Python's Assignment Operator: Write Robust Assignments

Python's Assignment Operator: Write Robust Assignments

Table of Contents

The Assignment Statement Syntax

The assignment operator, assignments and variables, other assignment syntax, initializing and updating variables, making multiple variables refer to the same object, updating lists through indices and slices, adding and updating dictionary keys, doing parallel assignments, unpacking iterables, providing default argument values, augmented mathematical assignment operators, augmented assignments for concatenation and repetition, augmented bitwise assignment operators, annotated assignment statements, assignment expressions with the walrus operator, managed attribute assignments, define or call a function, work with classes, import modules and objects, use a decorator, access the control variable in a for loop or a comprehension, use the as keyword, access the _ special variable in an interactive session, built-in objects, named constants.

Python’s assignment operators allow you to define assignment statements . This type of statement lets you create, initialize, and update variables throughout your code. Variables are a fundamental cornerstone in every piece of code, and assignment statements give you complete control over variable creation and mutation.

Learning about the Python assignment operator and its use for writing assignment statements will arm you with powerful tools for writing better and more robust Python code.

In this tutorial, you’ll:

  • Use Python’s assignment operator to write assignment statements
  • Take advantage of augmented assignments in Python
  • Explore assignment variants, like assignment expressions and managed attributes
  • Become aware of illegal and dangerous assignments in Python

You’ll dive deep into Python’s assignment statements. To get the most out of this tutorial, you should be comfortable with several basic topics, including variables , built-in data types , comprehensions , functions , and Python keywords . Before diving into some of the later sections, you should also be familiar with intermediate topics, such as object-oriented programming , constants , imports , type hints , properties , descriptors , and decorators .

Free Source Code: Click here to download the free assignment operator source code that you’ll use to write assignment statements that allow you to create, initialize, and update variables in your code.

Assignment Statements and the Assignment Operator

One of the most powerful programming language features is the ability to create, access, and mutate variables . In Python, a variable is a name that refers to a concrete value or object, allowing you to reuse that value or object throughout your code.

To create a new variable or to update the value of an existing one in Python, you’ll use an assignment statement . This statement has the following three components:

  • A left operand, which must be a variable
  • The assignment operator ( = )
  • A right operand, which can be a concrete value , an object , or an expression

Here’s how an assignment statement will generally look in Python:

Here, variable represents a generic Python variable, while expression represents any Python object that you can provide as a concrete value—also known as a literal —or an expression that evaluates to a value.

To execute an assignment statement like the above, Python runs the following steps:

  • Evaluate the right-hand expression to produce a concrete value or object . This value will live at a specific memory address in your computer.
  • Store the object’s memory address in the left-hand variable . This step creates a new variable if the current one doesn’t already exist or updates the value of an existing variable.

The second step shows that variables work differently in Python than in other programming languages. In Python, variables aren’t containers for objects. Python variables point to a value or object through its memory address. They store memory addresses rather than objects.

This behavior difference directly impacts how data moves around in Python, which is always by reference . In most cases, this difference is irrelevant in your day-to-day coding, but it’s still good to know.

The central component of an assignment statement is the assignment operator . This operator is represented by the = symbol, which separates two operands:

  • A value or an expression that evaluates to a concrete value

Operators are special symbols that perform mathematical , logical , and bitwise operations in a programming language. The objects (or object) on which an operator operates are called operands .

Unary operators, like the not Boolean operator, operate on a single object or operand, while binary operators act on two. That means the assignment operator is a binary operator.

Note: Like C , Python uses == for equality comparisons and = for assignments. Unlike C, Python doesn’t allow you to accidentally use the assignment operator ( = ) in an equality comparison.

Equality is a symmetrical relationship, and assignment is not. For example, the expression a == 42 is equivalent to 42 == a . In contrast, the statement a = 42 is correct and legal, while 42 = a isn’t allowed. You’ll learn more about illegal assignments later on.

The right-hand operand in an assignment statement can be any Python object, such as a number , list , string , dictionary , or even a user-defined object. It can also be an expression. In the end, expressions always evaluate to concrete objects, which is their return value.

Here are a few examples of assignments in Python:

The first two sample assignments in this code snippet use concrete values, also known as literals , to create and initialize number and greeting . The third example assigns the result of a math expression to the total variable, while the last example uses a Boolean expression.

Note: You can use the built-in id() function to inspect the memory address stored in a given variable.

Here’s a short example of how this function works:

The number in your output represents the memory address stored in number . Through this address, Python can access the content of number , which is the integer 42 in this example.

If you run this code on your computer, then you’ll get a different memory address because this value varies from execution to execution and computer to computer.

Unlike expressions, assignment statements don’t have a return value because their purpose is to make the association between the variable and its value. That’s why the Python interpreter doesn’t issue any output in the above examples.

Now that you know the basics of how to write an assignment statement, it’s time to tackle why you would want to use one.

The assignment statement is the explicit way for you to associate a name with an object in Python. You can use this statement for two main purposes:

  • Creating and initializing new variables
  • Updating the values of existing variables

When you use a variable name as the left operand in an assignment statement for the first time, you’re creating a new variable. At the same time, you’re initializing the variable to point to the value of the right operand.

On the other hand, when you use an existing variable in a new assignment, you’re updating or mutating the variable’s value. Strictly speaking, every new assignment will make the variable refer to a new value and stop referring to the old one. Python will garbage-collect all the values that are no longer referenced by any existing variable.

Assignment statements not only assign a value to a variable but also determine the data type of the variable at hand. This additional behavior is another important detail to consider in this kind of statement.

Because Python is a dynamically typed language, successive assignments to a given variable can change the variable’s data type. Changing the data type of a variable during a program’s execution is considered bad practice and highly discouraged. It can lead to subtle bugs that can be difficult to track down.

Unlike in math equations, in Python assignments, the left operand must be a variable rather than an expression or a value. For example, the following construct is illegal, and Python flags it as invalid syntax:

In this example, you have expressions on both sides of the = sign, and this isn’t allowed in Python code. The error message suggests that you may be confusing the equality operator with the assignment one, but that’s not the case. You’re really running an invalid assignment.

To correct this construct and convert it into a valid assignment, you’ll have to do something like the following:

In this code snippet, you first import the sqrt() function from the math module. Then you isolate the hypotenuse variable in the original equation by using the sqrt() function. Now your code works correctly.

Now you know what kind of syntax is invalid. But don’t get the idea that assignment statements are rigid and inflexible. In fact, they offer lots of room for customization, as you’ll learn next.

Python’s assignment statements are pretty flexible and versatile. You can write them in several ways, depending on your specific needs and preferences. Here’s a quick summary of the main ways to write assignments in Python:

Up to this point, you’ve mostly learned about the base assignment syntax in the above code snippet. In the following sections, you’ll learn about multiple, parallel, and augmented assignments. You’ll also learn about assignments with iterable unpacking.

Read on to see the assignment statements in action!

Assignment Statements in Action

You’ll find and use assignment statements everywhere in your Python code. They’re a fundamental part of the language, providing an explicit way to create, initialize, and mutate variables.

You can use assignment statements with plain names, like number or counter . You can also use assignments in more complicated scenarios, such as with:

  • Qualified attribute names , like user.name
  • Indices and slices of mutable sequences, like a_list[i] and a_list[i:j]
  • Dictionary keys , like a_dict[key]

This list isn’t exhaustive. However, it gives you some idea of how flexible these statements are. You can even assign multiple values to an equal number of variables in a single line, commonly known as parallel assignment . Additionally, you can simultaneously assign the values in an iterable to a comma-separated group of variables in what’s known as an iterable unpacking operation.

In the following sections, you’ll dive deeper into all these topics and a few other exciting things that you can do with assignment statements in Python.

The most elementary use case of an assignment statement is to create a new variable and initialize it using a particular value or expression:

All these statements create new variables, assigning them initial values or expressions. For an initial value, you should always use the most sensible and least surprising value that you can think of. For example, initializing a counter to something different from 0 may be confusing and unexpected because counters almost always start having counted no objects.

Updating a variable’s current value or state is another common use case of assignment statements. In Python, assigning a new value to an existing variable doesn’t modify the variable’s current value. Instead, it causes the variable to refer to a different value. The previous value will be garbage-collected if no other variable refers to it.

Consider the following examples:

These examples run two consecutive assignments on the same variable. The first one assigns the string "Hello, World!" to a new variable named greeting .

The second assignment updates the value of greeting by reassigning it the "Hi, Pythonistas!" string. In this example, the original value of greeting —the "Hello, World!" string— is lost and garbage-collected. From this point on, you can’t access the old "Hello, World!" string.

Even though running multiple assignments on the same variable during a program’s execution is common practice, you should use this feature with caution. Changing the value of a variable can make your code difficult to read, understand, and debug. To comprehend the code fully, you’ll have to remember all the places where the variable was changed and the sequential order of those changes.

Because assignments also define the data type of their target variables, it’s also possible for your code to accidentally change the type of a given variable at runtime. A change like this can lead to breaking errors, like AttributeError exceptions. Remember that strings don’t have the same methods and attributes as lists or dictionaries, for example.

In Python, you can make several variables reference the same object in a multiple-assignment line. This can be useful when you want to initialize several similar variables using the same initial value:

In this example, you chain two assignment operators in a single line. This way, your two variables refer to the same initial value of 0 . Note how both variables hold the same memory address, so they point to the same instance of 0 .

When it comes to integer variables, Python exhibits a curious behavior. It provides a numeric interval where multiple assignments behave the same as independent assignments. Consider the following examples:

To create n and m , you use independent assignments. Therefore, they should point to different instances of the number 42 . However, both variables hold the same object, which you confirm by comparing their corresponding memory addresses.

Now check what happens when you use a greater initial value:

Now n and m hold different memory addresses, which means they point to different instances of the integer number 300 . In contrast, when you use multiple assignments, both variables refer to the same object. This tiny difference can save you small bits of memory if you frequently initialize integer variables in your code.

The implicit behavior of making independent assignments point to the same integer number is actually an optimization called interning . It consists of globally caching the most commonly used integer values in day-to-day programming.

Under the hood, Python defines a numeric interval in which interning takes place. That’s the interning interval for integer numbers. You can determine this interval using a small script like the following:

This script helps you determine the interning interval by comparing integer numbers from -10 to 500 . If you run the script from your command line, then you’ll get an output like the following:

This output means that if you use a single number between -5 and 256 to initialize several variables in independent statements, then all these variables will point to the same object, which will help you save small bits of memory in your code.

In contrast, if you use a number that falls outside of the interning interval, then your variables will point to different objects instead. Each of these objects will occupy a different memory spot.

You can use the assignment operator to mutate the value stored at a given index in a Python list. The operator also works with list slices . The syntax to write these types of assignment statements is the following:

In the first construct, expression can return any Python object, including another list. In the second construct, expression must return a series of values as a list, tuple, or any other sequence. You’ll get a TypeError if expression returns a single value.

Note: When creating slice objects, you can use up to three arguments. These arguments are start , stop , and step . They define the number that starts the slice, the number at which the slicing must stop retrieving values, and the step between values.

Here’s an example of updating an individual value in a list:

In this example, you update the value at index 2 using an assignment statement. The original number at that index was 7 , and after the assignment, the number is 3 .

Note: Using indices and the assignment operator to update a value in a tuple or a character in a string isn’t possible because tuples and strings are immutable data types in Python.

Their immutability means that you can’t change their items in place :

You can’t use the assignment operator to change individual items in tuples or strings. These data types are immutable and don’t support item assignments.

It’s important to note that you can’t add new values to a list by using indices that don’t exist in the target list:

In this example, you try to add a new value to the end of numbers by using an index that doesn’t exist. This assignment isn’t allowed because there’s no way to guarantee that new indices will be consecutive. If you ever want to add a single value to the end of a list, then use the .append() method.

If you want to update several consecutive values in a list, then you can use slicing and an assignment statement:

In the first example, you update the letters between indices 1 and 3 without including the letter at 3 . The second example updates the letters from index 3 until the end of the list. Note that this slicing appends a new value to the list because the target slice is shorter than the assigned values.

Also note that the new values were provided through a tuple, which means that this type of assignment allows you to use other types of sequences to update your target list.

The third example updates a single value using a slice where both indices are equal. In this example, the assignment inserts a new item into your target list.

In the final example, you use a step of 2 to replace alternating letters with their lowercase counterparts. This slicing starts at index 1 and runs through the whole list, stepping by two items each time.

Updating the value of an existing key or adding new key-value pairs to a dictionary is another common use case of assignment statements. To do these operations, you can use the following syntax:

The first construct helps you update the current value of an existing key, while the second construct allows you to add a new key-value pair to the dictionary.

For example, to update an existing key, you can do something like this:

In this example, you update the current inventory of oranges in your store using an assignment. The left operand is the existing dictionary key, and the right operand is the desired new value.

While you can’t add new values to a list by assignment, dictionaries do allow you to add new key-value pairs using the assignment operator. In the example below, you add a lemon key to inventory :

In this example, you successfully add a new key-value pair to your inventory with 100 units. This addition is possible because dictionaries don’t have consecutive indices but unique keys, which are safe to add by assignment.

The assignment statement does more than assign the result of a single expression to a single variable. It can also cope nicely with assigning multiple values to multiple variables simultaneously in what’s known as a parallel assignment .

Here’s the general syntax for parallel assignments in Python:

Note that the left side of the statement can be either a tuple or a list of variables. Remember that to create a tuple, you just need a series of comma-separated elements. In this case, these elements must be variables.

The right side of the statement must be a sequence or iterable of values or expressions. In any case, the number of elements in the right operand must match the number of variables on the left. Otherwise, you’ll get a ValueError exception.

In the following example, you compute the two solutions of a quadratic equation using a parallel assignment:

In this example, you first import sqrt() from the math module. Then you initialize the equation’s coefficients in a parallel assignment.

The equation’s solution is computed in another parallel assignment. The left operand contains a tuple of two variables, x1 and x2 . The right operand consists of a tuple of expressions that compute the solutions for the equation. Note how each result is assigned to each variable by position.

A classical use case of parallel assignment is to swap values between variables:

The highlighted line does the magic and swaps the values of previous_value and next_value at the same time. Note that in a programming language that doesn’t support this kind of assignment, you’d have to use a temporary variable to produce the same effect:

In this example, instead of using parallel assignment to swap values between variables, you use a new variable to temporarily store the value of previous_value to avoid losing its reference.

For a concrete example of when you’d need to swap values between variables, say you’re learning how to implement the bubble sort algorithm , and you come up with the following function:

In the highlighted line, you use a parallel assignment to swap values in place if the current value is less than the next value in the input list. To dive deeper into the bubble sort algorithm and into sorting algorithms in general, check out Sorting Algorithms in Python .

You can use assignment statements for iterable unpacking in Python. Unpacking an iterable means assigning its values to a series of variables one by one. The iterable must be the right operand in the assignment, while the variables must be the left operand.

Like in parallel assignments, the variables must come as a tuple or list. The number of variables must match the number of values in the iterable. Alternatively, you can use the unpacking operator ( * ) to grab several values in a variable if the number of variables doesn’t match the iterable length.

Here’s the general syntax for iterable unpacking in Python:

Iterable unpacking is a powerful feature that you can use all around your code. It can help you write more readable and concise code. For example, you may find yourself doing something like this:

Whenever you do something like this in your code, go ahead and replace it with a more readable iterable unpacking using a single and elegant assignment, like in the following code snippet:

The numbers list on the right side contains four values. The assignment operator unpacks these values into the four variables on the left side of the statement. The values in numbers get assigned to variables in the same order that they appear in the iterable. The assignment is done by position.

Note: Because Python sets are also iterables, you can use them in an iterable unpacking operation. However, it won’t be clear which value goes to which variable because sets are unordered data structures.

The above example shows the most common form of iterable unpacking in Python. The main condition for the example to work is that the number of variables matches the number of values in the iterable.

What if you don’t know the iterable length upfront? Will the unpacking work? It’ll work if you use the * operator to pack several values into one of your target variables.

For example, say that you want to unpack the first and second values in numbers into two different variables. Additionally, you would like to pack the rest of the values in a single variable conveniently called rest . In this case, you can use the unpacking operator like in the following code:

In this example, first and second hold the first and second values in numbers , respectively. These values are assigned by position. The * operator packs all the remaining values in the input iterable into rest .

The unpacking operator ( * ) can appear at any position in your series of target variables. However, you can only use one instance of the operator:

The iterable unpacking operator works in any position in your list of variables. Note that you can only use one unpacking operator per assignment. Using more than one unpacking operator isn’t allowed and raises a SyntaxError .

Dropping away unwanted values from the iterable is a common use case for the iterable unpacking operator. Consider the following example:

In Python, if you want to signal that a variable won’t be used, then you use an underscore ( _ ) as the variable’s name. In this example, useful holds the only value that you need to use from the input iterable. The _ variable is a placeholder that guarantees that the unpacking works correctly. You won’t use the values that end up in this disposable variable.

Note: In the example above, if your target iterable is a sequence data type, such as a list or tuple, then it’s best to access its last item directly.

To do this, you can use the -1 index:

Using -1 gives you access to the last item of any sequence data type. In contrast, if you’re dealing with iterators , then you won’t be able to use indices. That’s when the *_ syntax comes to your rescue.

The pattern used in the above example comes in handy when you have a function that returns multiple values, and you only need a few of these values in your code. The os.walk() function may provide a good example of this situation.

This function allows you to iterate over the content of a directory recursively. The function returns a generator object that yields three-item tuples. Each tuple contains the following items:

  • The path to the current directory as a string
  • The names of all the immediate subdirectories as a list of strings
  • The names of all the files in the current directory as a list of strings

Now say that you want to iterate over your home directory and list only the files. You can do something like this:

This code will issue a long output depending on the current content of your home directory. Note that you need to provide a string with the path to your user folder for the example to work. The _ placeholder variable will hold the unwanted data.

In contrast, the filenames variable will hold the list of files in the current directory, which is the data that you need. The code will print the list of filenames. Go ahead and give it a try!

The assignment operator also comes in handy when you need to provide default argument values in your functions and methods. Default argument values allow you to define functions that take arguments with sensible defaults. These defaults allow you to call the function with specific values or to simply rely on the defaults.

As an example, consider the following function:

This function takes one argument, called name . This argument has a sensible default value that’ll be used when you call the function without arguments. To provide this sensible default value, you use an assignment.

Note: According to PEP 8 , the style guide for Python code, you shouldn’t use spaces around the assignment operator when providing default argument values in function definitions.

Here’s how the function works:

If you don’t provide a name during the call to greet() , then the function uses the default value provided in the definition. If you provide a name, then the function uses it instead of the default one.

Up to this point, you’ve learned a lot about the Python assignment operator and how to use it for writing different types of assignment statements. In the following sections, you’ll dive into a great feature of assignment statements in Python. You’ll learn about augmented assignments .

Augmented Assignment Operators in Python

Python supports what are known as augmented assignments . An augmented assignment combines the assignment operator with another operator to make the statement more concise. Most Python math and bitwise operators have an augmented assignment variation that looks something like this:

Note that $ isn’t a valid Python operator. In this example, it’s a placeholder for a generic operator. This statement works as follows:

  • Evaluate expression to produce a value.
  • Run the operation defined by the operator that prefixes the = sign, using the previous value of variable and the return value of expression as operands.
  • Assign the resulting value back to variable .

In practice, an augmented assignment like the above is equivalent to the following statement:

As you can conclude, augmented assignments are syntactic sugar . They provide a shorthand notation for a specific and popular kind of assignment.

For example, say that you need to define a counter variable to count some stuff in your code. You can use the += operator to increment counter by 1 using the following code:

In this example, the += operator, known as augmented addition , adds 1 to the previous value in counter each time you run the statement counter += 1 .

It’s important to note that unlike regular assignments, augmented assignments don’t create new variables. They only allow you to update existing variables. If you use an augmented assignment with an undefined variable, then you get a NameError :

Python evaluates the right side of the statement before assigning the resulting value back to the target variable. In this specific example, when Python tries to compute x + 1 , it finds that x isn’t defined.

Great! You now know that an augmented assignment consists of combining the assignment operator with another operator, like a math or bitwise operator. To continue this discussion, you’ll learn which math operators have an augmented variation in Python.

An equation like x = x + b doesn’t make sense in math. But in programming, a statement like x = x + b is perfectly valid and can be extremely useful. It adds b to x and reassigns the result back to x .

As you already learned, Python provides an operator to shorten x = x + b . Yes, the += operator allows you to write x += b instead. Python also offers augmented assignment operators for most math operators. Here’s a summary:

Operator Description Example Equivalent
Adds the right operand to the left operand and stores the result in the left operand
Subtracts the right operand from the left operand and stores the result in the left operand
Multiplies the right operand with the left operand and stores the result in the left operand
Divides the left operand by the right operand and stores the result in the left operand
Performs of the left operand by the right operand and stores the result in the left operand
Finds the remainder of dividing the left operand by the right operand and stores the result in the left operand
Raises the left operand to the power of the right operand and stores the result in the left operand

The Example column provides generic examples of how to use the operators in actual code. Note that x must be previously defined for the operators to work correctly. On the other hand, y can be either a concrete value or an expression that returns a value.

Note: The matrix multiplication operator ( @ ) doesn’t support augmented assignments yet.

Consider the following example of matrix multiplication using NumPy arrays:

Note that the exception traceback indicates that the operation isn’t supported yet.

To illustrate how augmented assignment operators work, say that you need to create a function that takes an iterable of numeric values and returns their sum. You can write this function like in the code below:

In this function, you first initialize total to 0 . In each iteration, the loop adds a new number to total using the augmented addition operator ( += ). When the loop terminates, total holds the sum of all the input numbers. Variables like total are known as accumulators . The += operator is typically used to update accumulators.

Note: Computing the sum of a series of numeric values is a common operation in programming. Python provides the built-in sum() function for this specific computation.

Another interesting example of using an augmented assignment is when you need to implement a countdown while loop to reverse an iterable. In this case, you can use the -= operator:

In this example, custom_reversed() is a generator function because it uses yield . Calling the function creates an iterator that yields items from the input iterable in reverse order. To decrement the control variable, index , you use an augmented subtraction statement that subtracts 1 from the variable in every iteration.

Note: Similar to summing the values in an iterable, reversing an iterable is also a common requirement. Python provides the built-in reversed() function for this specific computation, so you don’t have to implement your own. The above example only intends to show the -= operator in action.

Finally, counters are a special type of accumulators that allow you to count objects. Here’s an example of a letter counter:

To create this counter, you use a Python dictionary. The keys store the letters. The values store the counts. Again, to increment the counter, you use an augmented addition.

Counters are so common in programming that Python provides a tool specially designed to facilitate the task of counting. Check out Python’s Counter: The Pythonic Way to Count Objects for a complete guide on how to use this tool.

The += and *= augmented assignment operators also work with sequences , such as lists, tuples, and strings. The += operator performs augmented concatenations , while the *= operator performs augmented repetition .

These operators behave differently with mutable and immutable data types:

Operator Description Example
Runs an augmented concatenation operation on the target sequence. Mutable sequences are updated in place. If the sequence is immutable, then a new sequence is created and assigned back to the target name.
Adds to itself times. Mutable sequences are updated in place. If the sequence is immutable, then a new sequence is created and assigned back to the target name.

Note that the augmented concatenation operator operates on two sequences, while the augmented repetition operator works on a sequence and an integer number.

Consider the following examples and pay attention to the result of calling the id() function:

Mutable sequences like lists support the += augmented assignment operator through the .__iadd__() method, which performs an in-place addition. This method mutates the underlying list, appending new values to its end.

Note: If the left operand is mutable, then x += y may not be completely equivalent to x = x + y . For example, if you do list_1 = list_1 + list_2 instead of list_1 += list_2 above, then you’ll create a new list instead of mutating the existing one. This may be important if other variables refer to the same list.

Immutable sequences, such as tuples and strings, don’t provide an .__iadd__() method. Therefore, augmented concatenations fall back to the .__add__() method, which doesn’t modify the sequence in place but returns a new sequence.

There’s another difference between mutable and immutable sequences when you use them in an augmented concatenation. Consider the following examples:

With mutable sequences, the data to be concatenated can come as a list, tuple, string, or any other iterable. In contrast, with immutable sequences, the data can only come as objects of the same type. You can concatenate tuples to tuples and strings to strings, for example.

Again, the augmented repetition operator works with a sequence on the left side of the operator and an integer on the right side. This integer value represents the number of repetitions to get in the resulting sequence:

When the *= operator operates on a mutable sequence, it falls back to the .__imul__() method, which performs the operation in place, modifying the underlying sequence. In contrast, if *= operates on an immutable sequence, then .__mul__() is called, returning a new sequence of the same type.

Note: Values of n less than 0 are treated as 0 , which returns an empty sequence of the same data type as the target sequence on the left side of the *= operand.

Note that a_list[0] is a_list[3] returns True . This is because the *= operator doesn’t make a copy of the repeated data. It only reflects the data. This behavior can be a source of issues when you use the operator with mutable values.

For example, say that you want to create a list of lists to represent a matrix, and you need to initialize the list with n empty lists, like in the following code:

In this example, you use the *= operator to populate matrix with three empty lists. Now check out what happens when you try to populate the first sublist in matrix :

The appended values are reflected in the three sublists. This happens because the *= operator doesn’t make copies of the data that you want to repeat. It only reflects the data. Therefore, every sublist in matrix points to the same object and memory address.

If you ever need to initialize a list with a bunch of empty sublists, then use a list comprehension :

This time, when you populate the first sublist of matrix , your changes aren’t propagated to the other sublists. This is because all the sublists are different objects that live in different memory addresses.

Bitwise operators also have their augmented versions. The logic behind them is similar to that of the math operators. The following table summarizes the augmented bitwise operators that Python provides:

Operator Operation Example Equivalent
Augmented bitwise AND ( )
Augmented bitwise OR ( )
Augmented bitwise XOR ( )
Augmented bitwise right shift
Augmented bitwise left shift

The augmented bitwise assignment operators perform the intended operation by taking the current value of the left operand as a starting point for the computation. Consider the following example, which uses the & and &= operators:

Programmers who work with high-level languages like Python rarely use bitwise operations in day-to-day coding. However, these types of operations can be useful in some situations.

For example, say that you’re implementing a Unix-style permission system for your users to access a given resource. In this case, you can use the characters "r" for reading, "w" for writing, and "x" for execution permissions, respectively. However, using bit-based permissions could be more memory efficient:

You can assign permissions to your users with the OR bitwise operator or the augmented OR bitwise operator. Finally, you can use the bitwise AND operator to check if a user has a certain permission, as you did in the final two examples.

You’ve learned a lot about augmented assignment operators and statements in this and the previous sections. These operators apply to math, concatenation, repetition, and bitwise operations. Now you’re ready to look at other assignment variants that you can use in your code or find in other developers’ code.

Other Assignment Variants

So far, you’ve learned that Python’s assignment statements and the assignment operator are present in many different scenarios and use cases. Those use cases include variable creation and initialization, parallel assignments, iterable unpacking, augmented assignments, and more.

In the following sections, you’ll learn about a few variants of assignment statements that can be useful in your future coding. You can also find these assignment variants in other developers’ code. So, you should be aware of them and know how they work in practice.

In short, you’ll learn about:

  • Annotated assignment statements with type hints
  • Assignment expressions with the walrus operator
  • Managed attribute assignments with properties and descriptors
  • Implicit assignments in Python

These topics will take you through several interesting and useful examples that showcase the power of Python’s assignment statements.

PEP 526 introduced a dedicated syntax for variable annotation back in Python 3.6 . The syntax consists of the variable name followed by a colon ( : ) and the variable type:

Even though these statements declare three variables with their corresponding data types, the variables aren’t actually created or initialized. So, for example, you can’t use any of these variables in an augmented assignment statement:

If you try to use one of the previously declared variables in an augmented assignment, then you get a NameError because the annotation syntax doesn’t define the variable. To actually define it, you need to use an assignment.

The good news is that you can use the variable annotation syntax in an assignment statement with the = operator:

The first statement in this example is what you can call an annotated assignment statement in Python. You may ask yourself why you should use type annotations in this type of assignment if everybody can see that counter holds an integer number. You’re right. In this example, the variable type is unambiguous.

However, imagine what would happen if you found a variable initialization like the following:

What would be the data type of each user in users ? If the initialization of users is far away from the definition of the User class, then there’s no quick way to answer this question. To clarify this ambiguity, you can provide the appropriate type hint for users :

Now you’re clearly communicating that users will hold a list of User instances. Using type hints in assignment statements that initialize variables to empty collection data types—such as lists, tuples, or dictionaries—allows you to provide more context about how your code works. This practice will make your code more explicit and less error-prone.

Up to this point, you’ve learned that regular assignment statements with the = operator don’t have a return value. They just create or update variables. Therefore, you can’t use a regular assignment to assign a value to a variable within the context of an expression.

Python 3.8 changed this by introducing a new type of assignment statement through PEP 572 . This new statement is known as an assignment expression or named expression .

Note: Expressions are a special type of statement in Python. Their distinguishing characteristic is that expressions always have a return value, which isn’t the case with all types of statements.

Unlike regular assignments, assignment expressions have a return value, which is why they’re called expressions in the first place. This return value is automatically assigned to a variable. To write an assignment expression, you must use the walrus operator ( := ), which was named for its resemblance to the eyes and tusks of a walrus lying on its side.

The general syntax of an assignment statement is as follows:

This expression looks like a regular assignment. However, instead of using the assignment operator ( = ), it uses the walrus operator ( := ). For the expression to work correctly, the enclosing parentheses are required in most use cases. However, there are certain situations in which these parentheses are superfluous. Either way, they won’t hurt you.

Assignment expressions come in handy when you want to reuse the result of an expression or part of an expression without using a dedicated assignment to grab this value beforehand.

Note: Assignment expressions with the walrus operator have several practical use cases. They also have a few restrictions. For example, they’re illegal in certain contexts, such as lambda functions, parallel assignments, and augmented assignments.

For a deep dive into this special type of assignment, check out The Walrus Operator: Python’s Assignment Expressions .

A particularly handy use case for assignment expressions is when you need to grab the result of an expression used in the context of a conditional statement. For example, say that you need to write a function to compute the mean of a sample of numeric values. Without the walrus operator, you could do something like this:

In this example, the sample size ( n ) is a value that you need to reuse in two different computations. First, you need to check whether the sample has data points or not. Then you need to use the sample size to compute the mean. To be able to reuse n , you wrote a dedicated assignment statement at the beginning of your function to grab the sample size.

You can avoid this extra step by combining it with the first use of the target value, len(sample) , using an assignment expression like the following:

The assignment expression introduced in the conditional computes the sample size and assigns it to n . This way, you guarantee that you have a reference to the sample size to use in further computations.

Because the assignment expression returns the sample size anyway, the conditional can check whether that size equals 0 or not and then take a certain course of action depending on the result of this check. The return statement computes the sample’s mean and sends the result back to the function caller.

Python provides a few tools that allow you to fine-tune the operations behind the assignment of attributes. The attributes that run implicit operations on assignments are commonly referred to as managed attributes .

Properties are the most commonly used tool for providing managed attributes in your classes. However, you can also use descriptors and, in some cases, the .__setitem__() special method.

To understand what fine-tuning the operation behind an assignment means, say that you need a Point class that only allows numeric values for its coordinates, x and y . To write this class, you must set up a validation mechanism to reject non-numeric values. You can use properties to attach the validation functionality on top of x and y .

Here’s how you can write your class:

In Point , you use properties for the .x and .y coordinates. Each property has a getter and a setter method . The getter method returns the attribute at hand. The setter method runs the input validation using a try … except block and the built-in float() function. Then the method assigns the result to the actual attribute.

Here’s how your class works in practice:

When you use a property-based attribute as the left operand in an assignment statement, Python automatically calls the property’s setter method, running any computation from it.

Because both .x and .y are properties, the input validation runs whenever you assign a value to either attribute. In the first example, the input values are valid numbers and the validation passes. In the final example, "one" isn’t a valid numeric value, so the validation fails.

If you look at your Point class, you’ll note that it follows a repetitive pattern, with the getter and setter methods looking quite similar. To avoid this repetition, you can use a descriptor instead of a property.

A descriptor is a class that implements the descriptor protocol , which consists of four special methods :

  • .__get__() runs when you access the attribute represented by the descriptor.
  • .__set__() runs when you use the attribute in an assignment statement.
  • .__delete__() runs when you use the attribute in a del statement.
  • .__set_name__() sets the attribute’s name, creating a name-aware attribute.

Here’s how your code may look if you use a descriptor to represent the coordinates of your Point class:

You’ve removed repetitive code by defining Coordinate as a descriptor that manages the input validation in a single place. Go ahead and run the following code to try out the new implementation of Point :

Great! The class works as expected. Thanks to the Coordinate descriptor, you now have a more concise and non-repetitive version of your original code.

Another way to fine-tune the operations behind an assignment statement is to provide a custom implementation of .__setitem__() in your class. You’ll use this method in classes representing mutable data collections, such as custom list-like or dictionary-like classes.

As an example, say that you need to create a dictionary-like class that stores its keys in lowercase letters:

In this example, you create a dictionary-like class by subclassing UserDict from collections . Your class implements a .__setitem__() method, which takes key and value as arguments. The method uses str.lower() to convert key into lowercase letters before storing it in the underlying dictionary.

Python implicitly calls .__setitem__() every time you use a key as the left operand in an assignment statement. This behavior allows you to tweak how you process the assignment of keys in your custom dictionary.

Implicit Assignments in Python

Python implicitly runs assignments in many different contexts. In most cases, these implicit assignments are part of the language syntax. In other cases, they support specific behaviors.

Whenever you complete an action in the following list, Python runs an implicit assignment for you:

  • Define or call a function
  • Define or instantiate a class
  • Use the current instance , self
  • Import modules and objects
  • Use a decorator
  • Use the control variable in a for loop or a comprehension
  • Use the as qualifier in with statements , imports, and try … except blocks
  • Access the _ special variable in an interactive session

Behind the scenes, Python performs an assignment in every one of the above situations. In the following subsections, you’ll take a tour of all these situations.

When you define a function, the def keyword implicitly assigns a function object to your function’s name. Here’s an example:

From this point on, the name greet refers to a function object that lives at a given memory address in your computer. You can call the function using its name and a pair of parentheses with appropriate arguments. This way, you can reuse greet() wherever you need it.

If you call your greet() function with fellow as an argument, then Python implicitly assigns the input argument value to the name parameter on the function’s definition. The parameter will hold a reference to the input arguments.

When you define a class with the class keyword, you’re assigning a specific name to a class object . You can later use this name to create instances of that class. Consider the following example:

In this example, the name User holds a reference to a class object, which was defined in __main__.User . Like with a function, when you call the class’s constructor with the appropriate arguments to create an instance, Python assigns the arguments to the parameters defined in the class initializer .

Another example of implicit assignments is the current instance of a class, which in Python is called self by convention. This name implicitly gets a reference to the current object whenever you instantiate a class. Thanks to this implicit assignment, you can access .name and .job from within the class without getting a NameError in your code.

Import statements are another variant of implicit assignments in Python. Through an import statement, you assign a name to a module object, class, function, or any other imported object. This name is then created in your current namespace so that you can access it later in your code:

In this example, you import the sys module object from the standard library and assign it to the sys name, which is now available in your namespace, as you can conclude from the second call to the built-in dir() function.

You also run an implicit assignment when you use a decorator in your code. The decorator syntax is just a shortcut for a formal assignment like the following:

Here, you call decorator() with a function object as an argument. This call will typically add functionality on top of the existing function, func() , and return a function object, which is then reassigned to the func name.

The decorator syntax is syntactic sugar for replacing the previous assignment, which you can now write as follows:

Even though this new code looks pretty different from the above assignment, the code implicitly runs the same steps.

Another situation in which Python automatically runs an implicit assignment is when you use a for loop or a comprehension. In both cases, you can have one or more control variables that you then use in the loop or comprehension body:

The memory address of control_variable changes on each iteration of the loop. This is because Python internally reassigns a new value from the loop iterable to the loop control variable on each cycle.

The same behavior appears in comprehensions:

In the end, comprehensions work like for loops but use a more concise syntax. This comprehension creates a new list of strings that mimic the output from the previous example.

The as keyword in with statements, except clauses, and import statements is another example of an implicit assignment in Python. This time, the assignment isn’t completely implicit because the as keyword provides an explicit way to define the target variable.

In a with statement, the target variable that follows the as keyword will hold a reference to the context manager that you’re working with. As an example, say that you have a hello.txt file with the following content:

You want to open this file and print each of its lines on your screen. In this case, you can use the with statement to open the file using the built-in open() function.

In the example below, you accomplish this. You also add some calls to print() that display information about the target variable defined by the as keyword:

This with statement uses the open() function to open hello.txt . The open() function is a context manager that returns a text file object represented by an io.TextIOWrapper instance.

Since you’ve defined a hello target variable with the as keyword, now that variable holds a reference to the file object itself. You confirm this by printing the object and its memory address. Finally, the for loop iterates over the lines and prints this content to the screen.

When it comes to using the as keyword in the context of an except clause, the target variable will contain an exception object if any exception occurs:

In this example, you run a division that raises a ZeroDivisionError . The as keyword assigns the raised exception to error . Note that when you print the exception object, you get only the message because exceptions have a custom .__str__() method that supports this behavior.

There’s a final detail to remember when using the as specifier in a try … except block like the one in the above example. Once you leave the except block, the target variable goes out of scope , and you can’t use it anymore.

Finally, Python’s import statements also support the as keyword. In this context, you can use as to import objects with a different name:

In these examples, you use the as keyword to import the numpy package with the np name and pandas with the name pd . If you call dir() , then you’ll realize that np and pd are now in your namespace. However, the numpy and pandas names are not.

Using the as keyword in your imports comes in handy when you want to use shorter names for your objects or when you need to use different objects that originally had the same name in your code. It’s also useful when you want to make your imported names non-public using a leading underscore, like in import sys as _sys .

The final implicit assignment that you’ll learn about in this tutorial only occurs when you’re using Python in an interactive session. Every time you run a statement that returns a value, the interpreter stores the result in a special variable denoted by a single underscore character ( _ ).

You can access this special variable as you’d access any other variable:

These examples cover several situations in which Python internally uses the _ variable. The first two examples evaluate expressions. Expressions always have a return value, which is automatically assigned to the _ variable every time.

When it comes to function calls, note that if your function returns a fruitful value, then _ will hold it. In contrast, if your function returns None , then the _ variable will remain untouched.

The next example consists of a regular assignment statement. As you already know, regular assignments don’t return any value, so the _ variable isn’t updated after these statements run. Finally, note that accessing a variable in an interactive session returns the value stored in the target variable. This value is then assigned to the _ variable.

Note that since _ is a regular variable, you can use it in other expressions:

In this example, you first create a list of values. Then you call len() to get the number of values in the list. Python automatically stores this value in the _ variable. Finally, you use _ to compute the mean of your list of values.

Now that you’ve learned about some of the implicit assignments that Python runs under the hood, it’s time to dig into a final assignment-related topic. In the following few sections, you’ll learn about some illegal and dangerous assignments that you should be aware of and avoid in your code.

Illegal and Dangerous Assignments in Python

In Python, you’ll find a few situations in which using assignments is either forbidden or dangerous. You must be aware of these special situations and try to avoid them in your code.

In the following sections, you’ll learn when using assignment statements isn’t allowed in Python. You’ll also learn about some situations in which using assignments should be avoided if you want to keep your code consistent and robust.

You can’t use Python keywords as variable names in assignment statements. This kind of assignment is explicitly forbidden. If you try to use a keyword as a variable name in an assignment, then you get a SyntaxError :

Whenever you try to use a keyword as the left operand in an assignment statement, you get a SyntaxError . Keywords are an intrinsic part of the language and can’t be overridden.

If you ever feel the need to name one of your variables using a Python keyword, then you can append an underscore to the name of your variable:

In this example, you’re using the desired name for your variables. Because you added a final underscore to the names, Python doesn’t recognize them as keywords, so it doesn’t raise an error.

Note: Even though adding an underscore at the end of a name is an officially recommended practice , it can be confusing sometimes. Therefore, try to find an alternative name or use a synonym whenever you find yourself using this convention.

For example, you can write something like this:

In this example, using the name booking_class for your variable is way clearer and more descriptive than using class_ .

You’ll also find that you can use only a few keywords as part of the right operand in an assignment statement. Those keywords will generally define simple statements that return a value or object. These include lambda , and , or , not , True , False , None , in , and is . You can also use the for keyword when it’s part of a comprehension and the if keyword when it’s used as part of a ternary operator .

In an assignment, you can never use a compound statement as the right operand. Compound statements are those that require an indented block, such as for and while loops, conditionals, with statements, try … except blocks, and class or function definitions.

Sometimes, you need to name variables, but the desired or ideal name is already taken and used as a built-in name. If this is your case, think harder and find another name. Don’t shadow the built-in.

Shadowing built-in names can cause hard-to-identify problems in your code. A common example of this issue is using list or dict to name user-defined variables. In this case, you override the corresponding built-in names, which won’t work as expected if you use them later in your code.

Consider the following example:

The exception in this example may sound surprising. How come you can’t use list() to build a list from a call to map() that returns a generator of square numbers?

By using the name list to identify your list of numbers, you shadowed the built-in list name. Now that name points to a list object rather than the built-in class. List objects aren’t callable, so your code no longer works.

In Python, you’ll have nothing that warns against using built-in, standard-library, or even relevant third-party names to identify your own variables. Therefore, you should keep an eye out for this practice. It can be a source of hard-to-debug errors.

In programming, a constant refers to a name associated with a value that never changes during a program’s execution. Unlike other programming languages, Python doesn’t have a dedicated syntax for defining constants. This fact implies that Python doesn’t have constants in the strict sense of the word.

Python only has variables. If you need a constant in Python, then you’ll have to define a variable and guarantee that it won’t change during your code’s execution. To do that, you must avoid using that variable as the left operand in an assignment statement.

To tell other Python programmers that a given variable should be treated as a constant, you must write your variable’s name in capital letters with underscores separating the words. This naming convention has been adopted by the Python community and is a recommendation that you’ll find in the Constants section of PEP 8 .

In the following examples, you define some constants in Python:

The problem with these constants is that they’re actually variables. Nothing prevents you from changing their value during your code’s execution. So, at any time, you can do something like the following:

These assignments modify the value of two of your original constants. Python doesn’t complain about these changes, which can cause issues later in your code. As a Python developer, you must guarantee that named constants in your code remain constant.

The only way to do that is never to use named constants in an assignment statement other than the constant definition.

You’ve learned a lot about Python’s assignment operators and how to use them for writing assignment statements . With this type of statement, you can create, initialize, and update variables according to your needs. Now you have the required skills to fully manage the creation and mutation of variables in your Python code.

In this tutorial, you’ve learned how to:

  • Write assignment statements using Python’s assignment operators
  • Work with augmented assignments in Python
  • Explore assignment variants, like assignment expression and managed attributes
  • Identify illegal and dangerous assignments in Python

Learning about the Python assignment operator and how to use it in assignment statements is a fundamental skill in Python. It empowers you to write reliable and effective Python code.

🐍 Python Tricks 💌

Get a short & sweet Python Trick delivered to your inbox every couple of days. No spam ever. Unsubscribe any time. Curated by the Real Python team.

Python Tricks Dictionary Merge

About Leodanis Pozo Ramos

Leodanis Pozo Ramos

Leodanis is an industrial engineer who loves Python and software development. He's a self-taught Python developer with 6+ years of experience. He's an avid technical writer with a growing number of articles published on Real Python and other sites.

Each tutorial at Real Python is created by a team of developers so that it meets our high quality standards. The team members who worked on this tutorial are:

Aldren Santos

Master Real-World Python Skills With Unlimited Access to Real Python

Join us and get access to thousands of tutorials, hands-on video courses, and a community of expert Pythonistas:

Join us and get access to thousands of tutorials, hands-on video courses, and a community of expert Pythonistas:

What Do You Think?

What’s your #1 takeaway or favorite thing you learned? How are you going to put your newfound skills to use? Leave a comment below and let us know.

Commenting Tips: The most useful comments are those written with the goal of learning from or helping out other students. Get tips for asking good questions and get answers to common questions in our support portal . Looking for a real-time conversation? Visit the Real Python Community Chat or join the next “Office Hours” Live Q&A Session . Happy Pythoning!

Keep Learning

Related Topics: intermediate best-practices python

Keep reading Real Python by creating a free account or signing in:

Already have an account? Sign-In

Almost there! Complete this form and click the button below to gain instant access:

Python's Assignment Operator: Write Robust Assignments (Source Code)

🔒 No spam. We take your privacy seriously.

assignment python programs

  • Contributors

Basic Statements in Python

Table of contents, what is a statement in python, statement set, multi-line statements, simple statements, expression statements, the assert statement, the try statement.

Statements in Python

In Python, statements are instructions or commands that you write to perform specific actions or tasks. They are the building blocks of a Python program.

A statement is a line of code that performs a specific action. It is the smallest unit of code that can be executed by the Python interpreter.

Assignment Statement

In this example, the value 10 is assigned to the variable x using the assignment statement.

Conditional Statement

In this example, the if-else statement is used to check the value of x and print a corresponding message.

By using statements, programmers can instruct the computer to perform a variety of tasks, from simple arithmetic operations to complex decision-making processes. Proper use of statements is crucial to writing efficient and effective Python code.

Here's a table summarizing various types of statements in Python:

Statement Description
Multi-Line Statements Statements spanning multiple lines using line continuation or braces.
Compound Statements Statements that contain other statements (e.g., , while, for).
Simple Statements Basic standalone statements that perform a single action.
Expression Statements Statements that evaluate and produce a value.
Statement A placeholder statement that does nothing.
Statement Used to delete references to objects.
Statement Terminates a function and returns a value (optional).
Statement Imports modules or specific objects from modules.
and Statements Control flow statements used in loops ( skips to the next iteration, exits the loop).

Please note that this table provides a brief overview of each statement type, and there may be additional details and variations for each statement.

Multi-line statements are a convenient way to write long code in Python without making it cluttered. They allow you to write several lines of code as a single statement, making it easier for developers to read and understand the code. Here are two examples of multi-line statements in Python:

  • Using backslash:
  • Using parentheses:

Simple statements are the smallest unit of execution in Python programming language and they do not contain any logical or conditional expressions. They are usually composed of a single line of code and can perform basic operations such as assigning values to variables , printing out values, or calling functions .

Examples of simple statements in Python:

Simple statements are essential to programming in Python and are often used in combination with more complex statements to create robust programs and applications.

Expression statements in Python are lines of code that evaluate and produce a value. They are used to assign values to variables, call functions, and perform other operations that produce a result.

In this example, we assign the value 5 to the variable x , then add 3 to x and assign the result ( 8 ) to the variable y . Finally, we print the value of y .

In this example, we define a function square that takes one argument ( x ) and returns its square. We then call the function with the argument 5 and assign the result ( 25 ) to the variable result . Finally, we print the value of result .

Overall, expression statements are an essential part of Python programming and allow for the execution of mathematical and computational operations.

The assert statement in Python is used to test conditions and trigger an error if the condition is not met. It is often used for debugging and testing purposes.

Where condition is the expression that is tested, and message is the optional error message that is displayed when the condition is not met.

In this example, the assert statement tests whether x is equal to 5 . If the condition is met, the statement has no effect. If the condition is not met, an error will be raised with the message x should be 5 .

In this example, the assert statement tests whether y is not equal to 0 before performing the division. If the condition is met, the division proceeds as normal. If the condition is not met, an error will be raised with the message Cannot divide by zero .

Overall, assert statements are a useful tool in Python for debugging and testing, as they can help catch errors early on. They are also easily disabled in production code to avoid any unnecessary overhead.

The try statement in Python is used to catch exceptions that may occur during the execution of a block of code. It ensures that even when an error occurs, the code does not stop running.

Examples of Error Processing

Dive deep into the topic.

  • Match Statements
  • Operators in Python Statements
  • The IF Statement

Contribute with us!

Do not hesitate to contribute to Python tutorials on GitHub: create a fork, update content and issue a pull request.

Profile picture for user AliaksandrSumich

Python Programming

Python Basic Exercise for Beginners

Updated on:  August 29, 2024 | 498 Comments

This essential Python exercise helps Python beginners learn necessary Python skills quickly.

Immerse yourself in the practice of Python’s foundational concepts, such as loops, control flow, data types, operators, list, strings, input-output, and built-in functions. This beginner’s exercise is sure to elevate your understanding of Python.

Also, See :

  • Python Quizzes : Solve quizzes to test your knowledge of fundamental concepts.
  • Python Basics : Learn the basics to solve this exercise.

What questions are included in this Python fundamental exercise?

  • The exercise contains  15 Python programs to solve , ranging from beginner to intermediate difficulty.
  • The hints and solutions are provided for each question.
  • Tips and essential learning resources accompany each question . These will assist you in solving the exercise and empower you with the knowledge to tackle similar problems in the future, boosting your confidence and capability. As you progress, you’ll become more familiar with the basics of Python.

Use Online Code Editor to solve exercises.

This Python exercise covers questions on the following topics :

  • Python for loop and while loop
  • Python list , set , tuple , dictionary , input, and output

Also, try to solve the basic Python Quiz for beginners

Exercise 1: Calculate the multiplication and sum of two numbers

Given two integer numbers, write a Python code to return their product only if the product is equal to or lower than 1000. Otherwise, return their sum.

Expected Output :

  • Accept user input in Python
  • Calculate an Average in Python
  • Create a function that will take two numbers as parameters
  • Next, Inside a function, multiply two numbers and save their product in a product variable
  • Next, use the if condition to check if the product >1000 . If yes, return the product
  • Otherwise, use the else block to calculate the sum of two numbers and return it.

Exercise 2: Print the Sum of a Current Number and a Previous number

Write a Python code to iterate the first 10 numbers, and in each iteration, print the sum of the current and previous number.

Reference article for help :

  • Python range() function
  • Calculate sum and average in Python
  • Create a  variable  called  previous_num  and assigning it to 0
  • Next, iterate through the first 10 numbers using the for loop  and  range()  function
  • Next, display the current number ( i ), the previous number, and the addition of both numbers in each iteration of a loop
  • Finally, you need to update the previous_num for the next iteration. To do this, assign the value of the current number to the previous number ( previous_num = i).

Exercise 3: Print characters present at an even index number

Write a Python code to accept a string from the user and display characters present at an even index number.

For example, str = "PYnative" . so your code should display ‘P’, ‘n’, ‘t’, ‘v’.

Reference article for help: Python Input and Output

  • Use the Python input() function to accept a string from a user.
  • Calculate the length of the string using the len() function
  • Next, iterate characters of a string using the loop and range() function.
  • Use start = 0, stop = len(s)-1, and step =2. the step is 2 because we want only even index numbers
  • In each iteration of a loop, use s[i] to print characters present at the current even index number

Solution 1 :

Solution 2 : Using list slicing

Exercise 4: Remove first n characters from a string

Write a Python code to remove characters from a string from 0 to n and return a new string.

For Example:

  • remove_chars("PYnative", 4) so output must be tive . Here, you need to remove the first four characters from a string.
  • remove_chars("PYnative", 2) so output must be native . Here, you need to remove the first two characters from a string.

Note : n must be less than the length of the string.

Use string slicing to get a substring. For example, remove the first four characters using s[4:] .

Also, try to solve  Python string exercises

Exercise 5: Check if the first and last numbers of a list are the same

Write a code to return True if the list’s first and last numbers are the same. If the numbers are different, return False .

Exercise 6: Display numbers divisible by 5

Write a Python code to display numbers from a list divisible by 5

Also, try to solve  Python list Exercise

Exercise 7: Find the number of occurrences of a substring in a string

Write a Python code to find how often the substring “ Emma ” appears in the given string.

Use string method count() .

Solution 1 : Use the count() method

Solution 2 : Without the string method

Exercise 8: Print the following pattern

Hint : Print Pattern using for loop

Exercise 9: Check Palindrome Number

Write a Python code to check if the given number is palindrome. A palindrome number is a number that is the same after reverse. For example, 545 is the palindrome number .

  • Reverse the given number and save it in a different variable
  • Use the if condition to check if the original and reverse numbers are identical. If yes, return True .

Exercise 10: Merge two lists using the following condition

Given two lists of numbers, write a Python code to create a new list such that the latest list should contain odd numbers from the first list and even numbers from the second list .

  • Create an empty list named result_list
  • Iterate the first list using a for loop
  • In each iteration check if the current number is odd using the num % 2 != 0 formula. If the current number is odd, add it to the result list
  • Now, Iterate the second list using a loop.
  • In each iteration check if the current number is even using the num % 2 == 0 formula. If the current number is even, add it to the result list.
  • Print the result list.

Note: Try to solve the Python list exercises

Exercise 11: Get each digit from a number in the reverse order.

For example, If the given integer number is 7536 , the output shall be “ 6 3 5 7 “, with a space separating the digits.

Use while loop

Exercise 12: Calculate income tax

Calculate income tax for the given income by adhering to the rules below

Taxable IncomeRate (in %)
First $10,0000
Next $10,00010
The remaining20

For example, suppose the income is 45000, and the income tax payable is

10000*0% + 10000*10%  + 25000*20% = $6000.

Exercise 13: Print multiplication table from 1 to 10

See : How to use nested loops in Python

  • Create the outer for loop to iterate numbers from 1 to 10. Thus, the outer loop’s total number of iterations is 10.
  • Create an inner loop to iterate 10 times.
  • For each outer loop iteration, the inner loop will execute 10 times.
  • The number is 1 in the first iteration of the outer loop. In the next, it is 2, and so on until it reaches 10.
  • In each iteration of an inner loop, we perform a simple calculation: the multiplication of two numbers. (current outer number and current inner number)

Exercise 14: Print a downward half-pyramid pattern of stars

Exercise 15: get an int value of base raises to the power of exponent.

Write a function called exponent(base, exp) that returns an int value of base raises to the power of exp.

Note here exp is a non-negative integer, and the base is an integer.

Expected output

I want to hear from you. What do you think of this essential exercise? If you have better alternative answers to the above questions, please help others by commenting on this exercise.

I have shown only 15 questions in this exercise because we have Topic-specific exercises to cover each topic exercise in detail. Please refer to all Python exercises .

Did you find this page helpful? Let others know about it. Sharing helps me continue to create free Python resources.

About Vishal

assignment python programs

I’m  Vishal Hule , the Founder of PYnative.com. As a Python developer, I enjoy assisting students, developers, and learners. Follow me on  Twitter .

Related Tutorial Topics:

Python exercises and quizzes.

Free coding exercises and quizzes cover Python basics, data structure, data analytics, and more.

  • 15+ Topic-specific Exercises and Quizzes
  • Each Exercise contains 10 questions
  • Each Quiz contains 12-15 MCQ

Loading comments... Please wait.

About PYnative

PYnative.com is for Python lovers. Here, You can get Tutorials, Exercises, and Quizzes to practice and improve your Python skills .

Explore Python

  • Learn Python
  • Python Basics
  • Python Databases
  • Python Exercises
  • Python Quizzes
  • Online Python Code Editor
  • Python Tricks

To get New Python Tutorials, Exercises, and Quizzes

Legal Stuff

We use cookies to improve your experience. While using PYnative, you agree to have read and accepted our Terms Of Use , Cookie Policy , and Privacy Policy .

Copyright © 2018–2024 pynative.com

previous episode

Python for absolute beginners, next episode, variables and assignment.

Overview Teaching: 15 min Exercises: 15 min Questions How can I store data in programs? Objectives Write scripts that assign values to variables and perform calculations with those values. Correctly trace value changes in scripts that use assignment.

Use variables to store values

Variables are one of the fundamental building blocks of Python. A variable is like a tiny container where you store values and data, such as filenames, words, numbers, collections of words and numbers, and more.

The variable name will point to a value that you “assign” it. You might think about variable assignment like putting a value “into” the variable, as if the variable is a little box 🎁

(In fact, a variable is not a container as such but more like an adress label that points to a container with a given value. This difference will become relevant once we start talking about lists and mutable data types.)

You assign variables with an equals sign ( = ). In Python, a single equals sign = is the “assignment operator.” (A double equals sign == is the “real” equals sign.)

  • Variables are names for values.
  • In Python the = symbol assigns the value on the right to the name on the left.
  • The variable is created when a value is assigned to it.
  • Here, Python assigns an age to a variable age and a name in quotation marks to a variable first_name :

Variable names

Variable names can be as long or as short as you want, but there are certain rules you must follow.

  • Cannot start with a digit.
  • Cannot contain spaces, quotation marks, or other punctuation.
  • May contain an underscore (typically used to separate words in long variable names).
  • Having an underscore at the beginning of a variable name like _alistairs_real_age has a special meaning. So we won’t do that until we understand the convention.
  • The standard naming convention for variable names in Python is the so-called “snake case”, where each word is separated by an underscore. For example my_first_variable . You can read more about naming conventions in Python here .

Use meaningful variable names

Python doesn’t care what you call variables as long as they obey the rules (alphanumeric characters and the underscore). As you start to code, you will almost certainly be tempted to use extremely short variables names like f . Your fingers will get tired. Your coffee will wear off. You will see other people using variables like f . You’ll promise yourself that you’ll definitely remember what f means. But you probably won’t.

So, resist the temptation of bad variable names! Clear and precisely-named variables will:

  • Make your code more readable (both to yourself and others).
  • Reinforce your understanding of Python and what’s happening in the code.
  • Clarify and strengthen your thinking.

Use meaningful variable names to help other people understand what the program does. The most important “other person” is your future self!

Python is case-sensitive

Python thinks that upper- and lower-case letters are different, so Name and name are different variables. There are conventions for using upper-case letters at the start of variable names so we will use lower-case letters for now.

Off-Limits Names

The only variable names that are off-limits are names that are reserved by, or built into, the Python programming language itself — such as print , True , and list . Some of these you can overwrite into variable names (not ideal!), but Jupyter Lab (and many other environments and editors) will catch this by colour coding your variable. If your would-be variable is colour-coded green, rethink your name choice. This is not something to worry too much about. You can get the object back by resetting your kernel.

Use print() to display values

We can check to see what’s “inside” variables by running a cell with the variable’s name. This is one of the handiest features of a Jupyter notebook. Outside the Jupyter environment, you would need to use the print() function to display the variable.

You can run the print() function inside the Jupyter environment, too. This is sometimes useful because Jupyter will only display the last variable in a cell, while print() can display multiple variables. Additionally, Jupyter will display text with \n characters (which means “new line”), while print() will display the text appropriately formatted with new lines.

  • Python has a built-in function called print() that prints things as text.
  • Provide values to the function (i.e., the things to print) in parentheses.
  • To add a string to the printout, wrap the string in single or double quotations.
  • The values passed to the function are called ‘arguments’ and are separated by commas.
  • When using the print() function, we can also separate with a ‘+’ sign. However, when using ‘+’ we have to add spaces in between manually.
  • print() automatically puts a single space between items to separate them.
  • And wraps around to a new line at the end.

Variables must be created before they are used

If a variable doesn’t exist yet, or if the name has been misspelled, Python reports an error (unlike some languages, which “guess” a default value).

The last line of an error message is usually the most informative. This message lets us know that there is no variable called eye_color in the script.

Variables Persist Between Cells Variables defined in one cell exist in all other cells once executed, so the relative location of cells in the notebook do not matter (i.e., cells lower down can still affect those above). Notice the number in the square brackets [ ] to the left of the cell. These numbers indicate the order, in which the cells have been executed. Cells with lower numbers will affect cells with higher numbers as Python runs the cells chronologically. As a best practice, we recommend you keep your notebook in chronological order so that it is easier for the human eye to read and make sense of, as well as to avoid any errors if you close and reopen your project, and then rerun what you have done. Remember: Notebook cells are just a way to organize a program! As far as Python is concerned, all of the source code is one long set of instructions.

Variables can be used in calculations

  • We can use variables in calculations just as if they were values. Remember, we assigned 42 to age a few lines ago.

This code works in the following way. We are reassigning the value of the variable age by taking its previous value (42) and adding 3, thus getting our new value of 45.

Use an index to get a single character from a string

  • The characters (individual letters, numbers, and so on) in a string are ordered. For example, the string ‘AB’ is not the same as ‘BA’. Because of this ordering, we can treat the string as a list of characters.
  • Each position in the string (first, second, etc.) is given a number. This number is called an index or sometimes a subscript.
  • Indices are numbered from 0 rather than 1.
  • Use the position’s index in square brackets to get the character at that position.

Use a slice to get a substring

A part of a string is called a substring. A substring can be as short as a single character. A slice is a part of a string (or, more generally, any list-like thing). We take a slice by using [start:stop] , where start is replaced with the index of the first element we want and stop is replaced with the index of the element just after the last element we want. Mathematically, you might say that a slice selects [start:stop] . The difference between stop and start is the slice’s length. Taking a slice does not change the contents of the original string. Instead, the slice is a copy of part of the original string.

Use the built-in function len() to find the length of a string

The built-in function len() is used to find the length of a string (and later, of other data types, too).

Note that the result is 6 and not 7. This is because it is the length of the value of the variable (i.e. 'helium' ) that is being counted and not the name of the variable (i.e. element )

Also note that nested functions are evaluated from the inside out, just like in mathematics. Thus, Python first reads the len() function, then the print() function.

Choosing a Name Which is a better variable name, m , min , or minutes ? Why? Hint: think about which code you would rather inherit from someone who is leaving the library: ts = m * 60 + s tot_sec = min * 60 + sec total_seconds = minutes * 60 + seconds Solution minutes is better because min might mean something like “minimum” (and actually does in Python, but we haven’t seen that yet).
Swapping Values Draw a table showing the values of the variables in this program after each statement is executed. In simple terms, what do the last three lines of this program do? x = 1.0 y = 3.0 swap = x x = y y = swap Solution swap = x # x->1.0 y->3.0 swap->1.0 x = y # x->3.0 y->3.0 swap->1.0 y = swap # x->3.0 y->1.0 swap->1.0 These three lines exchange the values in x and y using the swap variable for temporary storage. This is a fairly common programming idiom.
Predicting Values What is the final value of position in the program below? (Try to predict the value without running the program, then check your prediction.) initial = "left" position = initial initial = "right" Solution initial = "left" # Initial is assigned the string "left" position = initial # Position is assigned the variable initial, currently "left" initial = "right" # Initial is assigned the string "right" print(position) left The last assignment to position was “left”
Can you slice integers? If you assign a = 123 , what happens if you try to get the second digit of a ? Solution Numbers are not stored in the written representation, so they can’t be treated like strings. a = 123 print(a[1]) TypeError: 'int' object is not subscriptable
Slicing What does the following program print? library_name = 'social sciences' print('library_name[1:3] is:', library_name[1:3]) If thing is a variable name, low is a low number, and high is a high number: What does thing[low:high] do? What does thing[low:] (without a value after the colon) do? What does thing[:high] (without a value before the colon) do? What does thing[:] (just a colon) do? What does thing[number:negative-number] do? Solution library_name[1:3] is: oc It will slice the string, starting at the low index and ending an element before the high index It will slice the string, starting at the low index and stopping at the end of the string It will slice the string, starting at the beginning on the string, and ending an element before the high index It will print the entire string It will slice the string, starting the number index, and ending a distance of the absolute value of negative-number elements from the end of the string
Key Points Use variables to store values. Use meaningful variable names. Python is case-sensitive. Use print() to display values. Variables must be created before they are used. Variables persist between cells. Variables can be used in calculations. Use an index to get a single character from a string. Use a slice to get a substring. Use the built-in function len to find the length of a string.

Python Tutorial

File handling, python modules, python numpy, python pandas, python matplotlib, python scipy, machine learning, python mysql, python mongodb, python reference, module reference, python how to, python examples, python assignment operators.

Assignment operators are used to assign values to variables:

Operator Example Same As Try it
= x = 5 x = 5
+= x += 3 x = x + 3
-= x -= 3 x = x - 3
*= x *= 3 x = x * 3
/= x /= 3 x = x / 3
%= x %= 3 x = x % 3
//= x //= 3 x = x // 3
**= x **= 3 x = x ** 3
&= x &= 3 x = x & 3
|= x |= 3 x = x | 3
^= x ^= 3 x = x ^ 3
>>= x >>= 3 x = x >> 3
<<= x <<= 3 x = x << 3

Related Pages

Get Certified

COLOR PICKER

colorpicker

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail: [email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail: [email protected]

Top Tutorials

Top references, top examples, get certified.

01 Career Opportunities

02 beginner, 03 intermediate, 04 training programs, assignment operators in python, what is an assignment operator in python.

.

Types of Assignment Operators in Python

1. simple python assignment operator (=), example of simple python assignment operator, 2. augmented assignment operators in python, 1. augmented arithmetic assignment operators in python.

+=Addition Assignment Operator
-=Subtraction Assignment Operator
*=Multiplication Assignment Operator
/=Division Assignment Operator
%=Modulus Assignment Operator
//=Floor Division Assignment Operator
**=Exponentiation Assignment Operator

2. Augmented Bitwise Assignment Operators in Python

&=Bitwise AND Assignment Operator
|=Bitwise OR Assignment Operator
^=Bitwise XOR Assignment Operator
>>=Bitwise Right Shift Assignment Operator
<<=Bitwise Left Shift Assignment Operator

Augmented Arithmetic Assignment Operators in Python

1. augmented addition operator (+=), example of augmented addition operator in python, 2. augmented subtraction operator (-=), example of augmented subtraction operator in python, 3. augmented multiplication operator (*=), example of augmented multiplication operator in python, 4. augmented division operator (/=), example of augmented division operator in python, 5. augmented modulus operator (%=), example of augmented modulus operator in python, 6. augmented floor division operator (//=), example of augmented floor division operator in python, 7. augmented exponent operator (**=), example of augmented exponent operator in python, augmented bitwise assignment operators in python, 1. augmented bitwise and (&=), example of augmented bitwise and operator in python, 2. augmented bitwise or (|=), example of augmented bitwise or operator in python, 3. augmented bitwise xor (^=), example of augmented bitwise xor operator in python, 4. augmented bitwise right shift (>>=), example of augmented bitwise right shift operator in python, 5. augmented bitwise left shift (<<=), example of augmented bitwise left shift operator in python, walrus operator in python, syntax of an assignment expression, example of walrus operator in python.

Live Classes Schedule

Filling Fast
Filling Fast
Filling Fast
Filling Fast
Filling Fast
Filling Fast
Filling Fast
Filling Fast
Filling Fast
Filling Fast

About Author

35 Python Programming Exercises and Solutions

To understand a programming language deeply, you need to practice what you’ve learned. If you’ve completed learning the syntax of Python programming language, it is the right time to do some practice programs.

1. Python program to check whether the given number is even or not.

2. python program to convert the temperature in degree centigrade to fahrenheit, 3. python program to find the area of a triangle whose sides are given, 4. python program to find out the average of a set of integers, 5. python program to find the product of a set of real numbers, 6. python program to find the circumference and area of a circle with a given radius, 7. python program to check whether the given integer is a multiple of 5, 8. python program to check whether the given integer is a multiple of both 5 and 7, 9. python program to find the average of 10 numbers using while loop, 10. python program to display the given integer in a reverse manner, 11. python program to find the geometric mean of n numbers, 12. python program to find the sum of the digits of an integer using a while loop, 13. python program to display all the multiples of 3 within the range 10 to 50, 14. python program to display all integers within the range 100-200 whose sum of digits is an even number, 15. python program to check whether the given integer is a prime number or not, 16. python program to generate the prime numbers from 1 to n, 17. python program to find the roots of a quadratic equation, 18. python program to print the numbers from a given number n till 0 using recursion, 19. python program to find the factorial of a number using recursion, 20. python program to display the sum of n numbers using a list, 21. python program to implement linear search, 22. python program to implement binary search, 23. python program to find the odd numbers in an array, 24. python program to find the largest number in a list without using built-in functions, 25. python program to insert a number to any position in a list, 26. python program to delete an element from a list by index, 27. python program to check whether a string is palindrome or not, 28. python program to implement matrix addition, 29. python program to implement matrix multiplication, 30. python program to check leap year, 31. python program to find the nth term in a fibonacci series using recursion, 32. python program to print fibonacci series using iteration, 33. python program to print all the items in a dictionary, 34. python program to implement a calculator to do basic operations, 35. python program to draw a circle of squares using turtle.

For practicing more such exercises, I suggest you go to  hackerrank.com  and sign up. You’ll be able to practice Python there very effectively.

I hope these exercises were helpful to you. If you have any doubts, feel free to let me know in the comments.

12 thoughts on “ 35 Python Programming Exercises and Solutions ”

I don’t mean to nitpick and I don’t want this published but you might want to check code for #16. 4 is not a prime number.

You can only check if integer is a multiple of 35. It always works the same – just multiply all the numbers you need to check for multiplicity.

v_str = str ( input(‘ Enter a valid string or number :- ‘) ) v_rev_str=” for v_d in v_str: v_rev_str = v_d + v_rev_str

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Posts

Browse Course Material

Course info.

  • Sarina Canelake

Departments

  • Electrical Engineering and Computer Science

As Taught In

  • Programming Languages
  • Software Design and Engineering

Learning Resource Types

A gentle introduction to programming using python, assignments.

If you are working on your own machine, you will probably need to install Python. We will be using the standard Python software, available here . You should download and install version 2.6.x, not 2.7.x or 3.x. All MIT Course 6 classes currently use a version of Python 2.6.

ASSN # ASSIGNMENTS SUPPORTING FILES
Homework 1 Handout ( )

Written exercises ( )

Code template ( )
Homework 2 Handout ( )

Written exercises ( )

Code template ( )

nims.py ( )

strings_and_lists.py ( )

Project 1: Hangman Handout ( )

hangman_template.py ( )

words.txt ( )

Optional extension:

hangman_lib.py ( )

hangman_lib_demo.py ( )

Homework 3 Handout ( )

Written exercises ( )

Code template ( )
Homework 4 Handout ( )

Written exercises ( )

Graphics module documentation ( )

graphics.py ( ) — be sure to save this in the same directory where your code is saved!

wheel.py ( )

rgb.txt ( )

The graphics.py package and documentation are courtesy of John Zelle, and are used with permission.

Project 2: Conway’s game of life Handout ( )

game_of_life_template.py ( ) — download and save as game_of_life.py; be sure to save in the same directory as graphics.py

Final project: Tetris

Handout ( )

tetris_template.py ( ) — Download and save it in the same directory as graphics.py. Please edit this file, and place your code in the sections that say “YOUR CODE HERE”.

facebook

You are leaving MIT OpenCourseWare

Python Tutorial

  • Python Basics
  • Python - Home
  • Python - Overview
  • Python - History
  • Python - Features
  • Python vs C++
  • Python - Hello World Program
  • Python - Application Areas
  • Python - Interpreter
  • Python - Environment Setup
  • Python - Virtual Environment
  • Python - Basic Syntax
  • Python - Variables
  • Python - Data Types
  • Python - Type Casting
  • Python - Unicode System
  • Python - Literals
  • Python - Operators
  • Python - Arithmetic Operators
  • Python - Comparison Operators

Python - Assignment Operators

  • Python - Logical Operators
  • Python - Bitwise Operators
  • Python - Membership Operators
  • Python - Identity Operators
  • Python - Operator Precedence
  • Python - Comments
  • Python - User Input
  • Python - Numbers
  • Python - Booleans
  • Python Control Statements
  • Python - Control Flow
  • Python - Decision Making
  • Python - If Statement
  • Python - If else
  • Python - Nested If
  • Python - Match-Case Statement
  • Python - Loops
  • Python - for Loops
  • Python - for-else Loops
  • Python - While Loops
  • Python - break Statement
  • Python - continue Statement
  • Python - pass Statement
  • Python - Nested Loops
  • Python Functions & Modules
  • Python - Functions
  • Python - Default Arguments
  • Python - Keyword Arguments
  • Python - Keyword-Only Arguments
  • Python - Positional Arguments
  • Python - Positional-Only Arguments
  • Python - Arbitrary Arguments
  • Python - Variables Scope
  • Python - Function Annotations
  • Python - Modules
  • Python - Built in Functions
  • Python Strings
  • Python - Strings
  • Python - Slicing Strings
  • Python - Modify Strings
  • Python - String Concatenation
  • Python - String Formatting
  • Python - Escape Characters
  • Python - String Methods
  • Python - String Exercises
  • Python Lists
  • Python - Lists
  • Python - Access List Items
  • Python - Change List Items
  • Python - Add List Items
  • Python - Remove List Items
  • Python - Loop Lists
  • Python - List Comprehension
  • Python - Sort Lists
  • Python - Copy Lists
  • Python - Join Lists
  • Python - List Methods
  • Python - List Exercises
  • Python Tuples
  • Python - Tuples
  • Python - Access Tuple Items
  • Python - Update Tuples
  • Python - Unpack Tuples
  • Python - Loop Tuples
  • Python - Join Tuples
  • Python - Tuple Methods
  • Python - Tuple Exercises
  • Python Sets
  • Python - Sets
  • Python - Access Set Items
  • Python - Add Set Items
  • Python - Remove Set Items
  • Python - Loop Sets
  • Python - Join Sets
  • Python - Copy Sets
  • Python - Set Operators
  • Python - Set Methods
  • Python - Set Exercises
  • Python Dictionaries
  • Python - Dictionaries
  • Python - Access Dictionary Items
  • Python - Change Dictionary Items
  • Python - Add Dictionary Items
  • Python - Remove Dictionary Items
  • Python - Dictionary View Objects
  • Python - Loop Dictionaries
  • Python - Copy Dictionaries
  • Python - Nested Dictionaries
  • Python - Dictionary Methods
  • Python - Dictionary Exercises
  • Python Arrays
  • Python - Arrays
  • Python - Access Array Items
  • Python - Add Array Items
  • Python - Remove Array Items
  • Python - Loop Arrays
  • Python - Copy Arrays
  • Python - Reverse Arrays
  • Python - Sort Arrays
  • Python - Join Arrays
  • Python - Array Methods
  • Python - Array Exercises
  • Python File Handling
  • Python - File Handling
  • Python - Write to File
  • Python - Read Files
  • Python - Renaming and Deleting Files
  • Python - Directories
  • Python - File Methods
  • Python - OS File/Directory Methods
  • Python - OS Path Methods
  • Object Oriented Programming
  • Python - OOPs Concepts
  • Python - Classes & Objects
  • Python - Class Attributes
  • Python - Class Methods
  • Python - Static Methods
  • Python - Constructors
  • Python - Access Modifiers
  • Python - Inheritance
  • Python - Polymorphism
  • Python - Method Overriding
  • Python - Method Overloading
  • Python - Dynamic Binding
  • Python - Dynamic Typing
  • Python - Abstraction
  • Python - Encapsulation
  • Python - Interfaces
  • Python - Packages
  • Python - Inner Classes
  • Python - Anonymous Class and Objects
  • Python - Singleton Class
  • Python - Wrapper Classes
  • Python - Enums
  • Python - Reflection
  • Python Errors & Exceptions
  • Python - Syntax Errors
  • Python - Exceptions
  • Python - try-except Block
  • Python - try-finally Block
  • Python - Raising Exceptions
  • Python - Exception Chaining
  • Python - Nested try Block
  • Python - User-defined Exception
  • Python - Logging
  • Python - Assertions
  • Python - Built-in Exceptions
  • Python Multithreading
  • Python - Multithreading
  • Python - Thread Life Cycle
  • Python - Creating a Thread
  • Python - Starting a Thread
  • Python - Joining Threads
  • Python - Naming Thread
  • Python - Thread Scheduling
  • Python - Thread Pools
  • Python - Main Thread
  • Python - Thread Priority
  • Python - Daemon Threads
  • Python - Synchronizing Threads
  • Python Synchronization
  • Python - Inter-thread Communication
  • Python - Thread Deadlock
  • Python - Interrupting a Thread
  • Python Networking
  • Python - Networking
  • Python - Socket Programming
  • Python - URL Processing
  • Python - Generics
  • Python Libraries
  • NumPy Tutorial
  • Pandas Tutorial
  • SciPy Tutorial
  • Matplotlib Tutorial
  • Django Tutorial
  • OpenCV Tutorial
  • Python Miscellenous
  • Python - Date & Time
  • Python - Maths
  • Python - Iterators
  • Python - Generators
  • Python - Closures
  • Python - Decorators
  • Python - Recursion
  • Python - Reg Expressions
  • Python - PIP
  • Python - Database Access
  • Python - Weak References
  • Python - Serialization
  • Python - Templating
  • Python - Output Formatting
  • Python - Performance Measurement
  • Python - Data Compression
  • Python - CGI Programming
  • Python - XML Processing
  • Python - GUI Programming
  • Python - Command-Line Arguments
  • Python - Docstrings
  • Python - JSON
  • Python - Sending Email
  • Python - Further Extensions
  • Python - Tools/Utilities
  • Python - GUIs
  • Python Advanced Concepts
  • Python - Abstract Base Classes
  • Python - Custom Exceptions
  • Python - Higher Order Functions
  • Python - Object Internals
  • Python - Memory Management
  • Python - Metaclasses
  • Python - Metaprogramming with Metaclasses
  • Python - Mocking and Stubbing
  • Python - Monkey Patching
  • Python - Signal Handling
  • Python - Type Hints
  • Python - Automation Tutorial
  • Python - Humanize Package
  • Python - Context Managers
  • Python - Coroutines
  • Python - Descriptors
  • Python - Diagnosing and Fixing Memory Leaks
  • Python - Immutable Data Structures
  • Python Useful Resources
  • Python - Questions & Answers
  • Python - Online Quiz
  • Python - Quick Guide
  • Python - Projects
  • Python - Useful Resources
  • Python - Discussion
  • Python Compiler
  • NumPy Compiler
  • Matplotlib Compiler
  • SciPy Compiler
  • Python - Programming Examples
  • Selected Reading
  • UPSC IAS Exams Notes
  • Developer's Best Practices
  • Questions and Answers
  • Effective Resume Writing
  • HR Interview Questions
  • Computer Glossary

Python Assignment Operator

The = (equal to) symbol is defined as assignment operator in Python. The value of Python expression on its right is assigned to a single variable on its left. The = symbol as in programming in general (and Python in particular) should not be confused with its usage in Mathematics, where it states that the expressions on the either side of the symbol are equal.

Example of Assignment Operator in Python

Consider following Python statements −

At the first instance, at least for somebody new to programming but who knows maths, the statement "a=a+b" looks strange. How could a be equal to "a+b"? However, it needs to be reemphasized that the = symbol is an assignment operator here and not used to show the equality of LHS and RHS.

Because it is an assignment, the expression on right evaluates to 15, the value is assigned to a.

In the statement "a+=b", the two operators "+" and "=" can be combined in a "+=" operator. It is called as add and assign operator. In a single statement, it performs addition of two operands "a" and "b", and result is assigned to operand on left, i.e., "a".

Augmented Assignment Operators in Python

In addition to the simple assignment operator, Python provides few more assignment operators for advanced use. They are called cumulative or augmented assignment operators. In this chapter, we shall learn to use augmented assignment operators defined in Python.

Python has the augmented assignment operators for all arithmetic and comparison operators.

Python augmented assignment operators combines addition and assignment in one statement. Since Python supports mixed arithmetic, the two operands may be of different types. However, the type of left operand changes to the operand of on right, if it is wider.

The += operator is an augmented operator. It is also called cumulative addition operator, as it adds "b" in "a" and assigns the result back to a variable.

The following are the augmented assignment operators in Python:

  • Augmented Addition Operator
  • Augmented Subtraction Operator
  • Augmented Multiplication Operator
  • Augmented Division Operator
  • Augmented Modulus Operator
  • Augmented Exponent Operator
  • Augmented Floor division Operator

Augmented Addition Operator (+=)

Following examples will help in understanding how the "+=" operator works −

It will produce the following output −

Augmented Subtraction Operator (-=)

Use -= symbol to perform subtract and assign operations in a single statement. The "a-=b" statement performs "a=a-b" assignment. Operands may be of any number type. Python performs implicit type casting on the object which is narrower in size.

Augmented Multiplication Operator (*=)

The "*=" operator works on similar principle. "a*=b" performs multiply and assign operations, and is equivalent to "a=a*b". In case of augmented multiplication of two complex numbers, the rule of multiplication as discussed in the previous chapter is applicable.

Augmented Division Operator (/=)

The combination symbol "/=" acts as divide and assignment operator, hence "a/=b" is equivalent to "a=a/b". The division operation of int or float operands is float. Division of two complex numbers returns a complex number. Given below are examples of augmented division operator.

Augmented Modulus Operator (%=)

To perform modulus and assignment operation in a single statement, use the %= operator. Like the mod operator, its augmented version also is not supported for complex number.

Augmented Exponent Operator (**=)

The "**=" operator results in computation of "a" raised to "b", and assigning the value back to "a". Given below are some examples −

Augmented Floor division Operator (//=)

For performing floor division and assignment in a single statement, use the "//=" operator. "a//=b" is equivalent to "a=a//b". This operator cannot be used with complex numbers.

Learn Python practically and Get Certified .

Popular Tutorials

Popular examples, reference materials, learn python interactively, python introduction.

  • Get Started With Python
  • Your First Python Program
  • Python Comments

Python Fundamentals

  • Python Variables and Literals
  • Python Type Conversion
  • Python Basic Input and Output

Python Operators

Python flow control.

Python if...else Statement

  • Python for Loop
  • Python while Loop
  • Python break and continue
  • Python pass Statement

Python Data types

  • Python Numbers and Mathematics
  • Python List
  • Python Tuple
  • Python String
  • Python Dictionary
  • Python Functions
  • Python Function Arguments
  • Python Variable Scope
  • Python Global Keyword
  • Python Recursion
  • Python Modules
  • Python Package
  • Python Main function

Python Files

  • Python Directory and Files Management
  • Python CSV: Read and Write CSV files
  • Reading CSV files in Python
  • Writing CSV files in Python
  • Python Exception Handling
  • Python Exceptions
  • Python Custom Exceptions

Python Object & Class

  • Python Objects and Classes
  • Python Inheritance
  • Python Multiple Inheritance
  • Polymorphism in Python

Python Operator Overloading

Python Advanced Topics

  • List comprehension
  • Python Lambda/Anonymous Function
  • Python Iterators
  • Python Generators
  • Python Namespace and Scope
  • Python Closures
  • Python Decorators
  • Python @property decorator
  • Python RegEx

Python Date and Time

  • Python datetime
  • Python strftime()
  • Python strptime()
  • How to get current date and time in Python?
  • Python Get Current Time
  • Python timestamp to datetime and vice-versa
  • Python time Module
  • Python sleep()

Additional Topic

Precedence and Associativity of Operators in Python

  • Python Keywords and Identifiers
  • Python Asserts
  • Python Json
  • Python *args and **kwargs

Python Tutorials

Python 3 Tutorial

  • Python Strings
  • Python any()

Operators are special symbols that perform operations on variables and values. For example,

Here, + is an operator that adds two numbers: 5 and 6 .

  • Types of Python Operators

Here's a list of different types of Python operators that we will learn in this tutorial.

  • Arithmetic Operators
  • Assignment Operators
  • Comparison Operators
  • Logical Operators
  • Bitwise Operators
  • Special Operators

1. Python Arithmetic Operators

Arithmetic operators are used to perform mathematical operations like addition, subtraction, multiplication, etc. For example,

Here, - is an arithmetic operator that subtracts two values or variables.

Operator Operation Example
Addition
Subtraction
Multiplication
Division
Floor Division
Modulo
Power

Example 1: Arithmetic Operators in Python

In the above example, we have used multiple arithmetic operators,

  • + to add a and b
  • - to subtract b from a
  • * to multiply a and b
  • / to divide a by b
  • // to floor divide a by b
  • % to get the remainder
  • ** to get a to the power b

2. Python Assignment Operators

Assignment operators are used to assign values to variables. For example,

Here, = is an assignment operator that assigns 5 to x .

Here's a list of different assignment operators available in Python.

Operator Name Example
Assignment Operator
Addition Assignment
Subtraction Assignment
Multiplication Assignment
Division Assignment
Remainder Assignment
Exponent Assignment

Example 2: Assignment Operators

Here, we have used the += operator to assign the sum of a and b to a .

Similarly, we can use any other assignment operators as per our needs.

3. Python Comparison Operators

Comparison operators compare two values/variables and return a boolean result: True or False . For example,

Here, the > comparison operator is used to compare whether a is greater than b or not.

Operator Meaning Example
Is Equal To gives us
Not Equal To gives us
Greater Than gives us
Less Than gives us
Greater Than or Equal To give us
Less Than or Equal To gives us

Example 3: Comparison Operators

Note: Comparison operators are used in decision-making and loops . We'll discuss more of the comparison operator and decision-making in later tutorials.

4. Python Logical Operators

Logical operators are used to check whether an expression is True or False . They are used in decision-making. For example,

Here, and is the logical operator AND . Since both a > 2 and b >= 6 are True , the result is True .

Operator Example Meaning
a b :
only if both the operands are
a b :
if at least one of the operands is
a :
if the operand is and vice-versa.

Example 4: Logical Operators

Note : Here is the truth table for these logical operators.

5. Python Bitwise operators

Bitwise operators act on operands as if they were strings of binary digits. They operate bit by bit, hence the name.

For example, 2 is 10 in binary, and 7 is 111 .

In the table below: Let x = 10 ( 0000 1010 in binary) and y = 4 ( 0000 0100 in binary)

Operator Meaning Example
Bitwise AND x & y = 0 ( )
Bitwise OR x | y = 14 ( )
Bitwise NOT ~x = -11 ( )
Bitwise XOR x ^ y = 14 ( )
Bitwise right shift x >> 2 = 2 ( )
Bitwise left shift x 0010 1000)

6. Python Special operators

Python language offers some special types of operators like the identity operator and the membership operator. They are described below with examples.

  • Identity operators

In Python, is and is not are used to check if two values are located at the same memory location.

It's important to note that having two variables with equal values doesn't necessarily mean they are identical.

Operator Meaning Example
if the operands are identical (refer to the same object)
if the operands are not identical (do not refer to the same object)

Example 4: Identity operators in Python

Here, we see that x1 and y1 are integers of the same values, so they are equal as well as identical. The same is the case with x2 and y2 (strings).

But x3 and y3 are lists. They are equal but not identical. It is because the interpreter locates them separately in memory, although they are equal.

  • Membership operators

In Python, in and not in are the membership operators. They are used to test whether a value or variable is found in a sequence ( string , list , tuple , set and dictionary ).

In a dictionary, we can only test for the presence of a key, not the value.

Operator Meaning Example
if value/variable is in the sequence
if value/variable is in the sequence

Example 5: Membership operators in Python

Here, 'H' is in message , but 'hello' is not present in message (remember, Python is case-sensitive).

Similarly, 1 is key, and 'a' is the value in dictionary dict1 . Hence, 'a' in y returns False .

  • Precedence and Associativity of operators in Python

Table of Contents

  • Introduction
  • Python Arithmetic Operators
  • Python Assignment Operators
  • Python Comparison Operators
  • Python Logical Operators
  • Python Bitwise operators
  • Python Special operators

Before we wrap up, let’s put your knowledge of Python operators to the test! Can you solve the following challenge?

Write a function to split the restaurant bill among friends.

  • Take the subtotal of the bill and the number of friends as inputs.
  • Calculate the total bill by adding 20% tax to the subtotal and then divide it by the number of friends.
  • Return the amount each friend has to pay, rounded off to two decimal places.

Video: Operators in Python

Sorry about that.

Our premium learning platform, created with over a decade of experience and thousands of feedbacks .

Learn and improve your coding skills like never before.

  • Interactive Courses
  • Certificates
  • 2000+ Challenges

Related Tutorials

Python Tutorial

assignment python programs

Assignment Operators in Python

Assignment Operators in Python

Table of Contents

Assignment Operators will work on values and variables. They are the special symbols that hold arithmetic, logical, and bitwise computations. The value which the operator operates is referred to as the Operand.

Read this article about Assignment Operators in Python

What are Assignment Operators?

The assignment operator will function to provide value to variables. The table below is about the different types of Assignment operator

+= will add right side operand with left side operand, assign to left operand a+=b
= It will assign the value of the right side of the expression to the left side operandx=y+z
-= can subtract the right operand from the left operand and then assign it to the left operand: True if both operands are equala -= b  
*= can subtract the right operand from the left operand and then assign it to the left operand: True if both operands are equala *= b     
/= will divide the left operand with right operand and then assign to the left operanda /= b
%= will divide the left operand with the right operand and then assign to the left operanda %= b  
<<=
It functions bitwise left on operands and will assign value to the left operand a <<= b 
>>=
This operator will perform right shift on operands and can assign value to the left operanda >>= b     

^=
This will function the bitwise xOR operands and can assign value to the left operand a ^= b    

|=
This will function Bitwise OR operands and will provide value to the left operand.a |= b    

&=
This operator will perform Bitwise AND on operand and can provide value to the left operanda&=b
**=
operator will evaluate the exponent value with the help of operands an assign value to the left operanda**=b

Here we have listed each of the Assignment operators

1. What is Assign Operator?

This assign operator will provide the value of the right side of the expression to the left operand.

2. What is Add and Assign

This Add and Assign operator will function to add the right side operand with the left side operator, and provide the result to the left operand.

3. What is Subtract and assign ?

This subtract and assign operator works to subtract the right operand from the left operand and give the result to the left operand.

4. What is Multiply and assign ?

This Multiply and assign will function to multiply the right operand with the left operand and will provide the result in the left operand.

5. What is Divide and assign Operator?

This functions to divide the left operand and provides results at the left operand.

6. What is Modulus and Assign Operator?

This operator functions using the modulus with the left and the right operand and provides results at the left operand.

7. What is Divide ( floor)and Assign Operator?

This operator will divide the left operand with the right operand, and provide the result at the left operand.

8. What is Exponent and Assign Operator?

This operator will function to evaluate the exponent and value with the operands and, provide output in the left operand.

9.What is Bitwise and Assign Operator?

This operator will function Bitwise AND on both the operand and provide the result on the left operand.

10. What is Bitwise OR and Assign Operator?

This operand will function Bitwise OR on the operand, and can provide result at the left operand.

11. What is Bitwise XOR and Assign Operator?

This operator will function for Bitwise XOR on the operands, and provide result at the left operand.

12. What is Bitwise Right Shift and Assign Operator?

This operator will function by providing the Bitwise shift on the operands and giving the result at the left operand.

13. What is Bitwise Left shift and Assign Operator?

This operator will function Bitwise left shift by providing the Bitwise left shift on the operands and giving the result on the left operand.

To conclude, different types of assignment operators are discussed in this. Beginners can improve their knowledge and understand how to apply the assignment operators through reading this.

Assignment Operators in Python- FAQs

Q1. what is an assignment statement in python.

Ans. It will calculate the expression list and can provide a single resulting object to each target list from left to right

Q2. What is the compound operator in Python?

Ans. The compound operator will do the operation of a binary operator and will save the result of the operation at the left operand.

Q3. What are the two types of assignment statements

Ans. Simple Assignment Statements and Reference Assignment Statements are the two types of assignment statements.

Hridhya Manoj

Hello, I’m Hridhya Manoj. I’m passionate about technology and its ever-evolving landscape. With a deep love for writing and a curious mind, I enjoy translating complex concepts into understandable, engaging content. Let’s explore the world of tech together

Python Logical Operators

Python Bitwise Operator

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Reach Out to Us for Any Query

SkillVertex is an edtech organization that aims to provide upskilling and training to students as well as working professionals by delivering a diverse range of programs in accordance with their needs and future aspirations.

© 2024 Skill Vertex

Python Operators: Arithmetic, Assignment, Comparison, Logical, Identity, Membership, Bitwise

Operators are special symbols that perform some operation on operands and returns the result. For example, 5 + 6 is an expression where + is an operator that performs arithmetic add operation on numeric left operand 5 and the right side operand 6 and returns a sum of two operands as a result.

Python includes the operator module that includes underlying methods for each operator. For example, the + operator calls the operator.add(a,b) method.

Above, expression 5 + 6 is equivalent to the expression operator.add(5, 6) and operator.__add__(5, 6) . Many function names are those used for special methods, without the double underscores (dunder methods). For backward compatibility, many of these have functions with the double underscores kept.

Python includes the following categories of operators:

Arithmetic Operators

Assignment operators, comparison operators, logical operators, identity operators, membership test operators, bitwise operators.

Arithmetic operators perform the common mathematical operation on the numeric operands.

The arithmetic operators return the type of result depends on the type of operands, as below.

  • If either operand is a complex number, the result is converted to complex;
  • If either operand is a floating point number, the result is converted to floating point;
  • If both operands are integers, then the result is an integer and no conversion is needed.

The following table lists all the arithmetic operators in Python:

Operation Operator Function Example in Python Shell
Sum of two operands + operator.add(a,b)
Left operand minus right operand - operator.sub(a,b)
* operator.mul(a,b)
Left operand raised to the power of right ** operator.pow(a,b)
/ operator.truediv(a,b)
equivilant to // operator.floordiv(a,b)
Reminder of % operator.mod(a, b)

The assignment operators are used to assign values to variables. The following table lists all the arithmetic operators in Python:

Operator Function Example in Python Shell
=
+= operator.iadd(a,b)
-= operator.isub(a,b)
*= operator.imul(a,b)
/= operator.itruediv(a,b)
//= operator.ifloordiv(a,b)
%= operator.imod(a, b)
&= operator.iand(a, b)
|= operator.ior(a, b)
^= operator.ixor(a, b)
>>= operator.irshift(a, b)
<<= operator.ilshift(a, b)

The comparison operators compare two operands and return a boolean either True or False. The following table lists comparison operators in Python.

Operator Function Description Example in Python Shell
> operator.gt(a,b) True if the left operand is higher than the right one
< operator.lt(a,b) True if the left operand is lower than right one
== operator.eq(a,b) True if the operands are equal
!= operator.ne(a,b) True if the operands are not equal
>= operator.ge(a,b) True if the left operand is higher than or equal to the right one
<= operator.le(a,b) True if the left operand is lower than or equal to the right one

The logical operators are used to combine two boolean expressions. The logical operations are generally applicable to all objects, and support truth tests, identity tests, and boolean operations.

Operator Description Example
and True if both are true
or True if at least one is true
not Returns True if an expression evalutes to false and vice-versa

The identity operators check whether the two objects have the same id value e.i. both the objects point to the same memory location.

Operator Function Description Example in Python Shell
is operator.is_(a,b) True if both are true
is not operator.is_not(a,b) True if at least one is true

The membership test operators in and not in test whether the sequence has a given item or not. For the string and bytes types, x in y is True if and only if x is a substring of y .

Operator Function Description Example in Python Shell
in operator.contains(a,b) Returns True if the sequence contains the specified item else returns False.
not in not operator.contains(a,b) Returns True if the sequence does not contains the specified item, else returns False.

Bitwise operators perform operations on binary operands.

Operator Function Description Example in Python Shell
& operator.and_(a,b) Sets each bit to 1 if both bits are 1.
| operator.or_(a,b) Sets each bit to 1 if one of two bits is 1.
^ operator.xor(a,b) Sets each bit to 1 if only one of two bits is 1.
~ operator.invert(a) Inverts all the bits.
<< operator.lshift(a,b) Shift left by pushing zeros in from the right and let the leftmost bits fall off.
>> operator.rshift(a,b) Shift right by pushing copies of the leftmost bit in from the left, and let the rightmost bits fall off.
  • Compare strings in Python
  • Convert file data to list
  • Convert User Input to a Number
  • Convert String to Datetime in Python
  • How to call external commands in Python?
  • How to count the occurrences of a list item?
  • How to flatten list in Python?
  • How to merge dictionaries in Python?
  • How to pass value by reference in Python?
  • Remove duplicate items from list in Python
  • More Python articles

assignment python programs

We are a team of passionate developers, educators, and technology enthusiasts who, with their combined expertise and experience, create in -depth, comprehensive, and easy to understand tutorials.We focus on a blend of theoretical explanations and practical examples to encourages hands - on learning. Visit About Us page for more information.

  • Python Questions & Answers
  • Python Skill Test
  • Python Latest Articles
  • Trending Now
  • Foundational Courses
  • Data Science
  • Practice Problem
  • Machine Learning
  • System Design
  • DevOps Tutorial

Assignment Operators in Programming

Assignment operators in programming are symbols used to assign values to variables. They offer shorthand notations for performing arithmetic operations and updating variable values in a single step. These operators are fundamental in most programming languages and help streamline code while improving readability.

Table of Content

What are Assignment Operators?

  • Types of Assignment Operators
  • Assignment Operators in C
  • Assignment Operators in C++
  • Assignment Operators in Java
  • Assignment Operators in Python
  • Assignment Operators in C#
  • Assignment Operators in JavaScript
  • Application of Assignment Operators

Assignment operators are used in programming to  assign values  to variables. We use an assignment operator to store and update data within a program. They enable programmers to store data in variables and manipulate that data. The most common assignment operator is the equals sign ( = ), which assigns the value on the right side of the operator to the variable on the left side.

Types of Assignment Operators:

  • Simple Assignment Operator ( = )
  • Addition Assignment Operator ( += )
  • Subtraction Assignment Operator ( -= )
  • Multiplication Assignment Operator ( *= )
  • Division Assignment Operator ( /= )
  • Modulus Assignment Operator ( %= )

Below is a table summarizing common assignment operators along with their symbols, description, and examples:

OperatorDescriptionExamples
= (Assignment)Assigns the value on the right to the variable on the left.  assigns the value 10 to the variable x.
+= (Addition Assignment)Adds the value on the right to the current value of the variable on the left and assigns the result to the variable.  is equivalent to 
-= (Subtraction Assignment)Subtracts the value on the right from the current value of the variable on the left and assigns the result to the variable.  is equivalent to 
*= (Multiplication Assignment)Multiplies the current value of the variable on the left by the value on the right and assigns the result to the variable.  is equivalent to 
/= (Division Assignment)Divides the current value of the variable on the left by the value on the right and assigns the result to the variable.  is equivalent to 
%= (Modulo Assignment)Calculates the modulo of the current value of the variable on the left and the value on the right, then assigns the result to the variable.  is equivalent to 

Assignment Operators in C:

Here are the implementation of Assignment Operator in C language:

Assignment Operators in C++:

Here are the implementation of Assignment Operator in C++ language:

Assignment Operators in Java:

Here are the implementation of Assignment Operator in java language:

Assignment Operators in Python:

Here are the implementation of Assignment Operator in python language:

Assignment Operators in C#:

Here are the implementation of Assignment Operator in C# language:

Assignment Operators in Javascript:

Here are the implementation of Assignment Operator in javascript language:

Application of Assignment Operators:

  • Variable Initialization : Setting initial values to variables during declaration.
  • Mathematical Operations : Combining arithmetic operations with assignment to update variable values.
  • Loop Control : Updating loop variables to control loop iterations.
  • Conditional Statements : Assigning different values based on conditions in conditional statements.
  • Function Return Values : Storing the return values of functions in variables.
  • Data Manipulation : Assigning values received from user input or retrieved from databases to variables.

Conclusion:

In conclusion, assignment operators in programming are essential tools for assigning values to variables and performing operations in a concise and efficient manner. They allow programmers to manipulate data and control the flow of their programs effectively. Understanding and using assignment operators correctly is fundamental to writing clear, efficient, and maintainable code in various programming languages.

Please Login to comment...

Similar reads.

  • Programming
  • SUMIF in Google Sheets with formula examples
  • How to Get a Free SSL Certificate
  • Best SSL Certificates Provider in India
  • Elon Musk's xAI releases Grok-2 AI assistant
  • Content Improvement League 2024: From Good To A Great Article

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Say "Hello, World!" With Python Easy Max Score: 5 Success Rate: 96.19%

Python if-else easy python (basic) max score: 10 success rate: 89.62%, arithmetic operators easy python (basic) max score: 10 success rate: 97.35%, python: division easy python (basic) max score: 10 success rate: 98.67%, loops easy python (basic) max score: 10 success rate: 98.07%, write a function medium python (basic) max score: 10 success rate: 90.28%, print function easy python (basic) max score: 20 success rate: 97.30%, list comprehensions easy python (basic) max score: 10 success rate: 97.64%, find the runner-up score easy python (basic) max score: 10 success rate: 94.21%, nested lists easy python (basic) max score: 10 success rate: 91.79%, cookie support is required to access hackerrank.

Seems like cookies are disabled on this browser, please enable them to open this website

Navigation Menu

Search code, repositories, users, issues, pull requests..., provide feedback.

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly.

To see all available qualifiers, see our documentation .

  • Notifications You must be signed in to change notification settings

NPTEL Assignment Answers and Solutions 2024 (July-Dec). Get Answers of Week 1 2 3 4 5 6 7 8 8 10 11 12 for all courses. This guide offers clear and accurate answers for your all assignments across various NPTEL courses

progiez/nptel-assignment-answers

Folders and files.

NameName
164 Commits

Repository files navigation

Nptel assignment answers 2024 with solutions (july-dec), how to use this repo to see nptel assignment answers and solutions 2024.

If you're here to find answers for specific NPTEL courses, follow these steps:

Access the Course Folder:

  • Navigate to the folder of the course you are interested in. Each course has its own folder named accordingly, such as cloud-computing or computer-architecture .

Locate the Weekly Assignment Files:

  • Inside the course folder, you will find files named week-01.md , week-02.md , and so on up to week-12.md . These files contain the assignment answers for each respective week.

Select the Week File:

  • Click on the file corresponding to the week you are interested in. For example, if you need answers for Week 3, open the week-03.md file.

Review the Answers:

  • Each week-XX.md file provides detailed solutions and explanations for that week’s assignments. Review these files to find the information you need.

By following these steps, you can easily locate and use the assignment answers and solutions for the NPTEL courses provided in this repository. We hope this resource assists you in your studies!

List of Courses

Here's a list of courses currently available in this repository:

  • Artificial Intelligence Search Methods for Problem Solving
  • Cloud Computing
  • Computer Architecture
  • Cyber Security and Privacy
  • Data Science for Engineers
  • Data Structure and Algorithms Using Java
  • Database Management System
  • Deep Learning for Computer Vision
  • Deep Learning IIT Ropar
  • Digital Circuits
  • Ethical Hacking
  • Introduction to Industry 4.0 and Industrial IoT
  • Introduction to Internet of Things
  • Introduction to Machine Learning IIT KGP
  • Introduction to Machine Learning
  • Introduction to Operating Systems
  • ML and Deep Learning Fundamentals and Applications
  • Problem Solving Through Programming in C
  • Programming DSA Using Python
  • Programming in Java
  • Programming in Modern C
  • Python for Data Science
  • Soft Skill Development
  • Soft Skills
  • Software Engineering
  • Software Testing
  • The Joy of Computation Using Python
  • Theory of Computation

Note: This repository is intended for educational purposes only. Please use the provided answers as a guide to better understand the course material.

📧 Contact Us

For any queries or support, feel free to reach out to us at [email protected] .

🌐 Connect with Progiez

Website

⭐️ Follow Us

Stay updated with our latest content and updates by following us on our social media platforms!

🚀 About Progiez

Progiez is an online educational platform aimed at providing solutions to various online courses offered by NPTEL, Coursera, LinkedIn Learning, and more. Explore our resources for detailed answers and solutions to enhance your learning experience.

Disclaimer: This repository is intended for educational purposes only. All content is provided for reference and should not be submitted as your own work.

Contributors 3

@raveshrawal

10 Free Programming Courses And Certificates In 2024

Although many roles require programming skills, it's essential to only focus on learning the ones ... [+] that are relevant to your career goal or job opportunity

Regardless of your career choice, you will always need a combination of technical skills (also known as hard skills) and soft skills (also known as power skills). Both sets of skills serve strategic purposes in your career journey, and in your professional development and advancement.

A solid understanding of technical skills enable you to get the job done, and acts as proof of your expertise; while building your soft skills—the transferable skills that are necessary to facilitate everyday work life regardless of the industry—ensures that you are able to get your foot in the door, build relationships, thrive in your role, and successfully climb the ladder.

Programming skills are perhaps the most important technical/hard skill sets you need to learn in 2024. While computer programming as a standalone profession might be suffering a decline, there are numerous jobs that will require you to have programming skills—even though some of these roles are non-technical.

Each role will have varying technical proficiency requirements, depending on job context. So it's essential that you identify what programming skills are needed, if any, for your specific job or long-term career goal, so that you can make a plan to learn and develop the necessary skills, keeping your professional development focused and tailored to your needs.

For example, a data analyst would need to learn about SQL, Python, and R for statistical programming, whereas a mobile app developer would need to understand C#, Kotlin, and Java programming languages.

10 Free Courses And Certificates To Learn Programming Skills

Here, then, are 10 free programming courses and online trainings which you can access to start your professional development journey from today—and some of them even come with certificates:

1. Programming for Everybody (Getting Started With Python)

Developed and delivered by the University of Michigan, this course is available for free on Coursera if you qualify for financial aid, and it also comes with a certification upon completion. Programming for Everybody is part of the wider Python for Everybody learning path, and is suitable for you even if you are a novice with zero previous knowledge or experience with Python programming.

2. Programming Languages, Part A

The Programming Languages career certificate by the University of Washington, via Coursera, is another fantastic upskilling resource if you are looking to take your programming skills to the next level. Unlike the Programming for Everybody certificate, this free course is more suited for you if you have some prior background in the subject.

3. Computer Programming—JavaScript And The Web

Offered by Khan Academy, the Computer Programming—JavaScript and the Web course does not come with a certificate, however it is incredibly helpful in that it teaches a wide range of skills including writing code, debugging, CSS, modifying databases, interactive webpages and jQuery, and others.

The other courses include:

  • Responsive Web Design Certification—FreeCodeCamp (teaches HTML and CSS)
  • JavaScript Algorithms and Data Structures Certification—FreeCodeCamp (teaches JavaScript)
  • Front End Development Libraries Certification—FreeCodeCamp (teaches React and Bootstrap)
  • Data Visualization Certification—FreeCodeCamp (teaches the D3.js library)
  • Introduction to C++—SoloLearn

6 Places That Provide Free Programming Courses

Here are some excellent resources for sourcing free programming training and courses:

  • Khan Academy
  • Codeacademy
  • MIT OpenCourseWare (has an entire page dedicated to introductory programming skills courses, and also has more advanced courses listed once you build confidence in the foundational level)
  • The Odin Project—head to their "Foundations" page

Non-profits such as Khan Academy are incredibly helpful resources for learning in-demand high-income ... [+] skills such as programming, at your own pace, in a non-threatening way

As you can see, it's pretty easy to learn programming skills and languages, all from the comfort of your home, without even needing to spend a penny. There are no excuses now, except the ones you impose on yourself. So get started today and enrol on a course.

assignment python programs

  • Computers & Technology
  • Programming

Sorry, there was a problem.

Kindle app logo image

Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet, or computer - no Kindle device required .

Read instantly on your browser with Kindle for Web.

Using your mobile phone camera - scan the code below and download the Kindle app.

QR code to download the Kindle App

Image Unavailable

Python Programming for Beginners: The Complete Python Coding Crash Course - Boost Your Growth with an Innovative Ultra-Fast Learning Framework and Exclusive Hands-On Interactive Exercises &amp; Projects

  • To view this video download Flash Player

assignment python programs

Follow the author

codeprowess

Python Programming for Beginners: The Complete Python Coding Crash Course - Boost Your Growth with an Innovative Ultra-Fast Learning Framework and Exclusive Hands-On Interactive Exercises & Projects

  • ISBN-13 979-8876939234
  • Publication date January 21, 2024
  • Language English
  • Dimensions 8 x 0.37 x 10 inches
  • Print length 160 pages
  • See all details

From the Publisher

Python Programming

What's inside

Product details

  • ASIN ‏ : ‎ B0CSY7BL6Q
  • Publisher ‏ : ‎ Independently published (January 21, 2024)
  • Language ‏ : ‎ English
  • Paperback ‏ : ‎ 160 pages
  • ISBN-13 ‏ : ‎ 979-8876939234
  • Item Weight ‏ : ‎ 14.9 ounces
  • Dimensions ‏ : ‎ 8 x 0.37 x 10 inches
  • #1 in Cross-platform Software Development
  • #6 in Python Programming
  • #7 in Introductory & Beginning Programming

About the author

Codeprowess.

At the heart of the digital age, codeprowess stands as a guiding light for those seeking to navigate the ever-evolving landscape of technology. We believe that knowledge is the key to progress. Guided by this philosophy, we have dedicated ourselves to breaking down barriers that hinder access to technical education. Through a unique blend of simplicity and depth, codeprowess's work makes even the most complex concepts approachable for learners at all levels.

Through our publications, we have helped countless individuals gain confidence in their technical abilities. Our works serve as invaluable resources for students, professionals, and enthusiasts alike.

From foundational texts on programming languages to insightful guides on emerging technologies, each publication is crafted with the reader's growth in mind.

We remain committed to expanding the reach of our educational initiatives. With a focus on emerging technologies and their potential to solve real-world problems, we continue to explore new ways to empower individuals and communities. Through collaboration, innovation, and a relentless pursuit of knowledge, codeprowess aims to contribute to a world where technology serves as a tool for progress, inclusion, and positive change.

Related books

assignment python programs

Customer reviews

  • 5 star 4 star 3 star 2 star 1 star 5 star 85% 9% 3% 1% 2% 85%
  • 5 star 4 star 3 star 2 star 1 star 4 star 85% 9% 3% 1% 2% 9%
  • 5 star 4 star 3 star 2 star 1 star 3 star 85% 9% 3% 1% 2% 3%
  • 5 star 4 star 3 star 2 star 1 star 2 star 85% 9% 3% 1% 2% 1%
  • 5 star 4 star 3 star 2 star 1 star 1 star 85% 9% 3% 1% 2% 2%

Customer Reviews, including Product Star Ratings help customers to learn more about the product and decide whether it is the right product for them.

To calculate the overall star rating and percentage breakdown by star, we don’t use a simple average. Instead, our system considers things like how recent a review is and if the reviewer bought the item on Amazon. It also analyzed reviews to verify trustworthiness.

Customers say

Customers find the topics well organized and structured for beginners. They appreciate the examples, hands-on exercises, and practical projects. Readers also describe the book as a great way to start or brush up on training.

AI-generated from the text of customer reviews

Customers find the topics well organized, easy to follow, and structured well. They also appreciate the good information on Python and the followable examples.

"I absolutely love how this book give clear understandable instructions . I am so excited for this book...." Read more

"...This book is definitely beginner friendly . There are lots of examples in this crash course...." Read more

" Gives you simple code and training to do the understand the code you are using...." Read more

"It's very informative, with good instructions and many examples. It also gives extra resources at the end for even more help." Read more

Customers find the book's content and exercises excellent. They also say it contains lots of examples and is an amazing resource for beginners.

"...This book is definitely beginner friendly. There are lots of examples in this crash course ...." Read more

"It's very informative , with good instructions and many examples. It also gives extra resources at the end for even more help." Read more

"...There's a lot of valuable information and bonus resources to help you even more...." Read more

"...It covers a wide range of essential topics in a well-structured and easy-to-understand manner, ensuring that readers not only grasp the fundamentals..." Read more

Customers find the storyline of the book great for starting a journey or brushing up on training.

"Full of great learning lessons, very excited to dig in !" Read more

"...This is a great, no frills, perfect intro to python . Definitely recommend." Read more

"Very though fast-paced learning. This is great way to start your journey or brush up on your training...." Read more

"...Good background. Stepwise learning is sticking with me. Enjoying the journey ." Read more

Customers find the writing style informative, laid out well, and good so far.

"Informative, laid out well ." Read more

"I love the layout and the samples that are used" Read more

"Began reading this python tutorial. Looks good so far . Thank you." Read more

Reviews with images

Customer Image

  • Sort reviews by Top reviews Most recent Top reviews

Top reviews from the United States

There was a problem filtering reviews right now. please try again later..

assignment python programs

  • About Amazon
  • Investor Relations
  • Amazon Devices
  • Amazon Science
  • Sell products on Amazon
  • Sell on Amazon Business
  • Sell apps on Amazon
  • Become an Affiliate
  • Advertise Your Products
  • Self-Publish with Us
  • Host an Amazon Hub
  • › See More Make Money with Us
  • Amazon Business Card
  • Shop with Points
  • Reload Your Balance
  • Amazon Currency Converter
  • Amazon and COVID-19
  • Your Account
  • Your Orders
  • Shipping Rates & Policies
  • Returns & Replacements
  • Manage Your Content and Devices
 
 
 
 
  • Conditions of Use
  • Privacy Notice
  • Consumer Health Data Privacy Disclosure
  • Your Ads Privacy Choices

assignment python programs

Defining a symbolic syntax for referring to assignment targets

FWIW, aside from the potential performance hit, mutating f_locals should work reliably in 3.13+ due to PEP 667 – Consistent views of namespaces | peps.python.org

I actually had thought about that too but the problem was that we can’t use a soft keyword for it since there is no way syntactically to distinguish the soft keyword from a variable name, and if we make it a hard keyword then it would be too much of a breaking change since the keyword would have to be a commonly used English word that likely collides with variable names in existing code base.

But now it occurred to me that we can just make the magic placeholder a dunder so no existing code base should be using it. As for the name itself, I think __target__ would be good:

The code now looks a lot less cryptic/Perlish to me.

Behind the scene though, __target__ would be a hard keyword rather than a variable name. It won’t be looked up in the namespace but is rather expanded at compilation time.

Similarlly, @'' can be made into a new hard keyword such as __target_name__ to look less cryptic.

Yup, same here. I almost wrote my own POV comparing this to walrus, but decided not to half-way through realising that it isn’t going to be of much use given this is currently at contemplative stage.

And it took me a fair bit of time to stop abusing walrus, however I am happy about it having finally learned to use it responsibly.

The notation, I think is decent - visually and semantically. And been wandering what was the reason for @ for mat_mult - never seen @ used anywhere in math before. There was quite a good example for this - matlab . Can’t do exactly the same, but retaining * might have been better, e.g. \* . So that @ could be used for something more appropriate, e.g. this. But given status quo, I don’t think it would fly. So 2 options:

  • Change matrix multiplication operator. Been thinking about how hard of a sell this would be. I know that no-one would want to do it. All the backwards compatibility etc, but has anyone analysed compound cost of a bad decision? And the fact that the earlier the correction is done, the smaller the damage? I am talking in general, not only this specific case. I mean surely if the goal is best possible version of Python, (as opposed to pleasing unsatisfied and reluctant to adapt users), big breaks of backwards compatibility are inevitable…
  • Pick something else for this. One idea would be to go with bash-like argument syntax, but with pythonic slicing:

Or maybe even star, given it being used in expansions:

Could also incorporate string-like formatting:

Alternatively, use * for strings, @ for values (similar to what bash does).

We have space-separated names as arguments in the standard library too, such as collections.namedtuple and enum.Enum :

Using my dunder keyword idea above, it can become:

The matrix multiplication PEP did cover that: PEP 465 – A dedicated infix operator for matrix multiplication | peps.python.org

The __target__ dunder idea is interesting, as it doesn’t provide brevity gains in most cases, but does provide the benefit of avoiding repeated evaluation.

I suspect code that assigns to identifiers would continue to be better off just using the target identifier directly, but attribute access, subscripting, slicing, and tuple assignment could still see some utility.

__target_text__ could replace @'' for both identifier assignment and tuple assignment ( __target_name__ wouldn’t match the latter use case)

I doubt you could reasonably use that form to map function parameters to local variables of the same name, though.

Sounds good indeed. With the name __target_text__ we wouldn’t have to worry about a plural form.

I don’t see why not. We can name the new keyword that forwards local variables to function parameters of the same names, __same__ . The compiler with access to AST can clearly tell which keyword argument a ast.Same node belongs to and produces bytecode that loads the local variable of that name for the argument accordingly:

This is really a completely separate proposal from the assignment target placeholder proposal though, and should be discussed about in a separate thread (perhaps in the PEP-736 thread, in which I have now made a post ).

Yeah the loss of brevity does take away the utility of this idea in cases of a single identifier, particularly as an alternative to PEP-736, where parameter names are always single identifiers.

I agree that we should focus more on its utility for more complex assignment targets.

Going further on the SymPy tangent, I can brainstorm a possible story of how to get that by more straightforward extensions of existing syntax.

The hardest hurdle in this story is the first step. Suppose Python somehow gets dict destructuring assignment:

Sympy then defines a helper whose __getitem__ gives out symbols (if it doesn’t already have it):

By this time PEP 736 has been accepted, and its syntax gets extended to dict destructuring:

(Is that Perlish?) (Is it the direction Python is going?)

People now start writing {Point2D=} = namedtuplemaker('x', 'y') … which isn’t straightforward to read today, but maybe it’s better than with @'' ?

“Whatever, we have to pick something.”

If you’re going to give the target a full identifier, you might as well provide the name rather than hardcoding it

some.nested.attribute as x = x.lower()

This doesn’t require new tokens, and the syntax mimics what we have in the match statement (which tries to overlap assignment syntax). It definitely looks more python than perl (keywords vs symbols)

Same as your proposal, this doesn’t cover argument pushing, but only double evaluation (at this point it isn’t much more than a glorified walrus). This is also missing a syntax to capture the name of the target as a str. I’m not sorry convinced on that but I think you could do (a, b, c) as (_, names) = simpy.symbols(names) .

I’m not super sold into this either, but hopefully putting this idea on the table may help someone find a better proposal

For me a big part of this feature was not needing to assign a name for this specific “some.nested.attribute”, so I’m not really sure I like the as proposal

A benefit can be that if the name persists, it can be used more times in the code that follows the assignment.

Quite like it, one issue though:

While naming tuple thing obstruct such intuitive expansion. However might not be an issue as one can always slice it on the right hand side. However, it does not seem very elegant nevertheless. Maybe something like:

This would be the 2nd method that allows extracting identifier name from identifier. First one being f{a=} . However, it would also be the second one which compulsory does more than that, while simple straight forward way to do this still does not exist, namely something similar to C# nameof , that would do exactly that without needing to evaluate anything. Thinking if I could hack this for it:

Interesting idea, for sure.

What I don’t like about it is that it encourages a coding style that binds multiple different values to the same name. Inevitably, one of those values is going to be badly named.

E.g. you might see

At point (1) , the value of sth.this_must_be_lowercase violates requirements: The value is in fact not guaranteed lowercase.

I would rather it was written such that different values have different names. Like this:

This is a fairly marginal coding style distinction, and not something I would usually make a fuss about. But I do think the latter style is marginally better, and it would be unfortunate to add syntax that encourages the former style.

I am -1 to using @ for any of the purposes outlined here, but +1 to long_name as x = foo(x) being sugar for long_name = foo('long_name') .

It should work the same for dotted names and tuples, i.e. a.b. c as x = foo(x) would be sugar for a.b. c = foo('a.b.c') and (a,*b, c) as x = foo(x) would be sugar for (a,*b, c) = foo('a, *b, c') - note my intentional inconsistent whitespace to demonstrate that whitespace ought to be normalised when generating the string representation.

Outer parens in tuple assignment would be required to make it clearly unambiguous; a, b as x would be a syntax error but might later (as a separate proposal) be allowed in order to let x be 'b' . I’m -0 on allowing this from the beginning; probably better to see how the general idea works out before adding in this complication.

I would prefer that this feature be limited to passing the string representation of some name to a function (or otherwise using it in an expression), as that’s an actually important use case (namedtuple, TypeVar). My dislike of using this for accessing the target object itself is pretty much what @AndersMunch has already explained: it’s far less confusing to just use a regular ol’ assignment for that.

“Python is not Perl” indeed!

IMO another good (also English-specific) mnemonic is “at rhymes with that”, and reading @ as “that” is a pretty natural way to speak the statement.

I suspect that I’m in the minority here but I personally found figuring out what assignment target means (i.e. whatever’s on the the left of the = operator) to be more confusing than mapping a punctuation character to the words assignment target . So perlish or not, to me eliminating @ isn’t really fixing anything.

TBH, in this version of the proposal you don’t get much for TypeVar . You are changing:

if you make up a name and copy it over you’re getting more verbosity than the original and still have repetition. Same for namedtuples. That’s whay I didn’t worry too much about the string representation when I covered this, I was more focused on Alyssa’s idea of avoiding re-evaluation of attribute accesses/slicing.

We have __set_name__ so descriptors know their own name. Have we thought of extending __set_name__ to work on objects? Or perhaps there is a reason why it’s not done? I think it would be neat if objects could capture the lhs as a name like in descriptors

Allowing __target__ on the LFS would make the syntax ambiguous when there is also __target__ on the RHS:

Does __target__[:2] on the RHS become foo[:2] or foo[2:][:2] ?

Assignment to a name does not modify an object in-place. It merely sets the name on the LHS to a new reference to the object on the RHS. So __target__ = hex(v) would just set the local name v to a new object for that iteration rather than updating the entry in mydict , which will still hold a reference to the original value.

Alyssa’s elaborate description of how to deal with different assignment targets may seem confusing, but at its heart it’s something quite simple and familiar: It’s how augmented assignment works.

Just like a.b[c].d += 1 only evaluates a.b[c] once, a.b[c].d = @ + 1 would also evaluate a.b[c] just once.

IMAGES

  1. 02 Multiple assignments in python

    assignment python programs

  2. Assignment operators in python

    assignment python programs

  3. Variable Assignment in Python

    assignment python programs

  4. Assignment Operators in Python

    assignment python programs

  5. Learn Python Programming Tutorial 4

    assignment python programs

  6. python assignment 5 2

    assignment python programs

VIDEO

  1. Assignment

  2. Variables and Multiple Assignment

  3. Week 3 graded assignment python #python #iitm

  4. Operators in python telugu

  5. Assignment

  6. "Mastering Assignment Operators in Python: A Comprehensive Guide"

COMMENTS

  1. Python Exercises, Practice, Challenges

    These free exercises are nothing but Python assignments for the practice where you need to solve different programs and challenges. All exercises are tested on Python 3. Each exercise has 10-20 Questions. The solution is provided for every question. These Python programming exercises are suitable for all Python developers.

  2. Welcome to 101 Exercises for Python Fundamentals

    In this way, Python can reverse a list of 3 numbers or 100 numbers or ten million numbers with the same instructions. Repetition is a key idea behind programming languages. This means that your task with these exercises is to determine a sequence of steps that solve the problem and then find the Python code that will run those instructions.

  3. Python's Assignment Operator: Write Robust Assignments

    Here, variable represents a generic Python variable, while expression represents any Python object that you can provide as a concrete value—also known as a literal—or an expression that evaluates to a value. To execute an assignment statement like the above, Python runs the following steps: Evaluate the right-hand expression to produce a concrete value or object.

  4. Introduction into Python Statements: Assignment, Conditional Examples

    They are the building blocks of a Python program. What is a Statement in Python? A statement is a line of code that performs a specific action. It is the smallest unit of code that can be executed by the Python interpreter. Assignment Statement x = 10 In this example, the value 10 is assigned to the variable x using the assignment statement.

  5. Different Forms of Assignment Statements in Python

    Multiple- target assignment: x = y = 75. print(x, y) In this form, Python assigns a reference to the same object (the object which is rightmost) to all the target on the left. OUTPUT. 75 75. 7. Augmented assignment : The augmented assignment is a shorthand assignment that combines an expression and an assignment.

  6. Python Basic Exercise for Beginners with Solutions

    The exercise contains 15 Python programs to solve, ranging from beginner to intermediate difficulty. The hints and solutions are provided for each question. Tips and essential learning resources accompany each question. These will assist you in solving the exercise and empower you with the knowledge to tackle similar problems in the future ...

  7. Assignment Operators in Python

    The Walrus Operator in Python is a new assignment operator which is introduced in Python version 3.8 and higher. This operator is used to assign a value to a variable within an expression. Syntax: a := expression. Example: In this code, we have a Python list of integers. We have used Python Walrus assignment operator within the Python while loop.

  8. Introduction to Computer Science and Programming in Python

    6.0001 Introduction to Computer Science and Programming in Python is intended for students with little or no programming experience. It aims to provide students with an understanding of the role computation can play in solving problems and to help students, regardless of their major, feel justifiably confident of their ability to write small programs that allow them to accomplish useful goals.

  9. Variables and Assignment

    In Python, a single equals sign = is the "assignment operator." (A double equals sign == is the "real" equals sign.) Variables are names for values. In Python the = symbol assigns the value on the right to the name on the left. The variable is created when a value is assigned to it. Here, Python assigns an age to a variable age and a ...

  10. Python Assignment Operators

    Programs Full Access Best Value! Front End Certificate Course Web Dev. Certificate Course ... Python Assignment Operators. Assignment operators are used to assign values to variables: Operator Example Same As Try it =

  11. Assignment Operators in Python

    In this Python tutorial, we'll understand Python programming assignment operators with examples and augmented assignment operators in Python. Assignment Operators in Python are used to assign values to the variables. "=" is the fundamental Python assignment operator. The value on the right side of the "=" is assigned to the variable on the left ...

  12. 35 Python Programming Exercises and Solutions

    If you've completed learning the syntax of Python programming language, it is the right time to do some practice programs. In this article, I'll list down some problems that I've done and the answer code for each exercise.

  13. Python Examples

    All Examples. Files. Python Program to Print Hello world! Python Program to Add Two Numbers. Python Program to Find the Square Root. Python Program to Calculate the Area of a Triangle. Python Program to Solve Quadratic Equation. Python Program to Swap Two Variables. Python Program to Generate a Random Number.

  14. Assignments

    A Gentle Introduction to Programming Using Python. Menu. More Info Syllabus Calendar Readings Lectures Assignments Exams Related Resources Assignments ... assignment Programming Assignments. Download Course. Over 2,500 courses & materials Freely sharing knowledge with learners and educators around the world.

  15. Python

    Python Assignment Operator. The = (equal to) symbol is defined as assignment operator in Python. The value of Python expression on its right is assigned to a single variable on its left. The = symbol as in programming in general (and Python in particular) should not be confused with its usage in Mathematics, where it states that the expressions ...

  16. python-assignment · GitHub Topics · GitHub

    To associate your repository with the python-assignment topic, visit your repo's landing page and select "manage topics." GitHub is where people build software. More than 100 million people use GitHub to discover, fork, and contribute to over 420 million projects.

  17. Python Operators (With Examples)

    6. Python Special operators. Python language offers some special types of operators like the identity operator and the membership operator. They are described below with examples. Identity operators. In Python, is and is not are used to check if two values are located at the same memory location.

  18. Assignment Operators in Python

    a /= b. %=. Divide AND will divide the left operand with the right operand and then assign to the left operand. a %= b. <<=. It functions bitwise left on operands and will assign value to the left operand. a <<= b. >>=. This operator will perform right shift on operands and can assign value to the left operand.

  19. Python Operators: Arithmetic, Assignment, Comparison, Logical, Identity

    Python Operators: Arithmetic, Assignment, Comparison, Logical, Identity, Membership, Bitwise. Operators are special symbols that perform some operation on operands and returns the result. For example, 5 + 6 is an expression where + is an operator that performs arithmetic add operation on numeric left operand 5 and the right side operand 6 and ...

  20. coursera-learn-to-program-the-fundamentals-python/assignments ...

    This repository contains assignments and their solutions for the course: Learn to Program: The Fundamentals. They were added after successfully completing the University of Toronto&#39;s non-credit...

  21. Assignment Operators in Programming

    Assignment operators are used in programming to assign values to variables. We use an assignment operator to store and update data within a program. They enable programmers to store data in variables and manipulate that data. The most common assignment operator is the equals sign (=), which assigns the value on the right side of the operator to ...

  22. Solve Python

    Easy Python (Basic) Max Score: 10 Success Rate: 97.35%. Solve Challenge. Python: Division. Easy Python (Basic) Max Score: 10 Success Rate: 98.67%. Solve Challenge. ... Join over 23 million developers in solving code challenges on HackerRank, one of the best ways to prepare for programming interviews. We use cookies to ensure you have the best ...

  23. NPTEL Assignment Answers 2024 with Solutions (July-Dec)

    Locate the Weekly Assignment Files: Inside the course folder, you will find files named week-01.md, week-02.md, and so on up to week-12.md. These files contain the assignment answers for each respective week. Select the Week File: Click on the file corresponding to the week you are interested in.

  24. Assignments: Python Programming

    Assignment - 02: What do you mean by the portability of software? List out a few developer communities (e.g. Stackoverflow) Why python is called a general-purpose language? List out a few services which use python. Enlist 5 programming languages with their use in a specific domain; Assignment - 03: [1]. Consider variables A = 8 and B = 6.

  25. Python Crash Course, 3rd Edition: A Hands-On, Project-Based

    Python Crash Course is the world's bestselling programming book, with over 1,500,000 copies sold to date! Python Crash Course is the world's best-selling guide to the Python programming language. This fast-paced, thorough introduction will have you writing programs, solving problems, and developing functioning applications in no time.

  26. 10 Free Programming Courses And Certificates In 2024

    For example, a data analyst would need to learn about SQL, Python, and R for statistical programming, whereas a mobile app developer would need to understand C#, Kotlin, and Java programming ...

  27. Python Institute certification testing with Pearson VUE

    Python Institute About the OpenEDG Python Institute. The OpenEDG Python Institute is an independent non-profit project set up by the Open Education and Development Group (OpenEDG) to promote the Python programming language, train a new generation of Python programmers, and support professional careers in programming in the Python language, and in related technologies.

  28. NPTEL The Joy of Computing using Python Week 7 Programming Assignment

    NPTEL The Joy of Computing using Python Week 7 Programming Assignment 7 Answers Solution | July 2024Link of Code : https://swayamsolver.blogspot.com/2024/07/...

  29. Python Programming for Beginners: The Complete Python Coding Crash

    This item: Python Programming for Beginners: The Complete Python Coding Crash Course - Boost Your Growth with an Innovative Ultra-Fast Learning Framework and Exclusive Hands-On Interactive Exercises & Projects . $15.96 $ 15. 96. Get it as soon as Friday, Aug 30. Available to ship in 1-2 days.

  30. Defining a symbolic syntax for referring to assignment targets

    __target_text__ could replace @'' for both identifier assignment and tuple assignment ( __target_name__ wouldn't match the latter use case) Sounds good indeed. With the name __target_text__ we wouldn't have to worry about a plural form. I doubt you could reasonably use that form to map function parameters to local variables of the same name ...