary data on your repository?

Sam Msongole

This post is very clear, comprehensive and has been very helpful to me. It has cleared the confusion I had in regard to research design and methodology.

Robyn Pritchard

This post is helpful, easy to understand, and deconstructs what a research design is. Thanks

Rachael Opoku

This post is really helpful.

kelebogile

how to cite this page

Peter

Thank you very much for the post. It is wonderful and has cleared many worries in my mind regarding research designs. I really appreciate .

ali

how can I put this blog as my reference(APA style) in bibliography part?

Joreme

This post has been very useful to me. Confusing areas have been cleared

Esther Mwamba

This is very helpful and very useful!

Lilo_22

Wow! This post has an awful explanation. Appreciated.

Florence

Thanks This has been helpful

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Submit Comment

definition of a research study

  • Print Friendly
  • Privacy Policy

Research Method

Home » Research – Types, Methods and Examples

Research – Types, Methods and Examples

Table of Contents

What is Research

Definition:

Research refers to the process of investigating a particular topic or question in order to discover new information , develop new insights, or confirm or refute existing knowledge. It involves a systematic and rigorous approach to collecting, analyzing, and interpreting data, and requires careful planning and attention to detail.

History of Research

The history of research can be traced back to ancient times when early humans observed and experimented with the natural world around them. Over time, research evolved and became more systematic as people sought to better understand the world and solve problems.

In ancient civilizations such as those in Greece, Egypt, and China, scholars pursued knowledge through observation, experimentation, and the development of theories. They explored various fields, including medicine, astronomy, and mathematics.

During the Middle Ages, research was often conducted by religious scholars who sought to reconcile scientific discoveries with their faith. The Renaissance brought about a renewed interest in science and the scientific method, and the Enlightenment period marked a major shift towards empirical observation and experimentation as the primary means of acquiring knowledge.

The 19th and 20th centuries saw significant advancements in research, with the development of new scientific disciplines and fields such as psychology, sociology, and computer science. Advances in technology and communication also greatly facilitated research efforts.

Today, research is conducted in a wide range of fields and is a critical component of many industries, including healthcare, technology, and academia. The process of research continues to evolve as new methods and technologies emerge, but the fundamental principles of observation, experimentation, and hypothesis testing remain at its core.

Types of Research

Types of Research are as follows:

  • Applied Research : This type of research aims to solve practical problems or answer specific questions, often in a real-world context.
  • Basic Research : This type of research aims to increase our understanding of a phenomenon or process, often without immediate practical applications.
  • Experimental Research : This type of research involves manipulating one or more variables to determine their effects on another variable, while controlling all other variables.
  • Descriptive Research : This type of research aims to describe and measure phenomena or characteristics, without attempting to manipulate or control any variables.
  • Correlational Research: This type of research examines the relationships between two or more variables, without manipulating any variables.
  • Qualitative Research : This type of research focuses on exploring and understanding the meaning and experience of individuals or groups, often through methods such as interviews, focus groups, and observation.
  • Quantitative Research : This type of research uses numerical data and statistical analysis to draw conclusions about phenomena or populations.
  • Action Research: This type of research is often used in education, healthcare, and other fields, and involves collaborating with practitioners or participants to identify and solve problems in real-world settings.
  • Mixed Methods Research : This type of research combines both quantitative and qualitative research methods to gain a more comprehensive understanding of a phenomenon or problem.
  • Case Study Research: This type of research involves in-depth examination of a specific individual, group, or situation, often using multiple data sources.
  • Longitudinal Research: This type of research follows a group of individuals over an extended period of time, often to study changes in behavior, attitudes, or health outcomes.
  • Cross-Sectional Research : This type of research examines a population at a single point in time, often to study differences or similarities among individuals or groups.
  • Survey Research: This type of research uses questionnaires or interviews to gather information from a sample of individuals about their attitudes, beliefs, behaviors, or experiences.
  • Ethnographic Research : This type of research involves immersion in a cultural group or community to understand their way of life, beliefs, values, and practices.
  • Historical Research : This type of research investigates events or phenomena from the past using primary sources, such as archival records, newspapers, and diaries.
  • Content Analysis Research : This type of research involves analyzing written, spoken, or visual material to identify patterns, themes, or messages.
  • Participatory Research : This type of research involves collaboration between researchers and participants throughout the research process, often to promote empowerment, social justice, or community development.
  • Comparative Research: This type of research compares two or more groups or phenomena to identify similarities and differences, often across different countries or cultures.
  • Exploratory Research : This type of research is used to gain a preliminary understanding of a topic or phenomenon, often in the absence of prior research or theories.
  • Explanatory Research: This type of research aims to identify the causes or reasons behind a particular phenomenon, often through the testing of theories or hypotheses.
  • Evaluative Research: This type of research assesses the effectiveness or impact of an intervention, program, or policy, often through the use of outcome measures.
  • Simulation Research : This type of research involves creating a model or simulation of a phenomenon or process, often to predict outcomes or test theories.

Data Collection Methods

  • Surveys : Surveys are used to collect data from a sample of individuals using questionnaires or interviews. Surveys can be conducted face-to-face, by phone, mail, email, or online.
  • Experiments : Experiments involve manipulating one or more variables to measure their effects on another variable, while controlling for other factors. Experiments can be conducted in a laboratory or in a natural setting.
  • Case studies : Case studies involve in-depth analysis of a single case, such as an individual, group, organization, or event. Case studies can use a variety of data collection methods, including interviews, observation, and document analysis.
  • Observational research : Observational research involves observing and recording the behavior of individuals or groups in a natural setting. Observational research can be conducted covertly or overtly.
  • Content analysis : Content analysis involves analyzing written, spoken, or visual material to identify patterns, themes, or messages. Content analysis can be used to study media, social media, or other forms of communication.
  • Ethnography : Ethnography involves immersion in a cultural group or community to understand their way of life, beliefs, values, and practices. Ethnographic research can use a range of data collection methods, including observation, interviews, and document analysis.
  • Secondary data analysis : Secondary data analysis involves using existing data from sources such as government agencies, research institutions, or commercial organizations. Secondary data can be used to answer research questions, without collecting new data.
  • Focus groups: Focus groups involve gathering a small group of people together to discuss a topic or issue. The discussions are usually guided by a moderator who asks questions and encourages discussion.
  • Interviews : Interviews involve one-on-one conversations between a researcher and a participant. Interviews can be structured, semi-structured, or unstructured, and can be conducted in person, by phone, or online.
  • Document analysis : Document analysis involves collecting and analyzing written documents, such as reports, memos, and emails. Document analysis can be used to study organizational communication, policy documents, and other forms of written material.

Data Analysis Methods

Data Analysis Methods in Research are as follows:

  • Descriptive statistics : Descriptive statistics involve summarizing and describing the characteristics of a dataset, such as mean, median, mode, standard deviation, and frequency distributions.
  • Inferential statistics: Inferential statistics involve making inferences or predictions about a population based on a sample of data, using methods such as hypothesis testing, confidence intervals, and regression analysis.
  • Qualitative analysis: Qualitative analysis involves analyzing non-numerical data, such as text, images, or audio, to identify patterns, themes, or meanings. Qualitative analysis can be used to study subjective experiences, social norms, and cultural practices.
  • Content analysis: Content analysis involves analyzing written, spoken, or visual material to identify patterns, themes, or messages. Content analysis can be used to study media, social media, or other forms of communication.
  • Grounded theory: Grounded theory involves developing a theory or model based on empirical data, using methods such as constant comparison, memo writing, and theoretical sampling.
  • Discourse analysis : Discourse analysis involves analyzing language use, including the structure, function, and meaning of words and phrases, to understand how language reflects and shapes social relationships and power dynamics.
  • Network analysis: Network analysis involves analyzing the structure and dynamics of social networks, including the relationships between individuals and groups, to understand social processes and outcomes.

Research Methodology

Research methodology refers to the overall approach and strategy used to conduct a research study. It involves the systematic planning, design, and execution of research to answer specific research questions or test hypotheses. The main components of research methodology include:

  • Research design : Research design refers to the overall plan and structure of the study, including the type of study (e.g., observational, experimental), the sampling strategy, and the data collection and analysis methods.
  • Sampling strategy: Sampling strategy refers to the method used to select a representative sample of participants or units from the population of interest. The choice of sampling strategy will depend on the research question and the nature of the population being studied.
  • Data collection methods : Data collection methods refer to the techniques used to collect data from study participants or sources, such as surveys, interviews, observations, or secondary data sources.
  • Data analysis methods: Data analysis methods refer to the techniques used to analyze and interpret the data collected in the study, such as descriptive statistics, inferential statistics, qualitative analysis, or content analysis.
  • Ethical considerations: Ethical considerations refer to the principles and guidelines that govern the treatment of human participants or the use of sensitive data in the research study.
  • Validity and reliability : Validity and reliability refer to the extent to which the study measures what it is intended to measure and the degree to which the study produces consistent and accurate results.

Applications of Research

Research has a wide range of applications across various fields and industries. Some of the key applications of research include:

  • Advancing scientific knowledge : Research plays a critical role in advancing our understanding of the world around us. Through research, scientists are able to discover new knowledge, uncover patterns and relationships, and develop new theories and models.
  • Improving healthcare: Research is instrumental in advancing medical knowledge and developing new treatments and therapies. Clinical trials and studies help to identify the effectiveness and safety of new drugs and medical devices, while basic research helps to uncover the underlying causes of diseases and conditions.
  • Enhancing education: Research helps to improve the quality of education by identifying effective teaching methods, developing new educational tools and technologies, and assessing the impact of various educational interventions.
  • Driving innovation: Research is a key driver of innovation, helping to develop new products, services, and technologies. By conducting research, businesses and organizations can identify new market opportunities, gain a competitive advantage, and improve their operations.
  • Informing public policy : Research plays an important role in informing public policy decisions. Policy makers rely on research to develop evidence-based policies that address societal challenges, such as healthcare, education, and environmental issues.
  • Understanding human behavior : Research helps us to better understand human behavior, including social, cognitive, and emotional processes. This understanding can be applied in a variety of settings, such as marketing, organizational management, and public policy.

Importance of Research

Research plays a crucial role in advancing human knowledge and understanding in various fields of study. It is the foundation upon which new discoveries, innovations, and technologies are built. Here are some of the key reasons why research is essential:

  • Advancing knowledge: Research helps to expand our understanding of the world around us, including the natural world, social structures, and human behavior.
  • Problem-solving: Research can help to identify problems, develop solutions, and assess the effectiveness of interventions in various fields, including medicine, engineering, and social sciences.
  • Innovation : Research is the driving force behind the development of new technologies, products, and processes. It helps to identify new possibilities and opportunities for improvement.
  • Evidence-based decision making: Research provides the evidence needed to make informed decisions in various fields, including policy making, business, and healthcare.
  • Education and training : Research provides the foundation for education and training in various fields, helping to prepare individuals for careers and advancing their knowledge.
  • Economic growth: Research can drive economic growth by facilitating the development of new technologies and innovations, creating new markets and job opportunities.

When to use Research

Research is typically used when seeking to answer questions or solve problems that require a systematic approach to gathering and analyzing information. Here are some examples of when research may be appropriate:

  • To explore a new area of knowledge : Research can be used to investigate a new area of knowledge and gain a better understanding of a topic.
  • To identify problems and find solutions: Research can be used to identify problems and develop solutions to address them.
  • To evaluate the effectiveness of programs or interventions : Research can be used to evaluate the effectiveness of programs or interventions in various fields, such as healthcare, education, and social services.
  • To inform policy decisions: Research can be used to provide evidence to inform policy decisions in areas such as economics, politics, and environmental issues.
  • To develop new products or technologies : Research can be used to develop new products or technologies and improve existing ones.
  • To understand human behavior : Research can be used to better understand human behavior and social structures, such as in psychology, sociology, and anthropology.

Characteristics of Research

The following are some of the characteristics of research:

  • Purpose : Research is conducted to address a specific problem or question and to generate new knowledge or insights.
  • Systematic : Research is conducted in a systematic and organized manner, following a set of procedures and guidelines.
  • Empirical : Research is based on evidence and data, rather than personal opinion or intuition.
  • Objective: Research is conducted with an objective and impartial perspective, avoiding biases and personal beliefs.
  • Rigorous : Research involves a rigorous and critical examination of the evidence and data, using reliable and valid methods of data collection and analysis.
  • Logical : Research is based on logical and rational thinking, following a well-defined and logical structure.
  • Generalizable : Research findings are often generalized to broader populations or contexts, based on a representative sample of the population.
  • Replicable : Research is conducted in a way that allows others to replicate the study and obtain similar results.
  • Ethical : Research is conducted in an ethical manner, following established ethical guidelines and principles, to ensure the protection of participants’ rights and well-being.
  • Cumulative : Research builds on previous studies and contributes to the overall body of knowledge in a particular field.

Advantages of Research

Research has several advantages, including:

  • Generates new knowledge: Research is conducted to generate new knowledge and understanding of a particular topic or phenomenon, which can be used to inform policy, practice, and decision-making.
  • Provides evidence-based solutions : Research provides evidence-based solutions to problems and issues, which can be used to develop effective interventions and strategies.
  • Improves quality : Research can improve the quality of products, services, and programs by identifying areas for improvement and developing solutions to address them.
  • Enhances credibility : Research enhances the credibility of an organization or individual by providing evidence to support claims and assertions.
  • Enables innovation: Research can lead to innovation by identifying new ideas, approaches, and technologies.
  • Informs decision-making : Research provides information that can inform decision-making, helping individuals and organizations make more informed and effective choices.
  • Facilitates progress: Research can facilitate progress by identifying challenges and opportunities and developing solutions to address them.
  • Enhances understanding: Research can enhance understanding of complex issues and phenomena, helping individuals and organizations navigate challenges and opportunities more effectively.
  • Promotes accountability : Research promotes accountability by providing a basis for evaluating the effectiveness of policies, programs, and interventions.
  • Fosters collaboration: Research can foster collaboration by bringing together individuals and organizations with diverse perspectives and expertise to address complex issues and problems.

Limitations of Research

Some Limitations of Research are as follows:

  • Cost : Research can be expensive, particularly when large-scale studies are required. This can limit the number of studies that can be conducted and the amount of data that can be collected.
  • Time : Research can be time-consuming, particularly when longitudinal studies are required. This can limit the speed at which research findings can be generated and disseminated.
  • Sample size: The size of the sample used in research can limit the generalizability of the findings to larger populations.
  • Bias : Research can be affected by bias, both in the design and implementation of the study, as well as in the analysis and interpretation of the data.
  • Ethics : Research can present ethical challenges, particularly when human or animal subjects are involved. This can limit the types of research that can be conducted and the methods that can be used.
  • Data quality: The quality of the data collected in research can be affected by a range of factors, including the reliability and validity of the measures used, as well as the accuracy of the data entry and analysis.
  • Subjectivity : Research can be subjective, particularly when qualitative methods are used. This can limit the objectivity and reliability of the findings.
  • Accessibility : Research findings may not be accessible to all stakeholders, particularly those who are not part of the academic or research community.
  • Interpretation : Research findings can be open to interpretation, particularly when the data is complex or contradictory. This can limit the ability of researchers to draw firm conclusions.
  • Unforeseen events : Unexpected events, such as changes in the environment or the emergence of new technologies, can limit the relevance and applicability of research findings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

What is Economics

What is Economics – Definition, Methods, Types

Term Paper

Term Paper – Format, Examples and Writing Guide

What is Art

What is Art – Definition, Types, Examples

Physicist

Physicist – Definition, Types and Work Area

Academic Paper

Academic Paper – Format, Example and Writing...

Philosopher

Philosopher – Definition, Types and Work Area

What Is Research, and Why Do People Do It?

  • Open Access
  • First Online: 03 December 2022

Cite this chapter

You have full access to this open access chapter

definition of a research study

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  

Part of the book series: Research in Mathematics Education ((RME))

23k Accesses

Abstractspiepr Abs1

Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain, and by its commitment to learn from everyone else seriously engaged in research. We call this kind of research scientific inquiry and define it as “formulating, testing, and revising hypotheses.” By “hypotheses” we do not mean the hypotheses you encounter in statistics courses. We mean predictions about what you expect to find and rationales for why you made these predictions. Throughout this and the remaining chapters we make clear that the process of scientific inquiry applies to all kinds of research studies and data, both qualitative and quantitative.

You have full access to this open access chapter,  Download chapter PDF

Part I. What Is Research?

Have you ever studied something carefully because you wanted to know more about it? Maybe you wanted to know more about your grandmother’s life when she was younger so you asked her to tell you stories from her childhood, or maybe you wanted to know more about a fertilizer you were about to use in your garden so you read the ingredients on the package and looked them up online. According to the dictionary definition, you were doing research.

Recall your high school assignments asking you to “research” a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some “original” sources. Often, the teacher referred to your product as a “research paper.”

Were you conducting research when you interviewed your grandmother or wrote high school papers reviewing a particular topic? Our view is that you were engaged in part of the research process, but only a small part. In this book, we reserve the word “research” for what it means in the scientific world, that is, for scientific research or, more pointedly, for scientific inquiry .

Exercise 1.1

Before you read any further, write a definition of what you think scientific inquiry is. Keep it short—Two to three sentences. You will periodically update this definition as you read this chapter and the remainder of the book.

This book is about scientific inquiry—what it is and how to do it. For starters, scientific inquiry is a process, a particular way of finding out about something that involves a number of phases. Each phase of the process constitutes one aspect of scientific inquiry. You are doing scientific inquiry as you engage in each phase, but you have not done scientific inquiry until you complete the full process. Each phase is necessary but not sufficient.

In this chapter, we set the stage by defining scientific inquiry—describing what it is and what it is not—and by discussing what it is good for and why people do it. The remaining chapters build directly on the ideas presented in this chapter.

A first thing to know is that scientific inquiry is not all or nothing. “Scientificness” is a continuum. Inquiries can be more scientific or less scientific. What makes an inquiry more scientific? You might be surprised there is no universally agreed upon answer to this question. None of the descriptors we know of are sufficient by themselves to define scientific inquiry. But all of them give you a way of thinking about some aspects of the process of scientific inquiry. Each one gives you different insights.

An image of the book's description with the words like research, science, and inquiry and what the word research meant in the scientific world.

Exercise 1.2

As you read about each descriptor below, think about what would make an inquiry more or less scientific. If you think a descriptor is important, use it to revise your definition of scientific inquiry.

Creating an Image of Scientific Inquiry

We will present three descriptors of scientific inquiry. Each provides a different perspective and emphasizes a different aspect of scientific inquiry. We will draw on all three descriptors to compose our definition of scientific inquiry.

Descriptor 1. Experience Carefully Planned in Advance

Sir Ronald Fisher, often called the father of modern statistical design, once referred to research as “experience carefully planned in advance” (1935, p. 8). He said that humans are always learning from experience, from interacting with the world around them. Usually, this learning is haphazard rather than the result of a deliberate process carried out over an extended period of time. Research, Fisher said, was learning from experience, but experience carefully planned in advance.

This phrase can be fully appreciated by looking at each word. The fact that scientific inquiry is based on experience means that it is based on interacting with the world. These interactions could be thought of as the stuff of scientific inquiry. In addition, it is not just any experience that counts. The experience must be carefully planned . The interactions with the world must be conducted with an explicit, describable purpose, and steps must be taken to make the intended learning as likely as possible. This planning is an integral part of scientific inquiry; it is not just a preparation phase. It is one of the things that distinguishes scientific inquiry from many everyday learning experiences. Finally, these steps must be taken beforehand and the purpose of the inquiry must be articulated in advance of the experience. Clearly, scientific inquiry does not happen by accident, by just stumbling into something. Stumbling into something unexpected and interesting can happen while engaged in scientific inquiry, but learning does not depend on it and serendipity does not make the inquiry scientific.

Descriptor 2. Observing Something and Trying to Explain Why It Is the Way It Is

When we were writing this chapter and googled “scientific inquiry,” the first entry was: “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work.” The emphasis is on studying, or observing, and then explaining . This descriptor takes the image of scientific inquiry beyond carefully planned experience and includes explaining what was experienced.

According to the Merriam-Webster dictionary, “explain” means “(a) to make known, (b) to make plain or understandable, (c) to give the reason or cause of, and (d) to show the logical development or relations of” (Merriam-Webster, n.d. ). We will use all these definitions. Taken together, they suggest that to explain an observation means to understand it by finding reasons (or causes) for why it is as it is. In this sense of scientific inquiry, the following are synonyms: explaining why, understanding why, and reasoning about causes and effects. Our image of scientific inquiry now includes planning, observing, and explaining why.

An image represents the observation required in the scientific inquiry including planning and explaining.

We need to add a final note about this descriptor. We have phrased it in a way that suggests “observing something” means you are observing something in real time—observing the way things are or the way things are changing. This is often true. But, observing could mean observing data that already have been collected, maybe by someone else making the original observations (e.g., secondary analysis of NAEP data or analysis of existing video recordings of classroom instruction). We will address secondary analyses more fully in Chap. 4 . For now, what is important is that the process requires explaining why the data look like they do.

We must note that for us, the term “data” is not limited to numerical or quantitative data such as test scores. Data can also take many nonquantitative forms, including written survey responses, interview transcripts, journal entries, video recordings of students, teachers, and classrooms, text messages, and so forth.

An image represents the data explanation as it is not limited and takes numerous non-quantitative forms including an interview, journal entries, etc.

Exercise 1.3

What are the implications of the statement that just “observing” is not enough to count as scientific inquiry? Does this mean that a detailed description of a phenomenon is not scientific inquiry?

Find sources that define research in education that differ with our position, that say description alone, without explanation, counts as scientific research. Identify the precise points where the opinions differ. What are the best arguments for each of the positions? Which do you prefer? Why?

Descriptor 3. Updating Everyone’s Thinking in Response to More and Better Information

This descriptor focuses on a third aspect of scientific inquiry: updating and advancing the field’s understanding of phenomena that are investigated. This descriptor foregrounds a powerful characteristic of scientific inquiry: the reliability (or trustworthiness) of what is learned and the ultimate inevitability of this learning to advance human understanding of phenomena. Humans might choose not to learn from scientific inquiry, but history suggests that scientific inquiry always has the potential to advance understanding and that, eventually, humans take advantage of these new understandings.

Before exploring these bold claims a bit further, note that this descriptor uses “information” in the same way the previous two descriptors used “experience” and “observations.” These are the stuff of scientific inquiry and we will use them often, sometimes interchangeably. Frequently, we will use the term “data” to stand for all these terms.

An overriding goal of scientific inquiry is for everyone to learn from what one scientist does. Much of this book is about the methods you need to use so others have faith in what you report and can learn the same things you learned. This aspect of scientific inquiry has many implications.

One implication is that scientific inquiry is not a private practice. It is a public practice available for others to see and learn from. Notice how different this is from everyday learning. When you happen to learn something from your everyday experience, often only you gain from the experience. The fact that research is a public practice means it is also a social one. It is best conducted by interacting with others along the way: soliciting feedback at each phase, taking opportunities to present work-in-progress, and benefitting from the advice of others.

A second implication is that you, as the researcher, must be committed to sharing what you are doing and what you are learning in an open and transparent way. This allows all phases of your work to be scrutinized and critiqued. This is what gives your work credibility. The reliability or trustworthiness of your findings depends on your colleagues recognizing that you have used all appropriate methods to maximize the chances that your claims are justified by the data.

A third implication of viewing scientific inquiry as a collective enterprise is the reverse of the second—you must be committed to receiving comments from others. You must treat your colleagues as fair and honest critics even though it might sometimes feel otherwise. You must appreciate their job, which is to remain skeptical while scrutinizing what you have done in considerable detail. To provide the best help to you, they must remain skeptical about your conclusions (when, for example, the data are difficult for them to interpret) until you offer a convincing logical argument based on the information you share. A rather harsh but good-to-remember statement of the role of your friendly critics was voiced by Karl Popper, a well-known twentieth century philosopher of science: “. . . if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing it as severely as you can” (Popper, 1968, p. 27).

A final implication of this third descriptor is that, as someone engaged in scientific inquiry, you have no choice but to update your thinking when the data support a different conclusion. This applies to your own data as well as to those of others. When data clearly point to a specific claim, even one that is quite different than you expected, you must reconsider your position. If the outcome is replicated multiple times, you need to adjust your thinking accordingly. Scientific inquiry does not let you pick and choose which data to believe; it mandates that everyone update their thinking when the data warrant an update.

Doing Scientific Inquiry

We define scientific inquiry in an operational sense—what does it mean to do scientific inquiry? What kind of process would satisfy all three descriptors: carefully planning an experience in advance; observing and trying to explain what you see; and, contributing to updating everyone’s thinking about an important phenomenon?

We define scientific inquiry as formulating , testing , and revising hypotheses about phenomena of interest.

Of course, we are not the only ones who define it in this way. The definition for the scientific method posted by the editors of Britannica is: “a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments” (Britannica, n.d. ).

An image represents the scientific inquiry definition given by the editors of Britannica and also defines the hypothesis on the basis of the experiments.

Notice how defining scientific inquiry this way satisfies each of the descriptors. “Carefully planning an experience in advance” is exactly what happens when formulating a hypothesis about a phenomenon of interest and thinking about how to test it. “ Observing a phenomenon” occurs when testing a hypothesis, and “ explaining ” what is found is required when revising a hypothesis based on the data. Finally, “updating everyone’s thinking” comes from comparing publicly the original with the revised hypothesis.

Doing scientific inquiry, as we have defined it, underscores the value of accumulating knowledge rather than generating random bits of knowledge. Formulating, testing, and revising hypotheses is an ongoing process, with each revised hypothesis begging for another test, whether by the same researcher or by new researchers. The editors of Britannica signaled this cyclic process by adding the following phrase to their definition of the scientific method: “The modified hypothesis is then retested, further modified, and tested again.” Scientific inquiry creates a process that encourages each study to build on the studies that have gone before. Through collective engagement in this process of building study on top of study, the scientific community works together to update its thinking.

Before exploring more fully the meaning of “formulating, testing, and revising hypotheses,” we need to acknowledge that this is not the only way researchers define research. Some researchers prefer a less formal definition, one that includes more serendipity, less planning, less explanation. You might have come across more open definitions such as “research is finding out about something.” We prefer the tighter hypothesis formulation, testing, and revision definition because we believe it provides a single, coherent map for conducting research that addresses many of the thorny problems educational researchers encounter. We believe it is the most useful orientation toward research and the most helpful to learn as a beginning researcher.

A final clarification of our definition is that it applies equally to qualitative and quantitative research. This is a familiar distinction in education that has generated much discussion. You might think our definition favors quantitative methods over qualitative methods because the language of hypothesis formulation and testing is often associated with quantitative methods. In fact, we do not favor one method over another. In Chap. 4 , we will illustrate how our definition fits research using a range of quantitative and qualitative methods.

Exercise 1.4

Look for ways to extend what the field knows in an area that has already received attention by other researchers. Specifically, you can search for a program of research carried out by more experienced researchers that has some revised hypotheses that remain untested. Identify a revised hypothesis that you might like to test.

Unpacking the Terms Formulating, Testing, and Revising Hypotheses

To get a full sense of the definition of scientific inquiry we will use throughout this book, it is helpful to spend a little time with each of the key terms.

We first want to make clear that we use the term “hypothesis” as it is defined in most dictionaries and as it used in many scientific fields rather than as it is usually defined in educational statistics courses. By “hypothesis,” we do not mean a null hypothesis that is accepted or rejected by statistical analysis. Rather, we use “hypothesis” in the sense conveyed by the following definitions: “An idea or explanation for something that is based on known facts but has not yet been proved” (Cambridge University Press, n.d. ), and “An unproved theory, proposition, or supposition, tentatively accepted to explain certain facts and to provide a basis for further investigation or argument” (Agnes & Guralnik, 2008 ).

We distinguish two parts to “hypotheses.” Hypotheses consist of predictions and rationales . Predictions are statements about what you expect to find when you inquire about something. Rationales are explanations for why you made the predictions you did, why you believe your predictions are correct. So, for us “formulating hypotheses” means making explicit predictions and developing rationales for the predictions.

“Testing hypotheses” means making observations that allow you to assess in what ways your predictions were correct and in what ways they were incorrect. In education research, it is rarely useful to think of your predictions as either right or wrong. Because of the complexity of most issues you will investigate, most predictions will be right in some ways and wrong in others.

By studying the observations you make (data you collect) to test your hypotheses, you can revise your hypotheses to better align with the observations. This means revising your predictions plus revising your rationales to justify your adjusted predictions. Even though you might not run another test, formulating revised hypotheses is an essential part of conducting a research study. Comparing your original and revised hypotheses informs everyone of what you learned by conducting your study. In addition, a revised hypothesis sets the stage for you or someone else to extend your study and accumulate more knowledge of the phenomenon.

We should note that not everyone makes a clear distinction between predictions and rationales as two aspects of hypotheses. In fact, common, non-scientific uses of the word “hypothesis” may limit it to only a prediction or only an explanation (or rationale). We choose to explicitly include both prediction and rationale in our definition of hypothesis, not because we assert this should be the universal definition, but because we want to foreground the importance of both parts acting in concert. Using “hypothesis” to represent both prediction and rationale could hide the two aspects, but we make them explicit because they provide different kinds of information. It is usually easier to make predictions than develop rationales because predictions can be guesses, hunches, or gut feelings about which you have little confidence. Developing a compelling rationale requires careful thought plus reading what other researchers have found plus talking with your colleagues. Often, while you are developing your rationale you will find good reasons to change your predictions. Developing good rationales is the engine that drives scientific inquiry. Rationales are essentially descriptions of how much you know about the phenomenon you are studying. Throughout this guide, we will elaborate on how developing good rationales drives scientific inquiry. For now, we simply note that it can sharpen your predictions and help you to interpret your data as you test your hypotheses.

An image represents the rationale and the prediction for the scientific inquiry and different types of information provided by the terms.

Hypotheses in education research take a variety of forms or types. This is because there are a variety of phenomena that can be investigated. Investigating educational phenomena is sometimes best done using qualitative methods, sometimes using quantitative methods, and most often using mixed methods (e.g., Hay, 2016 ; Weis et al. 2019a ; Weisner, 2005 ). This means that, given our definition, hypotheses are equally applicable to qualitative and quantitative investigations.

Hypotheses take different forms when they are used to investigate different kinds of phenomena. Two very different activities in education could be labeled conducting experiments and descriptions. In an experiment, a hypothesis makes a prediction about anticipated changes, say the changes that occur when a treatment or intervention is applied. You might investigate how students’ thinking changes during a particular kind of instruction.

A second type of hypothesis, relevant for descriptive research, makes a prediction about what you will find when you investigate and describe the nature of a situation. The goal is to understand a situation as it exists rather than to understand a change from one situation to another. In this case, your prediction is what you expect to observe. Your rationale is the set of reasons for making this prediction; it is your current explanation for why the situation will look like it does.

You will probably read, if you have not already, that some researchers say you do not need a prediction to conduct a descriptive study. We will discuss this point of view in Chap. 2 . For now, we simply claim that scientific inquiry, as we have defined it, applies to all kinds of research studies. Descriptive studies, like others, not only benefit from formulating, testing, and revising hypotheses, but also need hypothesis formulating, testing, and revising.

One reason we define research as formulating, testing, and revising hypotheses is that if you think of research in this way you are less likely to go wrong. It is a useful guide for the entire process, as we will describe in detail in the chapters ahead. For example, as you build the rationale for your predictions, you are constructing the theoretical framework for your study (Chap. 3 ). As you work out the methods you will use to test your hypothesis, every decision you make will be based on asking, “Will this help me formulate or test or revise my hypothesis?” (Chap. 4 ). As you interpret the results of testing your predictions, you will compare them to what you predicted and examine the differences, focusing on how you must revise your hypotheses (Chap. 5 ). By anchoring the process to formulating, testing, and revising hypotheses, you will make smart decisions that yield a coherent and well-designed study.

Exercise 1.5

Compare the concept of formulating, testing, and revising hypotheses with the descriptions of scientific inquiry contained in Scientific Research in Education (NRC, 2002 ). How are they similar or different?

Exercise 1.6

Provide an example to illustrate and emphasize the differences between everyday learning/thinking and scientific inquiry.

Learning from Doing Scientific Inquiry

We noted earlier that a measure of what you have learned by conducting a research study is found in the differences between your original hypothesis and your revised hypothesis based on the data you collected to test your hypothesis. We will elaborate this statement in later chapters, but we preview our argument here.

Even before collecting data, scientific inquiry requires cycles of making a prediction, developing a rationale, refining your predictions, reading and studying more to strengthen your rationale, refining your predictions again, and so forth. And, even if you have run through several such cycles, you still will likely find that when you test your prediction you will be partly right and partly wrong. The results will support some parts of your predictions but not others, or the results will “kind of” support your predictions. A critical part of scientific inquiry is making sense of your results by interpreting them against your predictions. Carefully describing what aspects of your data supported your predictions, what aspects did not, and what data fell outside of any predictions is not an easy task, but you cannot learn from your study without doing this analysis.

An image represents the cycle of events that take place before making predictions, developing the rationale, and studying the prediction and rationale multiple times.

Analyzing the matches and mismatches between your predictions and your data allows you to formulate different rationales that would have accounted for more of the data. The best revised rationale is the one that accounts for the most data. Once you have revised your rationales, you can think about the predictions they best justify or explain. It is by comparing your original rationales to your new rationales that you can sort out what you learned from your study.

Suppose your study was an experiment. Maybe you were investigating the effects of a new instructional intervention on students’ learning. Your original rationale was your explanation for why the intervention would change the learning outcomes in a particular way. Your revised rationale explained why the changes that you observed occurred like they did and why your revised predictions are better. Maybe your original rationale focused on the potential of the activities if they were implemented in ideal ways and your revised rationale included the factors that are likely to affect how teachers implement them. By comparing the before and after rationales, you are describing what you learned—what you can explain now that you could not before. Another way of saying this is that you are describing how much more you understand now than before you conducted your study.

Revised predictions based on carefully planned and collected data usually exhibit some of the following features compared with the originals: more precision, more completeness, and broader scope. Revised rationales have more explanatory power and become more complete, more aligned with the new predictions, sharper, and overall more convincing.

Part II. Why Do Educators Do Research?

Doing scientific inquiry is a lot of work. Each phase of the process takes time, and you will often cycle back to improve earlier phases as you engage in later phases. Because of the significant effort required, you should make sure your study is worth it. So, from the beginning, you should think about the purpose of your study. Why do you want to do it? And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community.

If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or report. As we noted earlier, when you formulate hypotheses, you are developing rationales that explain why things might be like they are. In our view, trying to understand and explain is what separates research from other kinds of activities, like evaluating or describing.

One reason understanding is so important is that it allows researchers to see how or why something works like it does. When you see how something works, you are better able to predict how it might work in other contexts, under other conditions. And, because conditions, or contextual factors, matter a lot in education, gaining insights into applying your findings to other contexts increases the contributions of your work and its importance to the broader education community.

Consequently, the purposes of research studies in education often include the more specific aim of identifying and understanding the conditions under which the phenomena being studied work like the observations suggest. A classic example of this kind of study in mathematics education was reported by William Brownell and Harold Moser in 1949 . They were trying to establish which method of subtracting whole numbers could be taught most effectively—the regrouping method or the equal additions method. However, they realized that effectiveness might depend on the conditions under which the methods were taught—“meaningfully” versus “mechanically.” So, they designed a study that crossed the two instructional approaches with the two different methods (regrouping and equal additions). Among other results, they found that these conditions did matter. The regrouping method was more effective under the meaningful condition than the mechanical condition, but the same was not true for the equal additions algorithm.

What do education researchers want to understand? In our view, the ultimate goal of education is to offer all students the best possible learning opportunities. So, we believe the ultimate purpose of scientific inquiry in education is to develop understanding that supports the improvement of learning opportunities for all students. We say “ultimate” because there are lots of issues that must be understood to improve learning opportunities for all students. Hypotheses about many aspects of education are connected, ultimately, to students’ learning. For example, formulating and testing a hypothesis that preservice teachers need to engage in particular kinds of activities in their coursework in order to teach particular topics well is, ultimately, connected to improving students’ learning opportunities. So is hypothesizing that school districts often devote relatively few resources to instructional leadership training or hypothesizing that positioning mathematics as a tool students can use to combat social injustice can help students see the relevance of mathematics to their lives.

We do not exclude the importance of research on educational issues more removed from improving students’ learning opportunities, but we do think the argument for their importance will be more difficult to make. If there is no way to imagine a connection between your hypothesis and improving learning opportunities for students, even a distant connection, we recommend you reconsider whether it is an important hypothesis within the education community.

Notice that we said the ultimate goal of education is to offer all students the best possible learning opportunities. For too long, educators have been satisfied with a goal of offering rich learning opportunities for lots of students, sometimes even for just the majority of students, but not necessarily for all students. Evaluations of success often are based on outcomes that show high averages. In other words, if many students have learned something, or even a smaller number have learned a lot, educators may have been satisfied. The problem is that there is usually a pattern in the groups of students who receive lower quality opportunities—students of color and students who live in poor areas, urban and rural. This is not acceptable. Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students.

One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers’ shared instructional problems. Historically, researchers in education have set their own research agendas, regardless of the problems teachers are facing in schools. It is increasingly recognized that teachers have had trouble applying to their own classrooms what researchers find. To address this problem, a researcher could partner with a teacher—better yet, a small group of teachers—and talk with them about instructional problems they all share. These discussions can create a rich pool of problems researchers can consider. If researchers pursued one of these problems (preferably alongside teachers), the connection to improving learning opportunities for all students could be direct and immediate. “Grounding a research question in instructional problems that are experienced across multiple teachers’ classrooms helps to ensure that the answer to the question will be of sufficient scope to be relevant and significant beyond the local context” (Cai et al., 2019b , p. 115).

As a beginning researcher, determining the relevance and importance of a research problem is especially challenging. We recommend talking with advisors, other experienced researchers, and peers to test the educational importance of possible research problems and topics of study. You will also learn much more about the issue of research importance when you read Chap. 5 .

Exercise 1.7

Identify a problem in education that is closely connected to improving learning opportunities and a problem that has a less close connection. For each problem, write a brief argument (like a logical sequence of if-then statements) that connects the problem to all students’ learning opportunities.

Part III. Conducting Research as a Practice of Failing Productively

Scientific inquiry involves formulating hypotheses about phenomena that are not fully understood—by you or anyone else. Even if you are able to inform your hypotheses with lots of knowledge that has already been accumulated, you are likely to find that your prediction is not entirely accurate. This is normal. Remember, scientific inquiry is a process of constantly updating your thinking. More and better information means revising your thinking, again, and again, and again. Because you never fully understand a complicated phenomenon and your hypotheses never produce completely accurate predictions, it is easy to believe you are somehow failing.

The trick is to fail upward, to fail to predict accurately in ways that inform your next hypothesis so you can make a better prediction. Some of the best-known researchers in education have been open and honest about the many times their predictions were wrong and, based on the results of their studies and those of others, they continuously updated their thinking and changed their hypotheses.

A striking example of publicly revising (actually reversing) hypotheses due to incorrect predictions is found in the work of Lee J. Cronbach, one of the most distinguished educational psychologists of the twentieth century. In 1955, Cronbach delivered his presidential address to the American Psychological Association. Titling it “Two Disciplines of Scientific Psychology,” Cronbach proposed a rapprochement between two research approaches—correlational studies that focused on individual differences and experimental studies that focused on instructional treatments controlling for individual differences. (We will examine different research approaches in Chap. 4 ). If these approaches could be brought together, reasoned Cronbach ( 1957 ), researchers could find interactions between individual characteristics and treatments (aptitude-treatment interactions or ATIs), fitting the best treatments to different individuals.

In 1975, after years of research by many researchers looking for ATIs, Cronbach acknowledged the evidence for simple, useful ATIs had not been found. Even when trying to find interactions between a few variables that could provide instructional guidance, the analysis, said Cronbach, creates “a hall of mirrors that extends to infinity, tormenting even the boldest investigators and defeating even ambitious designs” (Cronbach, 1975 , p. 119).

As he was reflecting back on his work, Cronbach ( 1986 ) recommended moving away from documenting instructional effects through statistical inference (an approach he had championed for much of his career) and toward approaches that probe the reasons for these effects, approaches that provide a “full account of events in a time, place, and context” (Cronbach, 1986 , p. 104). This is a remarkable change in hypotheses, a change based on data and made fully transparent. Cronbach understood the value of failing productively.

Closer to home, in a less dramatic example, one of us began a line of scientific inquiry into how to prepare elementary preservice teachers to teach early algebra. Teaching early algebra meant engaging elementary students in early forms of algebraic reasoning. Such reasoning should help them transition from arithmetic to algebra. To begin this line of inquiry, a set of activities for preservice teachers were developed. Even though the activities were based on well-supported hypotheses, they largely failed to engage preservice teachers as predicted because of unanticipated challenges the preservice teachers faced. To capitalize on this failure, follow-up studies were conducted, first to better understand elementary preservice teachers’ challenges with preparing to teach early algebra, and then to better support preservice teachers in navigating these challenges. In this example, the initial failure was a necessary step in the researchers’ scientific inquiry and furthered the researchers’ understanding of this issue.

We present another example of failing productively in Chap. 2 . That example emerges from recounting the history of a well-known research program in mathematics education.

Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in education.

First, do not get discouraged when you make mistakes; do not fall into the trap of feeling like you are not capable of doing research because you make too many errors.

Second, learn from your mistakes. Do not ignore your mistakes or treat them as errors that you simply need to forget and move past. Mistakes are rich sites for learning—in research just as in other fields of study.

Third, by reflecting on your mistakes, you can learn to make better mistakes, mistakes that inform you about a productive next step. You will not be able to eliminate your mistakes, but you can set a goal of making better and better mistakes.

Exercise 1.8

How does scientific inquiry differ from everyday learning in giving you the tools to fail upward? You may find helpful perspectives on this question in other resources on science and scientific inquiry (e.g., Failure: Why Science is So Successful by Firestein, 2015).

Exercise 1.9

Use what you have learned in this chapter to write a new definition of scientific inquiry. Compare this definition with the one you wrote before reading this chapter. If you are reading this book as part of a course, compare your definition with your colleagues’ definitions. Develop a consensus definition with everyone in the course.

Part IV. Preview of Chap. 2

Now that you have a good idea of what research is, at least of what we believe research is, the next step is to think about how to actually begin doing research. This means how to begin formulating, testing, and revising hypotheses. As for all phases of scientific inquiry, there are lots of things to think about. Because it is critical to start well, we devote Chap. 2 to getting started with formulating hypotheses.

Agnes, M., & Guralnik, D. B. (Eds.). (2008). Hypothesis. In Webster’s new world college dictionary (4th ed.). Wiley.

Google Scholar  

Britannica. (n.d.). Scientific method. In Encyclopaedia Britannica . Retrieved July 15, 2022 from https://www.britannica.com/science/scientific-method

Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in grade III subtraction . Duke University Press..

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Cambridge University Press. (n.d.). Hypothesis. In Cambridge dictionary . Retrieved July 15, 2022 from https://dictionary.cambridge.org/us/dictionary/english/hypothesis

Cronbach, J. L. (1957). The two disciplines of scientific psychology. American Psychologist, 12 , 671–684.

Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30 , 116–127.

Cronbach, L. J. (1986). Social inquiry by and for earthlings. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 83–107). University of Chicago Press.

Hay, C. M. (Ed.). (2016). Methods that matter: Integrating mixed methods for more effective social science research . University of Chicago Press.

Merriam-Webster. (n.d.). Explain. In Merriam-Webster.com dictionary . Retrieved July 15, 2022, from https://www.merriam-webster.com/dictionary/explain

National Research Council. (2002). Scientific research in education . National Academy Press.

Weis, L., Eisenhart, M., Duncan, G. J., Albro, E., Bueschel, A. C., Cobb, P., Eccles, J., Mendenhall, R., Moss, P., Penuel, W., Ream, R. K., Rumbaut, R. G., Sloane, F., Weisner, T. S., & Wilson, J. (2019a). Mixed methods for studies that address broad and enduring issues in education research. Teachers College Record, 121 , 100307.

Weisner, T. S. (Ed.). (2005). Discovering successful pathways in children’s development: Mixed methods in the study of childhood and family life . University of Chicago Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). What Is Research, and Why Do People Do It?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_1

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Educational resources and simple solutions for your research journey

What is research design? Types, elements, and examples

What is Research Design? Understand Types of Research Design, with Examples

Have you been wondering “ what is research design ?” or “what are some research design examples ?” Are you unsure about the research design elements or which of the different types of research design best suit your study? Don’t worry! In this article, we’ve got you covered!   

Table of Contents

What is research design?  

Have you been wondering “ what is research design ?” or “what are some research design examples ?” Don’t worry! In this article, we’ve got you covered!  

A research design is the plan or framework used to conduct a research study. It involves outlining the overall approach and methods that will be used to collect and analyze data in order to answer research questions or test hypotheses. A well-designed research study should have a clear and well-defined research question, a detailed plan for collecting data, and a method for analyzing and interpreting the results. A well-thought-out research design addresses all these features.  

Research design elements  

Research design elements include the following:  

  • Clear purpose: The research question or hypothesis must be clearly defined and focused.  
  • Sampling: This includes decisions about sample size, sampling method, and criteria for inclusion or exclusion. The approach varies for different research design types .  
  • Data collection: This research design element involves the process of gathering data or information from the study participants or sources. It includes decisions about what data to collect, how to collect it, and the tools or instruments that will be used.  
  • Data analysis: All research design types require analysis and interpretation of the data collected. This research design element includes decisions about the statistical tests or methods that will be used to analyze the data, as well as any potential confounding variables or biases that may need to be addressed.  
  • Type of research methodology: This includes decisions about the overall approach for the study.  
  • Time frame: An important research design element is the time frame, which includes decisions about the duration of the study, the timeline for data collection and analysis, and follow-up periods.  
  • Ethical considerations: The research design must include decisions about ethical considerations such as informed consent, confidentiality, and participant protection.  
  • Resources: A good research design takes into account decisions about the budget, staffing, and other resources needed to carry out the study.  

The elements of research design should be carefully planned and executed to ensure the validity and reliability of the study findings. Let’s go deeper into the concepts of research design .    

definition of a research study

Characteristics of research design  

Some basic characteristics of research design are common to different research design types . These characteristics of research design are as follows:  

  • Neutrality : Right from the study assumptions to setting up the study, a neutral stance must be maintained, free of pre-conceived notions. The researcher’s expectations or beliefs should not color the findings or interpretation of the findings. Accordingly, a good research design should address potential sources of bias and confounding factors to be able to yield unbiased and neutral results.   
  •   Reliability : Reliability is one of the characteristics of research design that refers to consistency in measurement over repeated measures and fewer random errors. A reliable research design must allow for results to be consistent, with few errors due to chance.   
  •   Validity : Validity refers to the minimization of nonrandom (systematic) errors. A good research design must employ measurement tools that ensure validity of the results.  
  •   Generalizability: The outcome of the research design should be applicable to a larger population and not just a small sample . A generalized method means the study can be conducted on any part of a population with similar accuracy.   
  •   Flexibility: A research design should allow for changes to be made to the research plan as needed, based on the data collected and the outcomes of the study  

A well-planned research design is critical for conducting a scientifically rigorous study that will generate neutral, reliable, valid, and generalizable results. At the same time, it should allow some level of flexibility.  

Different types of research design  

A research design is essential to systematically investigate, understand, and interpret phenomena of interest. Let’s look at different types of research design and research design examples .  

Broadly, research design types can be divided into qualitative and quantitative research.  

Qualitative research is subjective and exploratory. It determines relationships between collected data and observations. It is usually carried out through interviews with open-ended questions, observations that are described in words, etc.  

Quantitative research is objective and employs statistical approaches. It establishes the cause-and-effect relationship among variables using different statistical and computational methods. This type of research is usually done using surveys and experiments.  

Qualitative research vs. Quantitative research  

   
Deals with subjective aspects, e.g., experiences, beliefs, perspectives, and concepts.  Measures different types of variables and describes frequencies, averages, correlations, etc. 
Deals with non-numerical data, such as words, images, and observations.  Tests hypotheses about relationships between variables. Results are presented numerically and statistically. 
In qualitative research design, data are collected via direct observations, interviews, focus groups, and naturally occurring data. Methods for conducting qualitative research are grounded theory, thematic analysis, and discourse analysis. 

 

Quantitative research design is empirical. Data collection methods involved are experiments, surveys, and observations expressed in numbers. The research design categories under this are descriptive, experimental, correlational, diagnostic, and explanatory. 
Data analysis involves interpretation and narrative analysis.  Data analysis involves statistical analysis and hypothesis testing. 
The reasoning used to synthesize data is inductive. 

 

The reasoning used to synthesize data is deductive. 

 

Typically used in fields such as sociology, linguistics, and anthropology.  Typically used in fields such as economics, ecology, statistics, and medicine. 
Example: Focus group discussions with women farmers about climate change perception. 

 

Example: Testing the effectiveness of a new treatment for insomnia. 

Qualitative research design types and qualitative research design examples  

The following will familiarize you with the research design categories in qualitative research:  

  • Grounded theory: This design is used to investigate research questions that have not previously been studied in depth. Also referred to as exploratory design , it creates sequential guidelines, offers strategies for inquiry, and makes data collection and analysis more efficient in qualitative research.   

Example: A researcher wants to study how people adopt a certain app. The researcher collects data through interviews and then analyzes the data to look for patterns. These patterns are used to develop a theory about how people adopt that app.  

  •   Thematic analysis: This design is used to compare the data collected in past research to find similar themes in qualitative research.  

Example: A researcher examines an interview transcript to identify common themes, say, topics or patterns emerging repeatedly.  

  • Discourse analysis : This research design deals with language or social contexts used in data gathering in qualitative research.   

Example: Identifying ideological frameworks and viewpoints of writers of a series of policies.  

Quantitative research design types and quantitative research design examples  

Note the following research design categories in quantitative research:  

  • Descriptive research design : This quantitative research design is applied where the aim is to identify characteristics, frequencies, trends, and categories. It may not often begin with a hypothesis. The basis of this research type is a description of an identified variable. This research design type describes the “what,” “when,” “where,” or “how” of phenomena (but not the “why”).   

Example: A study on the different income levels of people who use nutritional supplements regularly.  

  • Correlational research design : Correlation reflects the strength and/or direction of the relationship among variables. The direction of a correlation can be positive or negative. Correlational research design helps researchers establish a relationship between two variables without the researcher controlling any of them.  

Example : An example of correlational research design could be studying the correlation between time spent watching crime shows and aggressive behavior in teenagers.  

  •   Diagnostic research design : In diagnostic design, the researcher aims to understand the underlying cause of a specific topic or phenomenon (usually an area of improvement) and find the most effective solution. In simpler terms, a researcher seeks an accurate “diagnosis” of a problem and identifies a solution.  

Example : A researcher analyzing customer feedback and reviews to identify areas where an app can be improved.    

  • Explanatory research design : In explanatory research design , a researcher uses their ideas and thoughts on a topic to explore their theories in more depth. This design is used to explore a phenomenon when limited information is available. It can help increase current understanding of unexplored aspects of a subject. It is thus a kind of “starting point” for future research.  

Example : Formulating hypotheses to guide future studies on delaying school start times for better mental health in teenagers.  

  •   Causal research design : This can be considered a type of explanatory research. Causal research design seeks to define a cause and effect in its data. The researcher does not use a randomly chosen control group but naturally or pre-existing groupings. Importantly, the researcher does not manipulate the independent variable.   

Example : Comparing school dropout levels and possible bullying events.  

  •   Experimental research design : This research design is used to study causal relationships . One or more independent variables are manipulated, and their effect on one or more dependent variables is measured.  

Example: Determining the efficacy of a new vaccine plan for influenza.  

Benefits of research design  

 T here are numerous benefits of research design . These are as follows:  

  • Clear direction: Among the benefits of research design , the main one is providing direction to the research and guiding the choice of clear objectives, which help the researcher to focus on the specific research questions or hypotheses they want to investigate.  
  • Control: Through a proper research design , researchers can control variables, identify potential confounding factors, and use randomization to minimize bias and increase the reliability of their findings.
  • Replication: Research designs provide the opportunity for replication. This helps to confirm the findings of a study and ensures that the results are not due to chance or other factors. Thus, a well-chosen research design also eliminates bias and errors.  
  • Validity: A research design ensures the validity of the research, i.e., whether the results truly reflect the phenomenon being investigated.  
  • Reliability: Benefits of research design also include reducing inaccuracies and ensuring the reliability of the research (i.e., consistency of the research results over time, across different samples, and under different conditions).  
  • Efficiency: A strong research design helps increase the efficiency of the research process. Researchers can use a variety of designs to investigate their research questions, choose the most appropriate research design for their study, and use statistical analysis to make the most of their data. By effectively describing the data necessary for an adequate test of the hypotheses and explaining how such data will be obtained, research design saves a researcher’s time.   

Overall, an appropriately chosen and executed research design helps researchers to conduct high-quality research, draw meaningful conclusions, and contribute to the advancement of knowledge in their field.

definition of a research study

Frequently Asked Questions (FAQ) on Research Design

Q: What are th e main types of research design?

Broadly speaking there are two basic types of research design –

qualitative and quantitative research. Qualitative research is subjective and exploratory; it determines relationships between collected data and observations. It is usually carried out through interviews with open-ended questions, observations that are described in words, etc. Quantitative research , on the other hand, is more objective and employs statistical approaches. It establishes the cause-and-effect relationship among variables using different statistical and computational methods. This type of research design is usually done using surveys and experiments.

Q: How do I choose the appropriate research design for my study?

Choosing the appropriate research design for your study requires careful consideration of various factors. Start by clarifying your research objectives and the type of data you need to collect. Determine whether your study is exploratory, descriptive, or experimental in nature. Consider the availability of resources, time constraints, and the feasibility of implementing the different research designs. Review existing literature to identify similar studies and their research designs, which can serve as a guide. Ultimately, the chosen research design should align with your research questions, provide the necessary data to answer them, and be feasible given your own specific requirements/constraints.

Q: Can research design be modified during the course of a study?

Yes, research design can be modified during the course of a study based on emerging insights, practical constraints, or unforeseen circumstances. Research is an iterative process and, as new data is collected and analyzed, it may become necessary to adjust or refine the research design. However, any modifications should be made judiciously and with careful consideration of their impact on the study’s integrity and validity. It is advisable to document any changes made to the research design, along with a clear rationale for the modifications, in order to maintain transparency and allow for proper interpretation of the results.

Q: How can I ensure the validity and reliability of my research design?

Validity refers to the accuracy and meaningfulness of your study’s findings, while reliability relates to the consistency and stability of the measurements or observations. To enhance validity, carefully define your research variables, use established measurement scales or protocols, and collect data through appropriate methods. Consider conducting a pilot study to identify and address any potential issues before full implementation. To enhance reliability, use standardized procedures, conduct inter-rater or test-retest reliability checks, and employ appropriate statistical techniques for data analysis. It is also essential to document and report your methodology clearly, allowing for replication and scrutiny by other researchers.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

Peer Review Week 2024

Join Us for Peer Review Week 2024

Editage All Access Boosting Productivity for Academics in India

How Editage All Access is Boosting Productivity for Academics in India

Cambridge Dictionary

  • Cambridge Dictionary +Plus

Meaning of research in English

Your browser doesn't support HTML5 audio

  • He has dedicated his life to scientific research.
  • He emphasized that all the people taking part in the research were volunteers .
  • The state of Michigan has endowed three institutes to do research for industry .
  • I'd like to see the research that these recommendations are founded on.
  • It took months of painstaking research to write the book .
  • absorptive capacity
  • dream something up
  • ergonomically
  • modularization
  • nanotechnology
  • testing ground
  • the mother of something idiom
  • think outside the box idiom
  • think something up
  • study What do you plan on studying at university?
  • major US She majored in philosophy at Harvard.
  • cram She's cramming for her history exam.
  • revise UK I'm revising for tomorrow's test.
  • review US We're going to review for the test tomorrow night.
  • research Scientists are researching possible new treatments for cancer.
  • The amount of time and money being spent on researching this disease is pitiful .
  • We are researching the reproduction of elephants .
  • She researched a wide variety of jobs before deciding on law .
  • He researches heart disease .
  • The internet has reduced the amount of time it takes to research these subjects .
  • adjudication
  • have the measure of someone/something idiom
  • interpretable
  • interpretive
  • reinspection
  • reinterpret
  • reinterpretation
  • reinvestigate
  • reinvestigation

You can also find related words, phrases, and synonyms in the topics:

Related word

Research | american dictionary, research | business english, examples of research, collocations with research.

These are words often used in combination with research .

Click on a collocation to see more examples of it.

Translations of research

Get a quick, free translation!

{{randomImageQuizHook.quizId}}

Word of the Day

a criminal act that results in serious damage or injury, especially murder

Treasure troves and endless supplies (Words and phrases meaning ‘source’)

Treasure troves and endless supplies (Words and phrases meaning ‘source’)

definition of a research study

Learn more with +Plus

  • Recent and Recommended {{#preferredDictionaries}} {{name}} {{/preferredDictionaries}}
  • Definitions Clear explanations of natural written and spoken English English Learner’s Dictionary Essential British English Essential American English
  • Grammar and thesaurus Usage explanations of natural written and spoken English Grammar Thesaurus
  • Pronunciation British and American pronunciations with audio English Pronunciation
  • English–Chinese (Simplified) Chinese (Simplified)–English
  • English–Chinese (Traditional) Chinese (Traditional)–English
  • English–Dutch Dutch–English
  • English–French French–English
  • English–German German–English
  • English–Indonesian Indonesian–English
  • English–Italian Italian–English
  • English–Japanese Japanese–English
  • English–Norwegian Norwegian–English
  • English–Polish Polish–English
  • English–Portuguese Portuguese–English
  • English–Spanish Spanish–English
  • English–Swedish Swedish–English
  • Dictionary +Plus Word Lists
  • English    Noun Verb
  • Business    Noun Verb
  • Collocations
  • Translations
  • All translations

To add research to a word list please sign up or log in.

Add research to one of your lists below, or create a new one.

{{message}}

Something went wrong.

There was a problem sending your report.

Cookies on GOV.UK

We use some essential cookies to make this website work.

We’d like to set additional cookies to understand how you use GOV.UK, remember your settings and improve government services.

We also use cookies set by other sites to help us deliver content from their services.

You have accepted additional cookies. You can change your cookie settings at any time.

You have rejected additional cookies. You can change your cookie settings at any time.

  • Department of Health & Social Care

Management information on recruitment to clinical research studies

Published 12 September 2024

definition of a research study

© Crown copyright 2024

This publication is licensed under the terms of the Open Government Licence v3.0 except where otherwise stated. To view this licence, visit nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: [email protected] .

Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned.

This publication is available at https://www.gov.uk/government/publications/management-information-on-recruitment-to-clinical-research-studies/management-information-on-recruitment-to-clinical-research-studies

Data on the recruitment to clinical research studies, reported to the Department of Health and Social Care ( DHSC ). This release is published as management information, in accordance with the Code of Practice for Statistics , to improve transparency and support publication of the Darzi review on 12 September 2024. The Darzi review is the independent investigation of the National Health Service in England, led by Lord Darzi.

Clinical research studies are important for advancing medical knowledge and enhancing patient care. These investigations are designed to evaluate the safety, efficacy and effectiveness of new treatments, medications, devices, or interventions. Clinical research includes various types of studies, such as clinical trials and observational studies.

Clinical trials, also known as interventional studies, test new medical approaches, including drugs, vaccines and surgical procedures. They are carried out in phases to assess safety, dosing and effectiveness. Observational studies monitor and analyse the effects of specific variables on health outcomes without intervening.

By systematically investigating in this way, clinical research plays a vital role in discovering new treatments and improving healthcare practices.

Monitoring clinical research delivery

One of the ways clinical research delivery in the UK is monitored is through the UK Clinical Research Delivery Key Performance Indicators Report . This report, previously known as the Research Status Report, brings together data from the National Institute for Health and Care Research ( NIHR ) and the Medicines and Healthcare products Regulatory Agency. It monitors progress on delivering parts of the government’s vision for UK clinical research delivery. The performance indicators measure trends in:

  • the speed and predictability of regulatory and study set-up timelines
  • the delivery of research to time and target
  • overall recruitment levels

The report is published monthly by DHSC and is being used to support the development of policies to encourage clinical research delivery.

This publication focuses specifically on clinical research recruitment data from the UK Clinical Research Delivery Key Performance Indicators Report from April 2014 onwards. It is a supplementary management information release, showing detailed tables behind the recruitment charts published in June 2024’s UK Clinical Research Delivery Key Performance Indicators Report.

Definition of a research study

Research is defined in the UK Policy Framework for Health and Social Care Research as the attempt to derive generalisable or transferable new knowledge to answer or refine relevant questions with scientifically sound methods. This excludes: audit, needs assessments, quality improvement and other local service evaluations. It also excludes routine banking of biological samples or data except where this activity is integral to a self-contained research project designed to test a clear hypothesis.

This definition applies to all studies for which NIHR Clinical Research Network support is sought regardless of the study type or research funder.

Table 1 shows the number of participants recruited into studies since April 2014, held on the NIHR Clinical Research Network’s central portfolio management system.

The central portfolio management system consists of all studies held on the Clinical Research Network portfolio, as well as some studies held on the network portfolios of Northern Ireland, Scotland and Wales.

The data includes recruitment to both interventional and observational studies. The data represents the total number of participants recruited for a given month, based on the month and year the recruitment notification was received.

Table 1: recruitment to clinical research studies

Recruitment month and year Number of participants
April 2014 53,127
May 2014 81,491
June 2014 60,363
July 2014 58,498
August 2014 52,321
September 2014 56,211
October 2014 62,436
November 2014 55,059
December 2014 46,203
January 2015 58,324
February 2015 63,841
March 2015 79,245
April 2015 55,841
May 2015 54,132
June 2015 63,624
July 2015 61,753
August 2015 73,360
September 2015 63,296
October 2015 61,527
November 2015 66,477
December 2015 43,906
January 2016 51,217
February 2016 54,898
March 2016 56,727
April 2016 55,838
May 2016 61,268
June 2016 70,329
July 2016 54,405
August 2016 57,022
September 2016 59,833
October 2016 56,395
November 2016 64,126
December 2016 50,328
January 2017 61,254
February 2017 60,311
March 2017 110,535
April 2017 57,058
May 2017 63,939
June 2017 74,999
July 2017 65,602
August 2017 63,852
September 2017 66,551
October 2017 74,006
November 2017 76,660
December 2017 50,561
January 2018 66,972
February 2018 77,654
March 2018 70,763
April 2018 71,401
May 2018 79,562
June 2018 101,583
July 2018 78,111
August 2018 69,173
September 2018 79,669
October 2018 102,418
November 2018 80,351
December 2018 52,956
January 2019 77,046
February 2019 85,854
March 2019 95,115
April 2019 76,893
May 2019 75,525
June 2019 69,448
July 2019 70,086
August 2019 57,268
September 2019 63,686
October 2019 81,183
November 2019 71,557
December 2019 54,106
January 2020 74,426
February 2020 71,698
March 2020 69,371
April 2020 118,865
May 2020 164,358
June 2020 235,733
July 2020 166,467
August 2020 152,595
September 2020 187,815
October 2020 193,757
November 2020 219,025
December 2020 219,465
January 2021 235,100
February 2021 198,865
March 2021 200,579
April 2021 174,143
May 2021 162,090
June 2021 171,082
July 2021 173,561
August 2021 104,394
September 2021 116,278
October 2021 86,524
November 2021 93,404
December 2021 92,956
January 2022 95,821
February 2022 91,643
March 2022 108,758
April 2022 103,638
May 2022 83,983
June 2022 94,282
July 2022 78,845
August 2022 81,659
September 2022 86,075
October 2022 89,064
November 2022 112,070
December 2022 77,792
January 2023 82,087
February 2023 80,451
March 2023 100,019
April 2023 82,115
May 2023 89,414
June 2023 104,076
July 2023 93,247
August 2023 104,386
September 2023 88,273
October 2023 94,272
November 2023 100,281
December 2023 81,339
January 2024 91,821
February 2024 94,866
March 2024 94,019

Source: NIHR Clinical Research Network, central portfolio management system.

Table 2 shows the number of participants recruited into studies since April 2014, held on the NIHR Clinical Research Network’s central portfolio management system.

Table 2 includes recruitment to 3 study types:

  • commercial contract studies. These are studies sponsored and fully funded by the life sciences industry
  • commercial collaborative studies. These are studies typically funded, wholly or in part, by the life sciences industry and sponsored by a combination of life sciences industry and non-commercial organisations. This category has previously been included in non-commercial figures but it is now being presented separately to better represent the breadth of commercial studies. Commercial collaborative studies are supported in the same way as other non-commercial studies
  • non-commercial studies. These are studies sponsored and wholly funded by one or more non-commercial organisations, including medical research charities, universities and public funders such as NIHR and UK Research and Innovation

The data includes recruitment to both interventional and observational studies.

Table 2: recruitment to clinical research studies broken down by study type, 2014 to 2024

Recruitment month and year Non-commercial Commercial collaborative Commercial contract
April 2014 43,173 5,578 4,376
May 2014 66,388 12,326 2,777
June 2014 50,265 6,927 3,171
July 2014 48,828 6,187 3,483
August 2014 43,815 5,009 3,497
September 2014 47,757 5,369 3,085
October 2014 50,973 7,761 3,702
November 2014 45,728 5,678 3,653
December 2014 38,317 5,003 2,883
January 2015 48,852 5,983 3,489
February 2015 54,665 5,675 3,501
March 2015 67,630 6,463 5,152
April 2015 46,398 5,491 3,952
May 2015 45,736 5,128 3,268
June 2015 52,262 6,359 5,003
July 2015 52,094 6,341 3,318
August 2015 65,660 4,992 2,708
September 2015 53,527 6,263 3,506
October 2015 51,673 6,508 3,346
November 2015 54,737 7,400 4,340
December 2015 35,944 5,501 2,461
January 2016 41,691 6,574 2,952
February 2016 44,330 7,153 3,415
March 2016 46,049 7,676 3,002
April 2016 46,580 6,286 2,972
May 2016 51,508 6,409 3,351
June 2016 61,073 6,254 3,002
July 2016 46,045 5,596 2,764
August 2016 48,837 5,245 2,940
September 2016 50,791 5,029 4,013
October 2016 48,241 5,313 2,841
November 2016 54,962 5,560 3,604
December 2016 43,086 4,334 2,908
January 2017 52,886 5,674 2,694
February 2017 51,752 5,208 3,351
March 2017 99,600 6,468 4,467
April 2017 48,363 4,920 3,775
May 2017 54,453 5,861 3,625
June 2017 65,652 5,645 3,702
July 2017 56,161 5,809 3,632
August 2017 53,720 6,230 3,902
September 2017 56,392 6,642 3,517
October 2017 58,803 7,150 8,053
November 2017 59,785 6,976 9,899
December 2017 41,825 4,981 3,755
January 2018 56,295 6,907 3,770
February 2018 67,389 7,026 3,239
March 2018 59,613 7,229 3,921
April 2018 58,101 9,893 3,407
May 2018 65,842 10,130 3,590
June 2018 90,507 7,226 3,850
July 2018 65,253 8,034 4,824
August 2018 56,754 7,628 4,791
September 2018 64,719 9,524 5,426
October 2018 81,222 15,107 6,089
November 2018 64,477 9,960 5,914
December 2018 43,264 6,072 3,620
January 2019 64,392 7,900 4,754
February 2019 73,602 8,027 4,225
March 2019 78,586 12,842 3,687
April 2019 65,227 8,619 3,047
May 2019 64,321 8,270 2,934
June 2019 58,436 7,384 3,628
July 2019 57,487 8,988 3,611
August 2019 46,164 8,027 3,077
September 2019 51,515 9,676 2,495
October 2019 65,035 13,081 3,067
November 2019 58,227 9,737 3,593
December 2019 43,547 8,062 2,497
January 2020 60,631 10,273 3,522
February 2020 59,870 9,134 2,694
March 2020 61,025 6,653 1,693
April 2020 115,845 2,424 596
May 2020 161,882 2,093 383
June 2020 231,322 3,031 1,380
July 2020 158,874 5,974 1,619
August 2020 146,518 4,112 1,965
September 2020 180,769 5,629 1,417
October 2020 175,345 10,031 8,381
November 2020 197,086 10,666 11,273
December 2020 205,579 9,453 4,433
January 2021 223,132 6,580 5,388
February 2021 190,285 6,573 2,007
March 2021 188,380 10,219 1,980
April 2021 159,679 12,641 1,823
May 2021 144,032 11,711 6,347
June 2021 158,606 9,939 2,537
July 2021 162,320 8,037 3,204
August 2021 93,479 8,438 2,477
September 2021 104,652 9,317 2,309
October 2021 73,910 10,407 2,207
November 2021 79,500 11,252 2,652
December 2021 84,682 6,125 2,149
January 2022 86,960 6,681 2,180
February 2022 82,369 6,405 2,869
March 2022 97,714 8,093 2,951
April 2022 91,085 8,537 4,016
May 2022 70,674 10,166 3,143
June 2022 82,982 9,150 2,150
July 2022 67,393 9,077 2,375
August 2022 68,433 10,222 3,004
September 2022 72,358 10,821 2,896
October 2022 74,041 11,959 3,064
November 2022 93,771 13,873 4,426
December 2022 65,879 8,793 3,120
January 2023 67,678 10,949 3,460
February 2023 64,479 12,045 3,927
March 2023 82,690 10,892 6,437
April 2023 69,130 8,885 4,100
May 2023 75,632 9,370 4,412
June 2023 82,690 8,525 12,861
July 2023 75,273 8,535 9,439
August 2023 82,591 9,036 12,759
September 2023 71,893 8,170 8,210
October 2023 68,843 10,785 14,644
November 2023 72,188 11,216 16,877
December 2023 49,048 7,820 24,471
January 2024 68,659 10,785 12,377
February 2024 71,830 10,266 12,770
March 2024 67,475 11,090 15,454

Methodology and quality note

Inclusion and exclusion criteria.

Recruitment is only recorded in the central portfolio management system if it meets the definitions of recruitment as outlined in the NIHR Clinical Research Network Recruitment Policy Document . For example, recruitment data is not collected for studies classified as non-consenting. These are exceptional circumstances where no form of consent can be obtained.

Only research activity with a status of confirmed and provisional is included. Research activity which is indicated as inaccurate (queried) is excluded from figures.

Confirmed status includes manually uploaded data or data from the local portfolio management system that has been confirmed as accurate by the Chief Investigator, their representative or a representative of the commercial sponsor or contract research organisation.

Provisional status is given to data from the local portfolio management system that has yet to be confirmed or that requires reconfirmation following queries.

Data source and coverage

The data has been sourced from the central portfolio management system. The central portfolio management system consists of all studies held on the Clinical Research Network portfolio, as well as some studies held on the network portfolios of Northern Ireland, Scotland and Wales.

The data is recorded monthly from April 2014 to March 2024. For the purpose of the UK Clinical Research Delivery Key Performance Indicators Report, monthly snapshots are taken according to a data cut schedule. The snapshot used in this publication was taken on 21 June 2024.

Data caveats

The data does not show recruitment to the whole clinical research system, only recruitment to studies on the central portfolio management system. Therefore, this data will be an underestimate of total clinical research recruitment in the UK.

The data is not exclusive to NHS sites and includes recruitment to non- NHS sites.

While data covers the whole of the UK, data relating to studies led by devolved administrations may be incomplete. This is because they are only included in the central portfolio management system when added by the devolved administrations.

The quality of the data is dependent on the accuracy and timeliness of recruitment data being recorded in the system.

There is often a lag between activity taking place at a study site and data being recorded in the system. This means that previous months’ data may be updated retrospectively. Changes in recruitment for individual recent months should not be taken as an indication of overall trend in recruitment.

From the 2023 to 2024 financial year onwards, the data for the commercial collaborative category will be more robust. This is due to data quality improvements linked to reporting this category separately, instead of classifying activities as purely commercial or non-commercial. Not all studies will have been reviewed retrospectively and re-classified where necessary, particularly studies that had already closed.

Using the data

The data cannot be used for:

  • measuring overall UK study recruitment as the data is only on studies on the central portfolio management system (not activity of the whole research environment). It is unknown what proportion of studies in the UK at that particular point in time are contributing to the figures
  • comparing (portfolio) recruitment over the time. The network as an organisation and its remit has changed significantly over time. Caution should be taken with time comparisons as portfolio and associated data collection may have changed
  • UK-wide data within the central portfolio management system across years. It has only been in recent years that UK-wide data for commercial (for example) has been collected into the central portfolio management system

The portfolio balance between observational studies and interventional ones will influence the numbers. For example, if at a particular time, the portfolio has some large sample size observational studies, this will affect recruitment numbers and make it difficult to compare to other years.

Recruitment from private sites may not be collected and so may not be included in the data.

If you have any questions in relation to these statistics, please contact [email protected] .

Is this page useful?

  • Yes this page is useful
  • No this page is not useful

Help us improve GOV.UK

Don’t include personal or financial information like your National Insurance number or credit card details.

To help us improve GOV.UK, we’d like to know more about your visit today. Please fill in this survey (opens in a new tab) .

You need to enable JavaScript to run this app.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is Qualitative Research? | Methods & Examples

What Is Qualitative Research? | Methods & Examples

Published on June 19, 2020 by Pritha Bhandari . Revised on September 5, 2024.

Qualitative research involves collecting and analyzing non-numerical data (e.g., text, video, or audio) to understand concepts, opinions, or experiences. It can be used to gather in-depth insights into a problem or generate new ideas for research.

Qualitative research is the opposite of quantitative research , which involves collecting and analyzing numerical data for statistical analysis.

Qualitative research is commonly used in the humanities and social sciences, in subjects such as anthropology, sociology, education, health sciences, history, etc.

  • How does social media shape body image in teenagers?
  • How do children and adults interpret healthy eating in the UK?
  • What factors influence employee retention in a large organization?
  • How is anxiety experienced around the world?
  • How can teachers integrate social issues into science curriculums?

Table of contents

Approaches to qualitative research, qualitative research methods, qualitative data analysis, advantages of qualitative research, disadvantages of qualitative research, other interesting articles, frequently asked questions about qualitative research.

Qualitative research is used to understand how people experience the world. While there are many approaches to qualitative research, they tend to be flexible and focus on retaining rich meaning when interpreting data.

Common approaches include grounded theory, ethnography , action research , phenomenological research, and narrative research. They share some similarities, but emphasize different aims and perspectives.

Qualitative research approaches
Approach What does it involve?
Grounded theory Researchers collect rich data on a topic of interest and develop theories .
Researchers immerse themselves in groups or organizations to understand their cultures.
Action research Researchers and participants collaboratively link theory to practice to drive social change.
Phenomenological research Researchers investigate a phenomenon or event by describing and interpreting participants’ lived experiences.
Narrative research Researchers examine how stories are told to understand how participants perceive and make sense of their experiences.

Note that qualitative research is at risk for certain research biases including the Hawthorne effect , observer bias , recall bias , and social desirability bias . While not always totally avoidable, awareness of potential biases as you collect and analyze your data can prevent them from impacting your work too much.

Prevent plagiarism. Run a free check.

Each of the research approaches involve using one or more data collection methods . These are some of the most common qualitative methods:

  • Observations: recording what you have seen, heard, or encountered in detailed field notes.
  • Interviews:  personally asking people questions in one-on-one conversations.
  • Focus groups: asking questions and generating discussion among a group of people.
  • Surveys : distributing questionnaires with open-ended questions.
  • Secondary research: collecting existing data in the form of texts, images, audio or video recordings, etc.
  • You take field notes with observations and reflect on your own experiences of the company culture.
  • You distribute open-ended surveys to employees across all the company’s offices by email to find out if the culture varies across locations.
  • You conduct in-depth interviews with employees in your office to learn about their experiences and perspectives in greater detail.

Qualitative researchers often consider themselves “instruments” in research because all observations, interpretations and analyses are filtered through their own personal lens.

For this reason, when writing up your methodology for qualitative research, it’s important to reflect on your approach and to thoroughly explain the choices you made in collecting and analyzing the data.

Qualitative data can take the form of texts, photos, videos and audio. For example, you might be working with interview transcripts, survey responses, fieldnotes, or recordings from natural settings.

Most types of qualitative data analysis share the same five steps:

  • Prepare and organize your data. This may mean transcribing interviews or typing up fieldnotes.
  • Review and explore your data. Examine the data for patterns or repeated ideas that emerge.
  • Develop a data coding system. Based on your initial ideas, establish a set of codes that you can apply to categorize your data.
  • Assign codes to the data. For example, in qualitative survey analysis, this may mean going through each participant’s responses and tagging them with codes in a spreadsheet. As you go through your data, you can create new codes to add to your system if necessary.
  • Identify recurring themes. Link codes together into cohesive, overarching themes.

There are several specific approaches to analyzing qualitative data. Although these methods share similar processes, they emphasize different concepts.

Qualitative data analysis
Approach When to use Example
To describe and categorize common words, phrases, and ideas in qualitative data. A market researcher could perform content analysis to find out what kind of language is used in descriptions of therapeutic apps.
To identify and interpret patterns and themes in qualitative data. A psychologist could apply thematic analysis to travel blogs to explore how tourism shapes self-identity.
To examine the content, structure, and design of texts. A media researcher could use textual analysis to understand how news coverage of celebrities has changed in the past decade.
To study communication and how language is used to achieve effects in specific contexts. A political scientist could use discourse analysis to study how politicians generate trust in election campaigns.

Qualitative research often tries to preserve the voice and perspective of participants and can be adjusted as new research questions arise. Qualitative research is good for:

  • Flexibility

The data collection and analysis process can be adapted as new ideas or patterns emerge. They are not rigidly decided beforehand.

  • Natural settings

Data collection occurs in real-world contexts or in naturalistic ways.

  • Meaningful insights

Detailed descriptions of people’s experiences, feelings and perceptions can be used in designing, testing or improving systems or products.

  • Generation of new ideas

Open-ended responses mean that researchers can uncover novel problems or opportunities that they wouldn’t have thought of otherwise.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

definition of a research study

Researchers must consider practical and theoretical limitations in analyzing and interpreting their data. Qualitative research suffers from:

  • Unreliability

The real-world setting often makes qualitative research unreliable because of uncontrolled factors that affect the data.

  • Subjectivity

Due to the researcher’s primary role in analyzing and interpreting data, qualitative research cannot be replicated . The researcher decides what is important and what is irrelevant in data analysis, so interpretations of the same data can vary greatly.

  • Limited generalizability

Small samples are often used to gather detailed data about specific contexts. Despite rigorous analysis procedures, it is difficult to draw generalizable conclusions because the data may be biased and unrepresentative of the wider population .

  • Labor-intensive

Although software can be used to manage and record large amounts of text, data analysis often has to be checked or performed manually.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square goodness of fit test
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Inclusion and exclusion criteria

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organization to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organize your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2024, September 05). What Is Qualitative Research? | Methods & Examples. Scribbr. Retrieved September 16, 2024, from https://www.scribbr.com/methodology/qualitative-research/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, qualitative vs. quantitative research | differences, examples & methods, how to do thematic analysis | step-by-step guide & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Who is Hispanic?

Beauty pageant contestants at the Junta Hispana Hispanic cultural festival in Miami.

Debates over who is Hispanic have often fueled conversations about identity among Americans who trace their heritage to Latin America or Spain .

So, who is considered Hispanic in the United States today? How exactly do the federal government and others count the Hispanic population? And what role does race play in deciding who counts as Hispanic?

We’ll answer these and other common questions here.

To answer the question of who is Hispanic, this analysis draws on about five decades of U.S. Census Bureau data and about two decades of Pew Research Center surveys of Hispanic adults in the United States.

National counts of the Latino population come from the Census Bureau’s decennial census (this includes P.L. 94-171 census data ) and official population estimates . The bureau’s American Community Survey (ACS) provides demographic details such as race, country of origin and intermarriage rates. Some ACS data was accessed through IPUMS USA from the University of Minnesota.

Views of Hispanic identity draw on the Center’s National Survey of Latinos (NSL), which is fielded in English and Spanish. The survey has been conducted online since 2019, primarily through the Center’s American Trends Panel (ATP), which is recruited through national, random sampling of residential addresses. This way nearly all adults have a chance of selection. The survey is weighted to be representative of the U.S. Hispanic adult population by gender, Hispanic origin, partisan affiliation, education and other categories. Read more about the ATP’s methodology . The NSL was conducted by phone from 2002 to 2018.

Read further details on how the Census Bureau asked about race and ethnicity and coded responses in the 2020 census. Here is a full list of origin groups that were coded as Hispanic in the 2020 census.

How many Hispanics are in the U.S. today?

definition of a research study

The Census Bureau estimates there were 65.2 million Hispanics in the U.S. as of July 1, 2023, a new high. They made up more than 19% of the nation’s population .

How are Hispanics identified and counted in government surveys, public opinion polls and other studies?

Before diving into the details, keep in mind that some surveys ask about Hispanic origin and race separately, following current Census Bureau practices – though these are soon to change.

One way to count Hispanics is to include those who say they are Hispanic, with no exceptions – that is, you are Hispanic if you say you are. Pew Research Center uses this approach in our surveys, as do other polling firms such as Gallup and voter exit polls .

The Census Bureau largely counts Hispanics this way, too, but with some exceptions. If respondents select only the “Other Hispanic” category and write in only non-Hispanic responses such as “Irish,” the Census Bureau recodes the response as non-Hispanic.

However, beginning in 2020 , the bureau widened the lens to include a relatively small number of people who did not check a Hispanic box on the census form but answered the race question in a way that implied a Hispanic background. As a result, someone who answered the race question by saying that they are “Mexican” or “Argentinean” was counted as Hispanic, even if they did not check the Hispanic box.

From the available data, the exact number of respondents affected by this change is difficult to determine. But it appears to be about 1% of Hispanics or fewer, according to a Pew Research Center analysis of U.S. Census Bureau data.

An image showing how the U.S. Census Bureau determines who is Hispanic in government surveys.

How do Hispanics identify their race in Census Bureau surveys?

In the eyes of the Census Bureau, Hispanics can be of any race, because “Hispanic” is an ethnicity and not a race. However, this distinction is subject to debate . A 2015 Center survey found that 17% of Hispanic adults said being Hispanic is mainly a matter of race, while 29% said it is mainly a matter of ancestry. Another 42% said it is mainly a matter of culture.

A bar chart showing that most Hispanics do not identify their race only as White, Black or Asian.

Nonetheless, the Census Bureau’s 2022 American Community Survey (ACS) provides the self-reported racial identity of Hispanics: 22.5 million single-race Hispanics identified only as “some other race.” This group mostly includes those who wrote in a Hispanic origin or nationality as their race. Another 10.7 million identified as White. Fewer Hispanics identified as American Indian (1.5 million), Black (1.0 million) or Asian (300,000).

Multiracial Hispanics

Another roughly 27.5 million Hispanics identified as more than one race in 2022, up from just 3 million in 2010.

Growth in the number of multiracial Hispanics comes primarily from those who identify as White and “some other race.” That population grew from 1.6 million to 24.9 million between 2010 and 2022. The number of Hispanics who identify as White and no other race declined from 26.7 million to 10.7 million.

The sharp increase in multiracial Hispanics could be due to several factors, including changes to the census form introduced in 2020 that added more space for written responses to the race question and growing racial diversity among Hispanics. This explanation is supported by the fact that almost 25 million of the Hispanics who identified as two or more races in 2022 were coded as “some other race” (and wrote in a response) and one of the specific races (such as Black or White). About 2.6 million Hispanics identified with two or more of the five major races offered in the census.

Changes for the 2030 census

definition of a research study

The 2030 census will combine the race and ethnicity questions , a change that other federal surveys will implement in coming years. The new question will add checkboxes for “Hispanic or Latino” and “Middle Eastern or North African” among other race groups long captured in Census Bureau surveys.

Officials hope the changes will reduce the number of Americans who choose the “Some other race” category, especially among Hispanics . However, it’s worth noting that public feedback has raised a variety of concerns, including that combining the race and ethnicity questions could lead to an undercount of the nation’s Afro-Latino population .

Is there an official definition of Hispanic or Latino?

In 1976, Congress passed a law that required the government to collect and analyze data for a specific ethnic group: “Americans of Spanish origin or descent.” That legislation defined this group as “Americans [who] identify themselves as being of Spanish-speaking background and trace their origin or descent from Mexico, Puerto Rico, Cuba, Central and South America, and other Spanish-speaking countries.” This includes around 20 Spanish-speaking nations from Latin America and Spain itself, but not Portugal or Portuguese-speaking Brazil.

To implement this law, the U.S. Office of Management and Budget (OMB) developed Statistical Policy Directive No. 15 (SPD 15) in 1977, then revised it in 1997 and again in March 2024. In the most recent revision, OMB updated racial and ethnic definitions when it announced the combined race and ethnicity question. The current definition of “ Hispanic or Latino ” is “individuals of Mexican, Puerto Rican, Salvadoran, Cuban, Dominican, Guatemalan, and other Central or South American or Spanish culture or origin.”

The Census Bureau first asked everybody in the U.S. about Hispanic ethnicity in 1980. But it made some efforts before then to count people who today would be considered Hispanic. The Census Bureau also has a long history of changing labels and shifting categories . In the 1930 census, for example, the race question had a category for “Mexican.”

The first major attempt to estimate the size of the nation’s Hispanic population came in 1970 and prompted widespread concerns among Hispanic organizations about an undercount. A portion of the U.S. population (5%) was asked if their origin or descent was from the following categories: “Mexican, Puerto Rican, Cuban, Central or South American, Other Spanish” or “No, none of these.”

This approach indeed undercounted about 1 million Hispanics. Many second-generation Hispanics did not select one of the Hispanic groups because the question did not include terms like “Mexican American.” The question wording also resulted in hundreds of thousands of people living in the Central or Southern regions of the U.S. being mistakenly included in the “Central or South American” category.

By 1980, the current approach – in which someone is asked if they are Hispanic – had taken hold, with some changes to the question and response categories since then. In 2000, for example, the term “Latino” was added to make the question read, “Is this person Spanish/Hispanic/Latino?”

What’s the difference between Hispanic and Latino?

“Hispanic” and “Latino” are pan-ethnic terms meant to describe – and summarize – the population of people of that ethnic background living in the U.S. In practice, the Census Bureau often uses the term “Hispanic” or “Hispanic or Latino.”

Some people have drawn sharp distinctions between these two terms . For example, some say that Hispanics are from Spain or from Spanish-speaking countries in Latin America, which matches the federal definition, and Latinos are people from Latin America, regardless of language. In this definition, Latinos would include people from Brazil (where Portuguese is the official language) but not Spain or Portugal.

A stacked bar chart showing that Hispanics describe their identity in different ways.

Pan-ethnic labels like Hispanic and Latino, though widely used, are not universally embraced by the population being labeled. Our 2023 National Survey of Latinos shows a preference for other terms to describe identity: 52% of respondents most often described themselves by their family’s country of origin, while 30% used the terms Hispanic, Latino, Latinx or Latine, and 17% most often described themselves as American.

The 2023 survey also finds varying preferences for pan-ethnic labels: 52% of Hispanics prefer to describe themselves as Hispanic, 29% prefer Latino, 2% prefer Latinx, 1% prefer Latine and 15% have no preference.

What is ‘Latinx’ and who uses it?

A line chart showing that awareness of ‘Latinx’ has doubled since 2019, but use remains low.

Latinx is a pan-ethnic identity term that has emerged in recent years as an alternative to Hispanic and Latino. Some news and entertainment outlets, corporations , local governments and universities use it to describe the nation’s Hispanic population.

However, its popularity has brought increased scrutiny in the U.S. and abroad . Some critics say it ignores the gendered forms of Spanish language, while others see Latinx as a gender- and LGBTQ+-inclusive term . Adding to the debate, some state lawmakers favor banning the use of the term entirely in government documents; Arkansas has done so already .

A 2023 survey found that awareness of Latinx has doubled among U.S. Hispanics since 2019, with growth across all major demographic subgroups. Still, the share of Hispanic adults who use Latinx to describe themselves is statistically unchanged: In 2023, 4% said they use it, compared with 3% in 2019.

Latinx is also broadly unpopular among Latinos who know the term. Three-in-four Latino adults who are aware of Latinx say the term should not be used to describe Hispanics or Latinos.

The emergence of Latinx coincides with a global movement to introduce gender-neutral nouns and pronouns into many languages that have traditionally used male or female constructions. In the U.S., Latinx first appeared more than a decade ago, and it was added to a widely used English dictionary in 2018.

What is ‘Latine’ and who uses it?

A pie chart showing that about 1 in 5 Hispanics have heard of ‘Latine.’

Latine is another pan-ethnic term that has emerged in recent years. Our 2023 survey found that 18% of U.S. Hispanics have heard of the term.

Similar to familiarity with Latinx, awareness of Latine varies by age, education and sexual orientation. Among Latinos, awareness of Latine is highest among those ages 18 to 29 (22%), college graduates (24%) and lesbian, gay and bisexual adults (32%).

How do factors like language, parental background and last name affect whether someone is considered Hispanic?

Many U.S. Hispanics have an inclusive view of what it means to be Hispanic:

  • 78% of Hispanic adults said in a 2022 Center survey that speaking Spanish is not required to be considered Hispanic. English-dominant Hispanics were more likely than Spanish-dominant Hispanics to say so (93% vs. 64%).
  • 33% of Hispanic adults said in a 2019 survey that having two Hispanic parents is not an essential part of what being Hispanic means to them. Another 34% said it was important but not essential and 32% said it was essential.
  • 84% of Hispanic adults said in a 2015 survey that having a Spanish last name is not required.

Views of Hispanic identity may change in the coming decades as broad societal changes, such as rising intermarriage rates, produce an increasingly diverse and multiracial U.S. population .

Today, many Hispanic families include people who are not Hispanic:

A chart showing that, in 2022, 3 in 10 Hispanic newlyweds in the U.S. married someone who is not Hispanic.

Spouses: Among all married Hispanics in 2022, 22% had a spouse who is not Hispanic. And in a 2023 Center survey , 27% of Hispanics with a spouse or partner said their spouse or partner is not Hispanic.

Newlyweds: In 2022, 30% of Hispanic newlyweds married someone who is not Hispanic. Among them, 41% of those born in the U.S. married someone who is not Hispanic, compared with 11% of immigrant newlyweds, according to an analysis of ACS data.

Parents: Our 2015 survey found that 15% of U.S. Hispanic adults had at least one parent who is not Hispanic. This share rose to 29% among the U.S. born and 48% among the third or higher generation – those born in the U.S. to parents who were also U.S. born.

What role does skin color play in whether someone is Hispanic?

In surveys like those from the Census Bureau, skin color does not play a role in determining who is Hispanic or not. However, as with race, Latinos can have many different skin tones. A 2021 Center survey of Latino adults showed respondents a palette of 10 skin colors and asked them to choose which one most closely resembled their own.

Latinos reported having a variety of skin tones, reflecting the diversity within the group. Eight-in-ten Latinos selected one of the four lightest skin colors. By contrast, only 3% selected one of the four darkest skin colors.

A bar chart showing that Afro-Latinos are about 2% of U.S. adult population and 12% of Latino adults but almost one-in-seven do not identify as Hispanic or Latino.

A majority of Latino adults (57%) say skin color shapes their daily life experiences at least somewhat. Similar shares say having a lighter skin color helps Latinos get ahead in the U.S. (59%) and that having a darker skin color hurts Latinos’ ability to get ahead (62%).

Are Afro-Latinos Hispanic?

Afro-Latino identity is distinct from and can exist alongside a person’s Hispanic identity. Afro-Latinos’ life experiences are shaped by race, skin tone and other factors in ways that differ from other Hispanics. While most Afro-Latinos identify as Hispanic or Latino, not all do, according to our estimates based on a survey of U.S. adults conducted in 2019 and 2020.

In 2020, about 6 million Afro-Latino adults lived in the U.S., making up about 2% of the U.S. adult population and 12% of the adult Latino population. About one-in-seven Afro-Latinos – an estimated 800,000 adults – do not identify as Hispanic.

Are Brazilians, Portuguese, Belizeans and Filipinos considered Hispanic?

Officially, Brazilians are not considered Hispanic or Latino because the federal government’s definition applies only to those of “Spanish culture or origin.” In most cases, people who report their Hispanic or Latino ethnicity as Brazilian in Census Bureau surveys are later recategorized – or “back coded” – as not Hispanic or Latino . The same is true for people with origins in Belize, the Philippines and Portugal.

An error in how the Census Bureau processed data from a 2020 national survey omitted some of this coding and provided a rare window into how Brazilians (and other groups) living in the U.S. view their identity.

In 2020, at least 416,000 Brazilians — more than two-thirds of Brazilians in the U.S. — described themselves as Hispanic or Latino on the ACS and were mistakenly counted that way. Only 14,000 Brazilians were counted as Hispanic in 2019, and 16,000 were in 2021.

The large number of Brazilians who self-identified as Hispanic or Latino highlights how their view of their own identity does not necessarily align with official government definitions. It also underscores that being Hispanic or Latino means different things to different people .

How many people with Hispanic ancestry do not identify as Hispanic?

definition of a research study

Of the 42.7 million adults with Hispanic ancestry living in the U.S. in 2015, an estimated 5 million people, or 11%, said they do not identify as Hispanic or Latino , according to a 2015-16 Center survey. These people aren’t counted as Hispanic in our surveys.

Notably, Hispanic self-identification varies across immigrant generations. Among immigrants from Latin America, nearly all identify as Hispanic. But by the fourth generation, only half of people with Hispanic heritage in the U.S. identify as Hispanic.

Note: This is an update of a post originally published on May 28, 2009.

  • Hispanic/Latino Identity
  • Racial & Ethnic Identity

Download Mark Hugo Lopez's photo

Mark Hugo Lopez is director of race and ethnicity research at Pew Research Center .

Download Jens Manuel Krogstad's photo

Jens Manuel Krogstad is a senior writer and editor at Pew Research Center .

Download Jeffrey S. Passel's photo

Jeffrey S. Passel is a senior demographer at Pew Research Center .

Latinx Awareness Has Doubled Among U.S. Hispanics Since 2019, but Only 4% Use It

A majority of latinas feel pressure to support their families or to succeed at work, key facts about u.s. latinos for national hispanic heritage month, latinos’ views of and experiences with the spanish language, 11 facts about hispanic origin groups in the u.s., most popular.

901 E St. NW, Suite 300 Washington, DC 20004 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan, nonadvocacy fact tank that informs the public about the issues, attitudes and trends shaping the world. It does not take policy positions. The Center conducts public opinion polling, demographic research, computational social science research and other data-driven research. Pew Research Center is a subsidiary of The Pew Charitable Trusts , its primary funder.

© 2024 Pew Research Center

Warning: The NCBI web site requires JavaScript to function. more...

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

InformedHealth.org [Internet]. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006-.

Cover of InformedHealth.org

InformedHealth.org [Internet].

In brief: what types of studies are there.

Last Update: September 8, 2016 ; Next update: 2024.

There are various types of scientific studies such as experiments and comparative analyses, observational studies, surveys, or interviews. The choice of study type will mainly depend on the research question being asked.

When making decisions, patients and doctors need reliable answers to a number of questions. Depending on the medical condition and patient's personal situation, the following questions may be asked:

  • What is the cause of the condition?
  • What is the natural course of the disease if left untreated?
  • What will change because of the treatment?
  • How many other people have the same condition?
  • How do other people cope with it?

Each of these questions can best be answered by a different type of study.

In order to get reliable results, a study has to be carefully planned right from the start. One thing that is especially important to consider is which type of study is best suited to the research question. A study protocol should be written and complete documentation of the study's process should also be done. This is vital in order for other scientists to be able to reproduce and check the results afterwards.

The main types of studies are randomized controlled trials (RCTs), cohort studies, case-control studies and qualitative studies.

  • Randomized controlled trials

If you want to know how effective a treatment or diagnostic test is, randomized trials provide the most reliable answers. Because the effect of the treatment is often compared with "no treatment" (or a different treatment), they can also show what happens if you opt to not have the treatment or diagnostic test.

When planning this type of study, a research question is stipulated first. This involves deciding what exactly should be tested and in what group of people. In order to be able to reliably assess how effective the treatment is, the following things also need to be determined before the study is started:

  • How long the study should last
  • How many participants are needed
  • How the effect of the treatment should be measured

For instance, a medication used to treat menopause symptoms needs to be tested on a different group of people than a flu medicine. And a study on treatment for a stuffy nose may be much shorter than a study on a drug taken to prevent strokes .

“Randomized” means divided into groups by chance. In RCTs participants are randomly assigned to one of two or more groups. Then one group receives the new drug A, for example, while the other group receives the conventional drug B or a placebo (dummy drug). Things like the appearance and taste of the drug and the placebo should be as similar as possible. Ideally, the assignment to the various groups is done "double blinded," meaning that neither the participants nor their doctors know who is in which group.

The assignment to groups has to be random in order to make sure that only the effects of the medications are compared, and no other factors influence the results. If doctors decided themselves which patients should receive which treatment, they might – for instance – give the more promising drug to patients who have better chances of recovery. This would distort the results. Random allocation ensures that differences between the results of the two groups at the end of the study are actually due to the treatment and not something else.

Randomized controlled trials provide the best results when trying to find out if there is a cause-and-effect relationship. RCTs can answer questions such as these:

  • Is the new drug A better than the standard treatment for medical condition X?
  • Does regular physical activity speed up recovery after a slipped disk when compared to passive waiting?
  • Cohort studies

A cohort is a group of people who are observed frequently over a period of many years – for instance, to determine how often a certain disease occurs. In a cohort study, two (or more) groups that are exposed to different things are compared with each other: For example, one group might smoke while the other doesn't. Or one group may be exposed to a hazardous substance at work, while the comparison group isn't. The researchers then observe how the health of the people in both groups develops over the course of several years, whether they become ill, and how many of them pass away. Cohort studies often include people who are healthy at the start of the study. Cohort studies can have a prospective (forward-looking) design or a retrospective (backward-looking) design. In a prospective study, the result that the researchers are interested in (such as a specific illness) has not yet occurred by the time the study starts. But the outcomes that they want to measure and other possible influential factors can be precisely defined beforehand. In a retrospective study, the result (the illness) has already occurred before the study starts, and the researchers look at the patient's history to find risk factors.

Cohort studies are especially useful if you want to find out how common a medical condition is and which factors increase the risk of developing it. They can answer questions such as:

  • How does high blood pressure affect heart health?
  • Does smoking increase your risk of lung cancer?

For example, one famous long-term cohort study observed a group of 40,000 British doctors, many of whom smoked. It tracked how many doctors died over the years, and what they died of. The study showed that smoking caused a lot of deaths, and that people who smoked more were more likely to get ill and die.

  • Case-control studies

Case-control studies compare people who have a certain medical condition with people who do not have the medical condition, but who are otherwise as similar as possible, for example in terms of their sex and age. Then the two groups are interviewed, or their medical files are analyzed, to find anything that might be risk factors for the disease. So case-control studies are generally retrospective.

Case-control studies are one way to gain knowledge about rare diseases. They are also not as expensive or time-consuming as RCTs or cohort studies. But it is often difficult to tell which people are the most similar to each other and should therefore be compared with each other. Because the researchers usually ask about past events, they are dependent on the participants’ memories. But the people they interview might no longer remember whether they were, for instance, exposed to certain risk factors in the past.

Still, case-control studies can help to investigate the causes of a specific disease, and answer questions like these:

  • Do HPV infections increase the risk of cervical cancer ?
  • Is the risk of sudden infant death syndrome (“cot death”) increased by parents smoking at home?

Cohort studies and case-control studies are types of "observational studies."

  • Cross-sectional studies

Many people will be familiar with this kind of study. The classic type of cross-sectional study is the survey: A representative group of people – usually a random sample – are interviewed or examined in order to find out their opinions or facts. Because this data is collected only once, cross-sectional studies are relatively quick and inexpensive. They can provide information on things like the prevalence of a particular disease (how common it is). But they can't tell us anything about the cause of a disease or what the best treatment might be.

Cross-sectional studies can answer questions such as these:

  • How tall are German men and women at age 20?
  • How many people have cancer screening?
  • Qualitative studies

This type of study helps us understand, for instance, what it is like for people to live with a certain disease. Unlike other kinds of research, qualitative research does not rely on numbers and data. Instead, it is based on information collected by talking to people who have a particular medical condition and people close to them. Written documents and observations are used too. The information that is obtained is then analyzed and interpreted using a number of methods.

Qualitative studies can answer questions such as these:

  • How do women experience a Cesarean section?
  • What aspects of treatment are especially important to men who have prostate cancer ?
  • How reliable are the different types of studies?

Each type of study has its advantages and disadvantages. It is always important to find out the following: Did the researchers select a study type that will actually allow them to find the answers they are looking for? You can’t use a survey to find out what is causing a particular disease, for instance.

It is really only possible to draw reliable conclusions about cause and effect by using randomized controlled trials. Other types of studies usually only allow us to establish correlations (relationships where it isn’t clear whether one thing is causing the other). For instance, data from a cohort study may show that people who eat more red meat develop bowel cancer more often than people who don't. This might suggest that eating red meat can increase your risk of getting bowel cancer. But people who eat a lot of red meat might also smoke more, drink more alcohol, or tend to be overweight. The influence of these and other possible risk factors can only be determined by comparing two equal-sized groups made up of randomly assigned participants.

That is why randomized controlled trials are usually the only suitable way to find out how effective a treatment is. Systematic reviews, which summarize multiple RCTs , are even better. In order to be good-quality, though, all studies and systematic reviews need to be designed properly and eliminate as many potential sources of error as possible.

  • German Network for Evidence-based Medicine. Glossar: Qualitative Forschung.  Berlin: DNEbM; 2011. 
  • Greenhalgh T. Einführung in die Evidence-based Medicine: kritische Beurteilung klinischer Studien als Basis einer rationalen Medizin. Bern: Huber; 2003. 
  • Institute for Quality and Efficiency in Health Care (IQWiG, Germany). General methods . Version 5.0. Cologne: IQWiG; 2017.
  • Klug SJ, Bender R, Blettner M, Lange S. Wichtige epidemiologische Studientypen. Dtsch Med Wochenschr 2007; 132:e45-e47. [ PubMed : 17530597 ]
  • Schäfer T. Kritische Bewertung von Studien zur Ätiologie. In: Kunz R, Ollenschläger G, Raspe H, Jonitz G, Donner-Banzhoff N (eds.). Lehrbuch evidenzbasierte Medizin in Klinik und Praxis. Cologne: Deutscher Ärzte-Verlag; 2007.

IQWiG health information is written with the aim of helping people understand the advantages and disadvantages of the main treatment options and health care services.

Because IQWiG is a German institute, some of the information provided here is specific to the German health care system. The suitability of any of the described options in an individual case can be determined by talking to a doctor. informedhealth.org can provide support for talks with doctors and other medical professionals, but cannot replace them. We do not offer individual consultations.

Our information is based on the results of good-quality studies. It is written by a team of health care professionals, scientists and editors, and reviewed by external experts. You can find a detailed description of how our health information is produced and updated in our methods.

  • Cite this Page InformedHealth.org [Internet]. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006-. In brief: What types of studies are there? [Updated 2016 Sep 8].

In this Page

Informed health links, related information.

  • PubMed Links to PubMed

Recent Activity

  • In brief: What types of studies are there? - InformedHealth.org In brief: What types of studies are there? - InformedHealth.org

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

definition of a research study

  • Study at Cambridge
  • About the University
  • Research at Cambridge
  • Colleges and departments
  • Email and phone search
  • For business
  • For current students
  • Libraries and facilities
  • Museum and collections

Search form

  • Events and open days
  • Fees and finance
  • Student blogs and videos
  • Why Cambridge
  • Qualifications directory
  • How to apply
  • Fees and funding
  • Frequently asked questions
  • International students
  • Continuing education
  • Executive and professional education
  • Course in education
  • Giving to Cambridge
  • How the University and Colleges work
  • Visiting the University
  • Spotlight on...
  • About research at Cambridge

Department of Engineering

  • Overview of the Department
  • 21st Century Engineers
  • Staff and Student Directory
  • Department Newsletter
  • Alumni Relations
  • How to Find Us
  • Keep in touch
  • Undergraduates Overview
  • Prospective Undergraduates
  • Information for Staff
  • Current Undergraduates
  • Postgraduates Overview
  • Taught courses (MPhil and MRes)
  • Centres for Doctoral Training (CDTs)
  • PhD in Engineering
  • MPhil in Engineering
  • Part-time study
  • Applying for taught courses and CDTs
  • Applying for research courses
  • Applying for part-time study
  • Requirements for postgraduate students
  • English language requirements
  • International equivalencies
  • Funding opportunities for applicants
  • Current Postgraduate Students
  • Information for staff
  • Research Overview
  • Energy, Fluids and Turbomachinery
  • Electrical Engineering
  • Mechanics, Materials and Design
  • Civil Engineering
  • Manufacturing and Management
  • Information Engineering
  • Energy, Transport and Urban Infrastructure
  • Manufacturing, Design and Materials
  • Bioengineering
  • Complex, Resilient and Intelligent Systems
  • Research news
  • Research Integrity
  • Collaboration Overview
  • Student Placements
  • Short Student Projects
  • Longer Projects and Frameworks
  • Academic Partnerships
  • Consulting and Other Services
  • Giving to the Department
  • Events and Outreach Overview
  • Events and Seminars
  • Work Experience at the Department of Engineering
  • Services Overview
  • Building and Estate Services
  • Design & Technical Services
  • Health and Safety
  • Printing Services
  • Centre for Languages and Inter-Communication

Professor Harald Haas appointed to the Van Eck Professorship of Engineering

Professor Harald Haas the Van Eck Professor of Engineering

Professor Haas will be the Van Eck Professor of Engineering at the University of Cambridge from 1 April 2024.

Professor Haas has an outstanding academic record in pioneering the use of free-space light, set free from the confines of optical fibres, for high speed local data communications. He brings an exciting new area of research to the Electrical Engineering Division which complements a long history of world-leading research in photonics in Cambridge. Professor Andrew Flewitt

Professor Haas pioneered 'LiFi' (Light Fidelity) the transmission of data through light modulation at potentially much higher data rates than is possible with WiFi or 5G. He coined the term LiFi during his talk at the  TED Talk Global 2011 “Wireless Data from Every Light Bulb”  during which he highlighted the technology that is able to transmit high definition videos at high-speed with only the use of overhead lighting. The talk has been watched more than 2.7 million times

LiFi was listed among the 50 best inventions in TIME Magazine 2011. 

In 2015, Professor Haas presented another idea in which he used ordinary solar cells as LiFi receivers at the  TED Talk Global 2015 "Meet the New LiFi Internet" , which gained more than 2.9 million views.

He received his PhD degree from The University of Edinburgh in 2001. He is a Distinguished Professor of Mobile Communications at the University of Strathclyde.

He is the initiator, co-founder and Chief Scientific Officer of  pureLiFi Ltd  as well as the Director of the  LiFi Research and Development Centre .

His most recent research interests are in combining physics, communication theory and artificial intelligence to develop new wireless technologies and systems for secure, high-speed and net-zero communication networks. 

He co-authored three books entitled: “Next Generation Mobile Access Technologies: Implementing TDD’, and “Principles of LED Light Communications Towards Networked Li-Fi” both published with Cambridge University Press in 2008 and 2015 respectively, as well as “An Introduction to Optical Wireless Mobile Communications” published with Artech House in 2021.

He leads one of three new Telecoms Hubs on ‘Network of Networks’ in the UK, TITAN, which is a consortium of 16 universities and four UK research institutions. 

He has co-authored more than 650 conference and journal papers with more than 50,000 citations and holds 45 patents and has been listed as highly cited researcher by Clarivate/Web of Science since 2017.

Professor Haas was awarded a Royal Society Wolfson Research Merit Award in 2017. In 2019 he received the IEEE Vehicular Society James Evans Avant Garde Award and the Enginuity Connect Places Innovation Award in 2021. He was the recipient of a Humboldt Research Award for his research achievements to date in 2022. He was shortlisted for the European Patent Office Inventor Award in 2023.

In 2016, he was the recipient of the Outstanding Achievement Award from the International Solid State Lighting Alliance.

He is a Fellow of the IEEE, a Fellow of the Royal Academy of Engineering (RAEng), a Fellow of the Royal Society of Edinburgh (RSE) and a Fellow of the Institution of Engineering and Technology (IET).

Professor Haas was interviewed by Jim Al-Khalili on  BBC Radio 4 'The Life Scientific'  in 2023

The Van Eck chair in Engineering

The Van Eck chair in Engineering was created thanks to a legacy from Mr Fred van Eck. The chair sits within the field of advanced science and technology, with an emphasis on high-speed communications. It was previously held by Professor Ian White until he left to become Vice-Chancellor of the University of Bath.

The Electrical Engineering Division

Professor Haas will be based in the Electrical Engineering Division . The study of high-speed communications is a thriving research area in the Department of Engineering. The Electrical Engineering Division has world-leading research on the hardware that underpins photonic systems and communications networks. The Information Engineering Division has similarly distinguished research on coding, compression and information theory for communications systems.

The text in this work is licensed under a  Creative Commons Attribution-NonCommercial-ShareAlike 4. 0 International License . Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways that permit your use and sharing of our content under their respective Terms.

definition of a research study

IMAGES

  1. What is Research

    definition of a research study

  2. Definition Of Research

    definition of a research study

  3. PPT

    definition of a research study

  4. Research

    definition of a research study

  5. How to do research

    definition of a research study

  6. Qualitative Research: Definition, Types, Methods and Examples

    definition of a research study

COMMENTS

  1. Study designs: Part 1

    The study design used to answer a particular research question depends on the nature of the question and the availability of resources. In this article, which is the first part of a series on "study designs," we provide an overview of research study designs and their classification. The subsequent articles will focus on individual designs.

  2. What is Research? Definition, Types, Methods, and Examples

    Definition, Types, Methods, and Examples. Academic research is a methodical way of exploring new ideas or understanding things we already know. It involves gathering and studying information to answer questions or test ideas and requires careful thinking and persistence to reach meaningful conclusions. Let's try to understand what research is.

  3. What is Research: Definition, Methods, Types & Examples

    What is Research? Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, "research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive ...

  4. Understanding Research Study Designs

    Ranganathan P. Understanding Research Study Designs. Indian J Crit Care Med 2019;23 (Suppl 4):S305-S307. Keywords: Clinical trials as topic, Observational studies as topic, Research designs. We use a variety of research study designs in biomedical research. In this article, the main features of each of these designs are summarized. Go to:

  5. What Is a Research Design

    The research design is a strategy for answering your research questions. It determines how you will collect and analyze your data.

  6. Research Methods

    Research Methods | Definitions, Types, Examples Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make.

  7. What Is Research Methodology? Definition + Examples

    Learn exactly what a research methodology is with Grad Coach's plain language, easy-to-understand explanation, including examples and videos.

  8. What Is Research Design? 8 Types + Examples

    Learn about research design for both qualitative and quantitative studies. Includes plain-language explanations and examples.

  9. Research design

    A research design typically outlines the theories and models underlying a project; the research question (s) of a project; a strategy for gathering data and information; and a strategy for producing answers from the data. [1] A strong research design yields valid answers to research questions while weak designs yield unreliable, imprecise or ...

  10. Research Design

    Research design refers to the overall strategy or plan for conducting a research study. It outlines the methods and procedures that will be..

  11. Research

    Research design: Research design refers to the overall plan and structure of the study, including the type of study (e.g., observational, experimental), the sampling strategy, and the data collection and analysis methods. Sampling strategy: Sampling strategy refers to the method used to select a representative sample of participants or units ...

  12. What is a Research Design? Definition, Types, Methods and Examples

    A research design is the overall plan or structure that guides the process of conducting research. Learn more about research design types, methods & examples.

  13. Types of Research Designs Compared

    Types of research can be categorized based on the research aims, the type of data, and the subjects, timescale, and location of the research.

  14. What is Scientific Research and How Can it be Done?

    Research conducted for the purpose of contributing towards science by the systematic collection, interpretation and evaluation of data and that, too, in a planned manner is called scientific research: a researcher is the one who conducts this research. The results obtained from a small group through scientific studies are socialised, and new ...

  15. What is Research? Definition, Types, Methods and Process

    Research is defined as a meticulous and systematic inquiry process designed to explore and unravel specific subjects or issues with precision. Learn more about types of research, processes, and methods with best practices.

  16. Research

    Learn all about research. Study the definition and meaning of research, the different purposes of research, the types of research methods, and know...

  17. What Is Research, and Why Do People Do It?

    Abstractspiepr Abs1. Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain ...

  18. What is Research Design? Types, Elements and Examples

    Have you ever wondered what is research design? Or wanted to know which type of research design is best for your study? We've got you covered! Read this article to understand what research design is, learn the different research design types and their characteristics, with examples.

  19. RESEARCH

    RESEARCH definition: 1. a detailed study of a subject, especially in order to discover (new) information or reach a…. Learn more.

  20. Types of studies and research design

    Types of study design. Medical research is classified into primary and secondary research. Clinical/experimental studies are performed in primary research, whereas secondary research consolidates available studies as reviews, systematic reviews and meta-analyses. Three main areas in primary research are basic medical research, clinical research ...

  21. Management information on recruitment to clinical research studies

    Definition of a research study. Research is defined in the UK Policy Framework for Health and Social Care Research as the attempt to derive generalisable or transferable new knowledge to answer or ...

  22. Definition of research study

    A scientific study of nature that sometimes includes processes involved in health and disease. For example, clinical trials are research studies that involve people.

  23. What Is Qualitative Research?

    Qualitative research involves collecting and analyzing non-numerical data (e.g., text, video, or audio) to understand concepts, opinions, or experiences.

  24. Who is Hispanic?

    ABOUT PEW RESEARCH CENTER Pew Research Center is a nonpartisan, nonadvocacy fact tank that informs the public about the issues, attitudes and trends shaping the world. It does not take policy positions. The Center conducts public opinion polling, demographic research, computational social science research and other data-driven research.

  25. Genocide studies

    Genocide studies is an academic field of study that researches genocide.Genocide became a field of study in the mid-1940s, with the work of Raphael Lemkin, who coined genocide and started genocide research, and its primary subjects were the Armenian genocide and the Holocaust; [1] the Holocaust was the primary subject matter of genocide studies, starting off as a side field of Holocaust ...

  26. In brief: What types of studies are there?

    There are various types of scientific studies such as experiments and comparative analyses, observational studies, surveys, or interviews. The choice of study type will mainly depend on the research question being asked. When making decisions, patients and doctors need reliable answers to a number of questions. Depending on the medical condition and patient's personal situation, the following ...

  27. Entrepreneurial mindset: An integrated definition, a review of current

    Despite an increasing interest in understanding the mindset of entrepreneurs, little consensus exists on what an entrepreneurial mindset (EM) is, how it is developed, or its precise outcomes. Given the fragmented nature of the multidisciplinary study of EM, we review prior work in an effort to enhance scholarly progress. To this end, we identify and review 61 publications on the topic and ...

  28. Meaning-Making Through Dialogic Classroom Discourse in History Classes

    In this study, a TPD format was designed with the aim of helping teachers develop their classroom discussions toward a dialogic participant framework (reference omitted for double-anonymized peer review). The study focused on a TPD program for history and mathematics teachers conducted over one school year.

  29. Professor Harald Haas appointed to the Van Eck Professorship of

    Professor Haas was awarded a Royal Society Wolfson Research Merit Award in 2017. In 2019 he received the IEEE Vehicular Society James Evans Avant Garde Award and the Enginuity Connect Places Innovation Award in 2021. He was the recipient of a Humboldt Research Award for his research achievements to date in 2022.