psychology types of experiments

Reference Library

Collections

  • See what's new
  • All Resources
  • Student Resources
  • Assessment Resources
  • Teaching Resources
  • CPD Courses
  • Livestreams

Study notes, videos, interactive activities and more!

Psychology news, insights and enrichment

Currated collections of free resources

Browse resources by topic

  • All Psychology Resources

Resource Selections

Currated lists of resources

Study Notes

Types of Experiment: Overview

Last updated 6 Sept 2022

  • Share on Facebook
  • Share on Twitter
  • Share by Email

Different types of methods are used in research, which loosely fall into 1 of 2 categories.

Experimental (Laboratory, Field & Natural) & N on experimental ( correlations, observations, interviews, questionnaires and case studies).

All the three types of experiments have characteristics in common. They all have:

  • an independent variable (I.V.) which is manipulated or a naturally occurring variable
  • a dependent variable (D.V.) which is measured
  • there will be at least two conditions in which participants produce data.

Note – natural and quasi experiments are often used synonymously but are not strictly the same, as with quasi experiments participants cannot be randomly assigned, so rather than there being a condition there is a condition.

Laboratory Experiments

These are conducted under controlled conditions, in which the researcher deliberately changes something (I.V.) to see the effect of this on something else (D.V.).

Control – lab experiments have a high degree of control over the environment & other extraneous variables which means that the researcher can accurately assess the effects of the I.V, so it has higher internal validity.

Replicable – due to the researcher’s high levels of control, research procedures can be repeated so that the reliability of results can be checked.

Limitations

Lacks ecological validity – due to the involvement of the researcher in manipulating and controlling variables, findings cannot be easily generalised to other (real life) settings, resulting in poor external validity.

Field Experiments

These are carried out in a natural setting, in which the researcher manipulates something (I.V.) to see the effect of this on something else (D.V.).

Validity – field experiments have some degree of control but also are conducted in a natural environment, so can be seen to have reasonable internal and external validity.

Less control than lab experiments and therefore extraneous variables are more likely to distort findings and so internal validity is likely to be lower.

Natural / Quasi Experiments

These are typically carried out in a natural setting, in which the researcher measures the effect of something which is to see the effect of this on something else (D.V.). Note that in this case there is no deliberate manipulation of a variable; this already naturally changing, which means the research is merely measuring the effect of something that is already happening.

High ecological validity – due to the lack of involvement of the researcher; variables are naturally occurring so findings can be easily generalised to other (real life) settings, resulting in high external validity.

Lack of control – natural experiments have no control over the environment & other extraneous variables which means that the researcher cannot always accurately assess the effects of the I.V, so it has low internal validity.

Not replicable – due to the researcher’s lack of control, research procedures cannot be repeated so that the reliability of results cannot be checked.

  • Laboratory Experiment
  • Field experiment
  • Quasi Experiment
  • Natural Experiment
  • Field experiments

You might also like

Field experiments, laboratory experiments, natural experiments, control of extraneous variables, similarities and differences between classical and operant conditioning, learning approaches - social learning theory, differences between behaviourism and social learning theory, ​research methods in the social learning theory, our subjects.

  • › Criminology
  • › Economics
  • › Geography
  • › Health & Social Care
  • › Psychology
  • › Sociology
  • › Teaching & learning resources
  • › Student revision workshops
  • › Online student courses
  • › CPD for teachers
  • › Livestreams
  • › Teaching jobs

Boston House, 214 High Street, Boston Spa, West Yorkshire, LS23 6AD Tel: 01937 848885

  • › Contact us
  • › Terms of use
  • › Privacy & cookies

© 2002-2024 Tutor2u Limited. Company Reg no: 04489574. VAT reg no 816865400.

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

6.2 Experimental Design

Learning objectives.

  • Explain the difference between between-subjects and within-subjects experiments, list some of the pros and cons of each approach, and decide which approach to use to answer a particular research question.
  • Define random assignment, distinguish it from random sampling, explain its purpose in experimental research, and use some simple strategies to implement it.
  • Define what a control condition is, explain its purpose in research on treatment effectiveness, and describe some alternative types of control conditions.
  • Define several types of carryover effect, give examples of each, and explain how counterbalancing helps to deal with them.

In this section, we look at some different ways to design an experiment. The primary distinction we will make is between approaches in which each participant experiences one level of the independent variable and approaches in which each participant experiences all levels of the independent variable. The former are called between-subjects experiments and the latter are called within-subjects experiments.

Between-Subjects Experiments

In a between-subjects experiment , each participant is tested in only one condition. For example, a researcher with a sample of 100 college students might assign half of them to write about a traumatic event and the other half write about a neutral event. Or a researcher with a sample of 60 people with severe agoraphobia (fear of open spaces) might assign 20 of them to receive each of three different treatments for that disorder. It is essential in a between-subjects experiment that the researcher assign participants to conditions so that the different groups are, on average, highly similar to each other. Those in a trauma condition and a neutral condition, for example, should include a similar proportion of men and women, and they should have similar average intelligence quotients (IQs), similar average levels of motivation, similar average numbers of health problems, and so on. This is a matter of controlling these extraneous participant variables across conditions so that they do not become confounding variables.

Random Assignment

The primary way that researchers accomplish this kind of control of extraneous variables across conditions is called random assignment , which means using a random process to decide which participants are tested in which conditions. Do not confuse random assignment with random sampling. Random sampling is a method for selecting a sample from a population, and it is rarely used in psychological research. Random assignment is a method for assigning participants in a sample to the different conditions, and it is an important element of all experimental research in psychology and other fields too.

In its strictest sense, random assignment should meet two criteria. One is that each participant has an equal chance of being assigned to each condition (e.g., a 50% chance of being assigned to each of two conditions). The second is that each participant is assigned to a condition independently of other participants. Thus one way to assign participants to two conditions would be to flip a coin for each one. If the coin lands heads, the participant is assigned to Condition A, and if it lands tails, the participant is assigned to Condition B. For three conditions, one could use a computer to generate a random integer from 1 to 3 for each participant. If the integer is 1, the participant is assigned to Condition A; if it is 2, the participant is assigned to Condition B; and if it is 3, the participant is assigned to Condition C. In practice, a full sequence of conditions—one for each participant expected to be in the experiment—is usually created ahead of time, and each new participant is assigned to the next condition in the sequence as he or she is tested. When the procedure is computerized, the computer program often handles the random assignment.

One problem with coin flipping and other strict procedures for random assignment is that they are likely to result in unequal sample sizes in the different conditions. Unequal sample sizes are generally not a serious problem, and you should never throw away data you have already collected to achieve equal sample sizes. However, for a fixed number of participants, it is statistically most efficient to divide them into equal-sized groups. It is standard practice, therefore, to use a kind of modified random assignment that keeps the number of participants in each group as similar as possible. One approach is block randomization . In block randomization, all the conditions occur once in the sequence before any of them is repeated. Then they all occur again before any of them is repeated again. Within each of these “blocks,” the conditions occur in a random order. Again, the sequence of conditions is usually generated before any participants are tested, and each new participant is assigned to the next condition in the sequence. Table 6.2 “Block Randomization Sequence for Assigning Nine Participants to Three Conditions” shows such a sequence for assigning nine participants to three conditions. The Research Randomizer website ( http://www.randomizer.org ) will generate block randomization sequences for any number of participants and conditions. Again, when the procedure is computerized, the computer program often handles the block randomization.

Table 6.2 Block Randomization Sequence for Assigning Nine Participants to Three Conditions

Participant Condition
4 B
5 C
6 A

Random assignment is not guaranteed to control all extraneous variables across conditions. It is always possible that just by chance, the participants in one condition might turn out to be substantially older, less tired, more motivated, or less depressed on average than the participants in another condition. However, there are some reasons that this is not a major concern. One is that random assignment works better than one might expect, especially for large samples. Another is that the inferential statistics that researchers use to decide whether a difference between groups reflects a difference in the population takes the “fallibility” of random assignment into account. Yet another reason is that even if random assignment does result in a confounding variable and therefore produces misleading results, this is likely to be detected when the experiment is replicated. The upshot is that random assignment to conditions—although not infallible in terms of controlling extraneous variables—is always considered a strength of a research design.

Treatment and Control Conditions

Between-subjects experiments are often used to determine whether a treatment works. In psychological research, a treatment is any intervention meant to change people’s behavior for the better. This includes psychotherapies and medical treatments for psychological disorders but also interventions designed to improve learning, promote conservation, reduce prejudice, and so on. To determine whether a treatment works, participants are randomly assigned to either a treatment condition , in which they receive the treatment, or a control condition , in which they do not receive the treatment. If participants in the treatment condition end up better off than participants in the control condition—for example, they are less depressed, learn faster, conserve more, express less prejudice—then the researcher can conclude that the treatment works. In research on the effectiveness of psychotherapies and medical treatments, this type of experiment is often called a randomized clinical trial .

There are different types of control conditions. In a no-treatment control condition , participants receive no treatment whatsoever. One problem with this approach, however, is the existence of placebo effects. A placebo is a simulated treatment that lacks any active ingredient or element that should make it effective, and a placebo effect is a positive effect of such a treatment. Many folk remedies that seem to work—such as eating chicken soup for a cold or placing soap under the bedsheets to stop nighttime leg cramps—are probably nothing more than placebos. Although placebo effects are not well understood, they are probably driven primarily by people’s expectations that they will improve. Having the expectation to improve can result in reduced stress, anxiety, and depression, which can alter perceptions and even improve immune system functioning (Price, Finniss, & Benedetti, 2008).

Placebo effects are interesting in their own right (see Note 6.28 “The Powerful Placebo” ), but they also pose a serious problem for researchers who want to determine whether a treatment works. Figure 6.2 “Hypothetical Results From a Study Including Treatment, No-Treatment, and Placebo Conditions” shows some hypothetical results in which participants in a treatment condition improved more on average than participants in a no-treatment control condition. If these conditions (the two leftmost bars in Figure 6.2 “Hypothetical Results From a Study Including Treatment, No-Treatment, and Placebo Conditions” ) were the only conditions in this experiment, however, one could not conclude that the treatment worked. It could be instead that participants in the treatment group improved more because they expected to improve, while those in the no-treatment control condition did not.

Figure 6.2 Hypothetical Results From a Study Including Treatment, No-Treatment, and Placebo Conditions

Hypothetical Results From a Study Including Treatment, No-Treatment, and Placebo Conditions

Fortunately, there are several solutions to this problem. One is to include a placebo control condition , in which participants receive a placebo that looks much like the treatment but lacks the active ingredient or element thought to be responsible for the treatment’s effectiveness. When participants in a treatment condition take a pill, for example, then those in a placebo control condition would take an identical-looking pill that lacks the active ingredient in the treatment (a “sugar pill”). In research on psychotherapy effectiveness, the placebo might involve going to a psychotherapist and talking in an unstructured way about one’s problems. The idea is that if participants in both the treatment and the placebo control groups expect to improve, then any improvement in the treatment group over and above that in the placebo control group must have been caused by the treatment and not by participants’ expectations. This is what is shown by a comparison of the two outer bars in Figure 6.2 “Hypothetical Results From a Study Including Treatment, No-Treatment, and Placebo Conditions” .

Of course, the principle of informed consent requires that participants be told that they will be assigned to either a treatment or a placebo control condition—even though they cannot be told which until the experiment ends. In many cases the participants who had been in the control condition are then offered an opportunity to have the real treatment. An alternative approach is to use a waitlist control condition , in which participants are told that they will receive the treatment but must wait until the participants in the treatment condition have already received it. This allows researchers to compare participants who have received the treatment with participants who are not currently receiving it but who still expect to improve (eventually). A final solution to the problem of placebo effects is to leave out the control condition completely and compare any new treatment with the best available alternative treatment. For example, a new treatment for simple phobia could be compared with standard exposure therapy. Because participants in both conditions receive a treatment, their expectations about improvement should be similar. This approach also makes sense because once there is an effective treatment, the interesting question about a new treatment is not simply “Does it work?” but “Does it work better than what is already available?”

The Powerful Placebo

Many people are not surprised that placebos can have a positive effect on disorders that seem fundamentally psychological, including depression, anxiety, and insomnia. However, placebos can also have a positive effect on disorders that most people think of as fundamentally physiological. These include asthma, ulcers, and warts (Shapiro & Shapiro, 1999). There is even evidence that placebo surgery—also called “sham surgery”—can be as effective as actual surgery.

Medical researcher J. Bruce Moseley and his colleagues conducted a study on the effectiveness of two arthroscopic surgery procedures for osteoarthritis of the knee (Moseley et al., 2002). The control participants in this study were prepped for surgery, received a tranquilizer, and even received three small incisions in their knees. But they did not receive the actual arthroscopic surgical procedure. The surprising result was that all participants improved in terms of both knee pain and function, and the sham surgery group improved just as much as the treatment groups. According to the researchers, “This study provides strong evidence that arthroscopic lavage with or without débridement [the surgical procedures used] is not better than and appears to be equivalent to a placebo procedure in improving knee pain and self-reported function” (p. 85).

Doctors treating a patient in Surgery

Research has shown that patients with osteoarthritis of the knee who receive a “sham surgery” experience reductions in pain and improvement in knee function similar to those of patients who receive a real surgery.

Army Medicine – Surgery – CC BY 2.0.

Within-Subjects Experiments

In a within-subjects experiment , each participant is tested under all conditions. Consider an experiment on the effect of a defendant’s physical attractiveness on judgments of his guilt. Again, in a between-subjects experiment, one group of participants would be shown an attractive defendant and asked to judge his guilt, and another group of participants would be shown an unattractive defendant and asked to judge his guilt. In a within-subjects experiment, however, the same group of participants would judge the guilt of both an attractive and an unattractive defendant.

The primary advantage of this approach is that it provides maximum control of extraneous participant variables. Participants in all conditions have the same mean IQ, same socioeconomic status, same number of siblings, and so on—because they are the very same people. Within-subjects experiments also make it possible to use statistical procedures that remove the effect of these extraneous participant variables on the dependent variable and therefore make the data less “noisy” and the effect of the independent variable easier to detect. We will look more closely at this idea later in the book.

Carryover Effects and Counterbalancing

The primary disadvantage of within-subjects designs is that they can result in carryover effects. A carryover effect is an effect of being tested in one condition on participants’ behavior in later conditions. One type of carryover effect is a practice effect , where participants perform a task better in later conditions because they have had a chance to practice it. Another type is a fatigue effect , where participants perform a task worse in later conditions because they become tired or bored. Being tested in one condition can also change how participants perceive stimuli or interpret their task in later conditions. This is called a context effect . For example, an average-looking defendant might be judged more harshly when participants have just judged an attractive defendant than when they have just judged an unattractive defendant. Within-subjects experiments also make it easier for participants to guess the hypothesis. For example, a participant who is asked to judge the guilt of an attractive defendant and then is asked to judge the guilt of an unattractive defendant is likely to guess that the hypothesis is that defendant attractiveness affects judgments of guilt. This could lead the participant to judge the unattractive defendant more harshly because he thinks this is what he is expected to do. Or it could make participants judge the two defendants similarly in an effort to be “fair.”

Carryover effects can be interesting in their own right. (Does the attractiveness of one person depend on the attractiveness of other people that we have seen recently?) But when they are not the focus of the research, carryover effects can be problematic. Imagine, for example, that participants judge the guilt of an attractive defendant and then judge the guilt of an unattractive defendant. If they judge the unattractive defendant more harshly, this might be because of his unattractiveness. But it could be instead that they judge him more harshly because they are becoming bored or tired. In other words, the order of the conditions is a confounding variable. The attractive condition is always the first condition and the unattractive condition the second. Thus any difference between the conditions in terms of the dependent variable could be caused by the order of the conditions and not the independent variable itself.

There is a solution to the problem of order effects, however, that can be used in many situations. It is counterbalancing , which means testing different participants in different orders. For example, some participants would be tested in the attractive defendant condition followed by the unattractive defendant condition, and others would be tested in the unattractive condition followed by the attractive condition. With three conditions, there would be six different orders (ABC, ACB, BAC, BCA, CAB, and CBA), so some participants would be tested in each of the six orders. With counterbalancing, participants are assigned to orders randomly, using the techniques we have already discussed. Thus random assignment plays an important role in within-subjects designs just as in between-subjects designs. Here, instead of randomly assigning to conditions, they are randomly assigned to different orders of conditions. In fact, it can safely be said that if a study does not involve random assignment in one form or another, it is not an experiment.

There are two ways to think about what counterbalancing accomplishes. One is that it controls the order of conditions so that it is no longer a confounding variable. Instead of the attractive condition always being first and the unattractive condition always being second, the attractive condition comes first for some participants and second for others. Likewise, the unattractive condition comes first for some participants and second for others. Thus any overall difference in the dependent variable between the two conditions cannot have been caused by the order of conditions. A second way to think about what counterbalancing accomplishes is that if there are carryover effects, it makes it possible to detect them. One can analyze the data separately for each order to see whether it had an effect.

When 9 Is “Larger” Than 221

Researcher Michael Birnbaum has argued that the lack of context provided by between-subjects designs is often a bigger problem than the context effects created by within-subjects designs. To demonstrate this, he asked one group of participants to rate how large the number 9 was on a 1-to-10 rating scale and another group to rate how large the number 221 was on the same 1-to-10 rating scale (Birnbaum, 1999). Participants in this between-subjects design gave the number 9 a mean rating of 5.13 and the number 221 a mean rating of 3.10. In other words, they rated 9 as larger than 221! According to Birnbaum, this is because participants spontaneously compared 9 with other one-digit numbers (in which case it is relatively large) and compared 221 with other three-digit numbers (in which case it is relatively small).

Simultaneous Within-Subjects Designs

So far, we have discussed an approach to within-subjects designs in which participants are tested in one condition at a time. There is another approach, however, that is often used when participants make multiple responses in each condition. Imagine, for example, that participants judge the guilt of 10 attractive defendants and 10 unattractive defendants. Instead of having people make judgments about all 10 defendants of one type followed by all 10 defendants of the other type, the researcher could present all 20 defendants in a sequence that mixed the two types. The researcher could then compute each participant’s mean rating for each type of defendant. Or imagine an experiment designed to see whether people with social anxiety disorder remember negative adjectives (e.g., “stupid,” “incompetent”) better than positive ones (e.g., “happy,” “productive”). The researcher could have participants study a single list that includes both kinds of words and then have them try to recall as many words as possible. The researcher could then count the number of each type of word that was recalled. There are many ways to determine the order in which the stimuli are presented, but one common way is to generate a different random order for each participant.

Between-Subjects or Within-Subjects?

Almost every experiment can be conducted using either a between-subjects design or a within-subjects design. This means that researchers must choose between the two approaches based on their relative merits for the particular situation.

Between-subjects experiments have the advantage of being conceptually simpler and requiring less testing time per participant. They also avoid carryover effects without the need for counterbalancing. Within-subjects experiments have the advantage of controlling extraneous participant variables, which generally reduces noise in the data and makes it easier to detect a relationship between the independent and dependent variables.

A good rule of thumb, then, is that if it is possible to conduct a within-subjects experiment (with proper counterbalancing) in the time that is available per participant—and you have no serious concerns about carryover effects—this is probably the best option. If a within-subjects design would be difficult or impossible to carry out, then you should consider a between-subjects design instead. For example, if you were testing participants in a doctor’s waiting room or shoppers in line at a grocery store, you might not have enough time to test each participant in all conditions and therefore would opt for a between-subjects design. Or imagine you were trying to reduce people’s level of prejudice by having them interact with someone of another race. A within-subjects design with counterbalancing would require testing some participants in the treatment condition first and then in a control condition. But if the treatment works and reduces people’s level of prejudice, then they would no longer be suitable for testing in the control condition. This is true for many designs that involve a treatment meant to produce long-term change in participants’ behavior (e.g., studies testing the effectiveness of psychotherapy). Clearly, a between-subjects design would be necessary here.

Remember also that using one type of design does not preclude using the other type in a different study. There is no reason that a researcher could not use both a between-subjects design and a within-subjects design to answer the same research question. In fact, professional researchers often do exactly this.

Key Takeaways

  • Experiments can be conducted using either between-subjects or within-subjects designs. Deciding which to use in a particular situation requires careful consideration of the pros and cons of each approach.
  • Random assignment to conditions in between-subjects experiments or to orders of conditions in within-subjects experiments is a fundamental element of experimental research. Its purpose is to control extraneous variables so that they do not become confounding variables.
  • Experimental research on the effectiveness of a treatment requires both a treatment condition and a control condition, which can be a no-treatment control condition, a placebo control condition, or a waitlist control condition. Experimental treatments can also be compared with the best available alternative.

Discussion: For each of the following topics, list the pros and cons of a between-subjects and within-subjects design and decide which would be better.

  • You want to test the relative effectiveness of two training programs for running a marathon.
  • Using photographs of people as stimuli, you want to see if smiling people are perceived as more intelligent than people who are not smiling.
  • In a field experiment, you want to see if the way a panhandler is dressed (neatly vs. sloppily) affects whether or not passersby give him any money.
  • You want to see if concrete nouns (e.g., dog ) are recalled better than abstract nouns (e.g., truth ).
  • Discussion: Imagine that an experiment shows that participants who receive psychodynamic therapy for a dog phobia improve more than participants in a no-treatment control group. Explain a fundamental problem with this research design and at least two ways that it might be corrected.

Birnbaum, M. H. (1999). How to show that 9 > 221: Collect judgments in a between-subjects design. Psychological Methods, 4 , 243–249.

Moseley, J. B., O’Malley, K., Petersen, N. J., Menke, T. J., Brody, B. A., Kuykendall, D. H., … Wray, N. P. (2002). A controlled trial of arthroscopic surgery for osteoarthritis of the knee. The New England Journal of Medicine, 347 , 81–88.

Price, D. D., Finniss, D. G., & Benedetti, F. (2008). A comprehensive review of the placebo effect: Recent advances and current thought. Annual Review of Psychology, 59 , 565–590.

Shapiro, A. K., & Shapiro, E. (1999). The powerful placebo: From ancient priest to modern physician . Baltimore, MD: Johns Hopkins University Press.

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Research Methods In Psychology

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

Research methods in psychology are systematic procedures used to observe, describe, predict, and explain behavior and mental processes. They include experiments, surveys, case studies, and naturalistic observations, ensuring data collection is objective and reliable to understand and explain psychological phenomena.

research methods3

Hypotheses are statements about the prediction of the results, that can be verified or disproved by some investigation.

There are four types of hypotheses :
  • Null Hypotheses (H0 ) – these predict that no difference will be found in the results between the conditions. Typically these are written ‘There will be no difference…’
  • Alternative Hypotheses (Ha or H1) – these predict that there will be a significant difference in the results between the two conditions. This is also known as the experimental hypothesis.
  • One-tailed (directional) hypotheses – these state the specific direction the researcher expects the results to move in, e.g. higher, lower, more, less. In a correlation study, the predicted direction of the correlation can be either positive or negative.
  • Two-tailed (non-directional) hypotheses – these state that a difference will be found between the conditions of the independent variable but does not state the direction of a difference or relationship. Typically these are always written ‘There will be a difference ….’

All research has an alternative hypothesis (either a one-tailed or two-tailed) and a corresponding null hypothesis.

Once the research is conducted and results are found, psychologists must accept one hypothesis and reject the other. 

So, if a difference is found, the Psychologist would accept the alternative hypothesis and reject the null.  The opposite applies if no difference is found.

Sampling techniques

Sampling is the process of selecting a representative group from the population under study.

Sample Target Population

A sample is the participants you select from a target population (the group you are interested in) to make generalizations about.

Representative means the extent to which a sample mirrors a researcher’s target population and reflects its characteristics.

Generalisability means the extent to which their findings can be applied to the larger population of which their sample was a part.

  • Volunteer sample : where participants pick themselves through newspaper adverts, noticeboards or online.
  • Opportunity sampling : also known as convenience sampling , uses people who are available at the time the study is carried out and willing to take part. It is based on convenience.
  • Random sampling : when every person in the target population has an equal chance of being selected. An example of random sampling would be picking names out of a hat.
  • Systematic sampling : when a system is used to select participants. Picking every Nth person from all possible participants. N = the number of people in the research population / the number of people needed for the sample.
  • Stratified sampling : when you identify the subgroups and select participants in proportion to their occurrences.
  • Snowball sampling : when researchers find a few participants, and then ask them to find participants themselves and so on.
  • Quota sampling : when researchers will be told to ensure the sample fits certain quotas, for example they might be told to find 90 participants, with 30 of them being unemployed.

Experiments always have an independent and dependent variable .

  • The independent variable is the one the experimenter manipulates (the thing that changes between the conditions the participants are placed into). It is assumed to have a direct effect on the dependent variable.
  • The dependent variable is the thing being measured, or the results of the experiment.

variables

Operationalization of variables means making them measurable/quantifiable. We must use operationalization to ensure that variables are in a form that can be easily tested.

For instance, we can’t really measure ‘happiness’, but we can measure how many times a person smiles within a two-hour period. 

By operationalizing variables, we make it easy for someone else to replicate our research. Remember, this is important because we can check if our findings are reliable.

Extraneous variables are all variables which are not independent variable but could affect the results of the experiment.

It can be a natural characteristic of the participant, such as intelligence levels, gender, or age for example, or it could be a situational feature of the environment such as lighting or noise.

Demand characteristics are a type of extraneous variable that occurs if the participants work out the aims of the research study, they may begin to behave in a certain way.

For example, in Milgram’s research , critics argued that participants worked out that the shocks were not real and they administered them as they thought this was what was required of them. 

Extraneous variables must be controlled so that they do not affect (confound) the results.

Randomly allocating participants to their conditions or using a matched pairs experimental design can help to reduce participant variables. 

Situational variables are controlled by using standardized procedures, ensuring every participant in a given condition is treated in the same way

Experimental Design

Experimental design refers to how participants are allocated to each condition of the independent variable, such as a control or experimental group.
  • Independent design ( between-groups design ): each participant is selected for only one group. With the independent design, the most common way of deciding which participants go into which group is by means of randomization. 
  • Matched participants design : each participant is selected for only one group, but the participants in the two groups are matched for some relevant factor or factors (e.g. ability; sex; age).
  • Repeated measures design ( within groups) : each participant appears in both groups, so that there are exactly the same participants in each group.
  • The main problem with the repeated measures design is that there may well be order effects. Their experiences during the experiment may change the participants in various ways.
  • They may perform better when they appear in the second group because they have gained useful information about the experiment or about the task. On the other hand, they may perform less well on the second occasion because of tiredness or boredom.
  • Counterbalancing is the best way of preventing order effects from disrupting the findings of an experiment, and involves ensuring that each condition is equally likely to be used first and second by the participants.

If we wish to compare two groups with respect to a given independent variable, it is essential to make sure that the two groups do not differ in any other important way. 

Experimental Methods

All experimental methods involve an iv (independent variable) and dv (dependent variable)..

The researcher decides where the experiment will take place, at what time, with which participants, in what circumstances,  using a standardized procedure.

  • Field experiments are conducted in the everyday (natural) environment of the participants. The experimenter still manipulates the IV, but in a real-life setting. It may be possible to control extraneous variables, though such control is more difficult than in a lab experiment.
  • Natural experiments are when a naturally occurring IV is investigated that isn’t deliberately manipulated, it exists anyway. Participants are not randomly allocated, and the natural event may only occur rarely.

Case studies are in-depth investigations of a person, group, event, or community. It uses information from a range of sources, such as from the person concerned and also from their family and friends.

Many techniques may be used such as interviews, psychological tests, observations and experiments. Case studies are generally longitudinal: in other words, they follow the individual or group over an extended period of time. 

Case studies are widely used in psychology and among the best-known ones carried out were by Sigmund Freud . He conducted very detailed investigations into the private lives of his patients in an attempt to both understand and help them overcome their illnesses.

Case studies provide rich qualitative data and have high levels of ecological validity. However, it is difficult to generalize from individual cases as each one has unique characteristics.

Correlational Studies

Correlation means association; it is a measure of the extent to which two variables are related. One of the variables can be regarded as the predictor variable with the other one as the outcome variable.

Correlational studies typically involve obtaining two different measures from a group of participants, and then assessing the degree of association between the measures. 

The predictor variable can be seen as occurring before the outcome variable in some sense. It is called the predictor variable, because it forms the basis for predicting the value of the outcome variable.

Relationships between variables can be displayed on a graph or as a numerical score called a correlation coefficient.

types of correlation. Scatter plot. Positive negative and no correlation

  • If an increase in one variable tends to be associated with an increase in the other, then this is known as a positive correlation .
  • If an increase in one variable tends to be associated with a decrease in the other, then this is known as a negative correlation .
  • A zero correlation occurs when there is no relationship between variables.

After looking at the scattergraph, if we want to be sure that a significant relationship does exist between the two variables, a statistical test of correlation can be conducted, such as Spearman’s rho.

The test will give us a score, called a correlation coefficient . This is a value between 0 and 1, and the closer to 1 the score is, the stronger the relationship between the variables. This value can be both positive e.g. 0.63, or negative -0.63.

Types of correlation. Strong, weak, and perfect positive correlation, strong, weak, and perfect negative correlation, no correlation. Graphs or charts ...

A correlation between variables, however, does not automatically mean that the change in one variable is the cause of the change in the values of the other variable. A correlation only shows if there is a relationship between variables.

Correlation does not always prove causation, as a third variable may be involved. 

causation correlation

Interview Methods

Interviews are commonly divided into two types: structured and unstructured.

A fixed, predetermined set of questions is put to every participant in the same order and in the same way. 

Responses are recorded on a questionnaire, and the researcher presets the order and wording of questions, and sometimes the range of alternative answers.

The interviewer stays within their role and maintains social distance from the interviewee.

There are no set questions, and the participant can raise whatever topics he/she feels are relevant and ask them in their own way. Questions are posed about participants’ answers to the subject

Unstructured interviews are most useful in qualitative research to analyze attitudes and values.

Though they rarely provide a valid basis for generalization, their main advantage is that they enable the researcher to probe social actors’ subjective point of view. 

Questionnaire Method

Questionnaires can be thought of as a kind of written interview. They can be carried out face to face, by telephone, or post.

The choice of questions is important because of the need to avoid bias or ambiguity in the questions, ‘leading’ the respondent or causing offense.

  • Open questions are designed to encourage a full, meaningful answer using the subject’s own knowledge and feelings. They provide insights into feelings, opinions, and understanding. Example: “How do you feel about that situation?”
  • Closed questions can be answered with a simple “yes” or “no” or specific information, limiting the depth of response. They are useful for gathering specific facts or confirming details. Example: “Do you feel anxious in crowds?”

Its other practical advantages are that it is cheaper than face-to-face interviews and can be used to contact many respondents scattered over a wide area relatively quickly.

Observations

There are different types of observation methods :
  • Covert observation is where the researcher doesn’t tell the participants they are being observed until after the study is complete. There could be ethical problems or deception and consent with this particular observation method.
  • Overt observation is where a researcher tells the participants they are being observed and what they are being observed for.
  • Controlled : behavior is observed under controlled laboratory conditions (e.g., Bandura’s Bobo doll study).
  • Natural : Here, spontaneous behavior is recorded in a natural setting.
  • Participant : Here, the observer has direct contact with the group of people they are observing. The researcher becomes a member of the group they are researching.  
  • Non-participant (aka “fly on the wall): The researcher does not have direct contact with the people being observed. The observation of participants’ behavior is from a distance

Pilot Study

A pilot  study is a small scale preliminary study conducted in order to evaluate the feasibility of the key s teps in a future, full-scale project.

A pilot study is an initial run-through of the procedures to be used in an investigation; it involves selecting a few people and trying out the study on them. It is possible to save time, and in some cases, money, by identifying any flaws in the procedures designed by the researcher.

A pilot study can help the researcher spot any ambiguities (i.e. unusual things) or confusion in the information given to participants or problems with the task devised.

Sometimes the task is too hard, and the researcher may get a floor effect, because none of the participants can score at all or can complete the task – all performances are low.

The opposite effect is a ceiling effect, when the task is so easy that all achieve virtually full marks or top performances and are “hitting the ceiling”.

Research Design

In cross-sectional research , a researcher compares multiple segments of the population at the same time

Sometimes, we want to see how people change over time, as in studies of human development and lifespan. Longitudinal research is a research design in which data-gathering is administered repeatedly over an extended period of time.

In cohort studies , the participants must share a common factor or characteristic such as age, demographic, or occupation. A cohort study is a type of longitudinal study in which researchers monitor and observe a chosen population over an extended period.

Triangulation means using more than one research method to improve the study’s validity.

Reliability

Reliability is a measure of consistency, if a particular measurement is repeated and the same result is obtained then it is described as being reliable.

  • Test-retest reliability :  assessing the same person on two different occasions which shows the extent to which the test produces the same answers.
  • Inter-observer reliability : the extent to which there is an agreement between two or more observers.

Meta-Analysis

Meta-analysis is a statistical procedure used to combine and synthesize findings from multiple independent studies to estimate the average effect size for a particular research question.

Meta-analysis goes beyond traditional narrative reviews by using statistical methods to integrate the results of several studies, leading to a more objective appraisal of the evidence.

This is done by looking through various databases, and then decisions are made about what studies are to be included/excluded.

  • Strengths : Increases the conclusions’ validity as they’re based on a wider range.
  • Weaknesses : Research designs in studies can vary, so they are not truly comparable.

Peer Review

A researcher submits an article to a journal. The choice of the journal may be determined by the journal’s audience or prestige.

The journal selects two or more appropriate experts (psychologists working in a similar field) to peer review the article without payment. The peer reviewers assess: the methods and designs used, originality of the findings, the validity of the original research findings and its content, structure and language.

Feedback from the reviewer determines whether the article is accepted. The article may be: Accepted as it is, accepted with revisions, sent back to the author to revise and re-submit or rejected without the possibility of submission.

The editor makes the final decision whether to accept or reject the research report based on the reviewers comments/ recommendations.

Peer review is important because it prevent faulty data from entering the public domain, it provides a way of checking the validity of findings and the quality of the methodology and is used to assess the research rating of university departments.

Peer reviews may be an ideal, whereas in practice there are lots of problems. For example, it slows publication down and may prevent unusual, new work being published. Some reviewers might use it as an opportunity to prevent competing researchers from publishing work.

Some people doubt whether peer review can really prevent the publication of fraudulent research.

The advent of the internet means that a lot of research and academic comment is being published without official peer reviews than before, though systems are evolving on the internet where everyone really has a chance to offer their opinions and police the quality of research.

Types of Data

  • Quantitative data is numerical data e.g. reaction time or number of mistakes. It represents how much or how long, how many there are of something. A tally of behavioral categories and closed questions in a questionnaire collect quantitative data.
  • Qualitative data is virtually any type of information that can be observed and recorded that is not numerical in nature and can be in the form of written or verbal communication. Open questions in questionnaires and accounts from observational studies collect qualitative data.
  • Primary data is first-hand data collected for the purpose of the investigation.
  • Secondary data is information that has been collected by someone other than the person who is conducting the research e.g. taken from journals, books or articles.

Validity means how well a piece of research actually measures what it sets out to, or how well it reflects the reality it claims to represent.

Validity is whether the observed effect is genuine and represents what is actually out there in the world.

  • Concurrent validity is the extent to which a psychological measure relates to an existing similar measure and obtains close results. For example, a new intelligence test compared to an established test.
  • Face validity : does the test measure what it’s supposed to measure ‘on the face of it’. This is done by ‘eyeballing’ the measuring or by passing it to an expert to check.
  • Ecological validit y is the extent to which findings from a research study can be generalized to other settings / real life.
  • Temporal validity is the extent to which findings from a research study can be generalized to other historical times.

Features of Science

  • Paradigm – A set of shared assumptions and agreed methods within a scientific discipline.
  • Paradigm shift – The result of the scientific revolution: a significant change in the dominant unifying theory within a scientific discipline.
  • Objectivity – When all sources of personal bias are minimised so not to distort or influence the research process.
  • Empirical method – Scientific approaches that are based on the gathering of evidence through direct observation and experience.
  • Replicability – The extent to which scientific procedures and findings can be repeated by other researchers.
  • Falsifiability – The principle that a theory cannot be considered scientific unless it admits the possibility of being proved untrue.

Statistical Testing

A significant result is one where there is a low probability that chance factors were responsible for any observed difference, correlation, or association in the variables tested.

If our test is significant, we can reject our null hypothesis and accept our alternative hypothesis.

If our test is not significant, we can accept our null hypothesis and reject our alternative hypothesis. A null hypothesis is a statement of no effect.

In Psychology, we use p < 0.05 (as it strikes a balance between making a type I and II error) but p < 0.01 is used in tests that could cause harm like introducing a new drug.

A type I error is when the null hypothesis is rejected when it should have been accepted (happens when a lenient significance level is used, an error of optimism).

A type II error is when the null hypothesis is accepted when it should have been rejected (happens when a stringent significance level is used, an error of pessimism).

Ethical Issues

  • Informed consent is when participants are able to make an informed judgment about whether to take part. It causes them to guess the aims of the study and change their behavior.
  • To deal with it, we can gain presumptive consent or ask them to formally indicate their agreement to participate but it may invalidate the purpose of the study and it is not guaranteed that the participants would understand.
  • Deception should only be used when it is approved by an ethics committee, as it involves deliberately misleading or withholding information. Participants should be fully debriefed after the study but debriefing can’t turn the clock back.
  • All participants should be informed at the beginning that they have the right to withdraw if they ever feel distressed or uncomfortable.
  • It causes bias as the ones that stayed are obedient and some may not withdraw as they may have been given incentives or feel like they’re spoiling the study. Researchers can offer the right to withdraw data after participation.
  • Participants should all have protection from harm . The researcher should avoid risks greater than those experienced in everyday life and they should stop the study if any harm is suspected. However, the harm may not be apparent at the time of the study.
  • Confidentiality concerns the communication of personal information. The researchers should not record any names but use numbers or false names though it may not be possible as it is sometimes possible to work out who the researchers were.

Print Friendly, PDF & Email

Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 6: Experimental Research

Experiment Basics

Learning Objectives

  • Explain what an experiment is and recognize examples of studies that are experiments and studies that are not experiments.
  • Explain what internal validity is and why experiments are considered to be high in internal validity.
  • Explain what external validity is and evaluate studies in terms of their external validity.
  • Distinguish between the manipulation of the independent variable and control of extraneous variables and explain the importance of each.
  • Recognize examples of confounding variables and explain how they affect the internal validity of a study.

What Is an Experiment?

As we saw earlier in the book, an  experiment  is a type of study designed specifically to answer the question of whether there is a causal relationship between two variables. In other words, whether changes in an independent variable  cause  changes in a dependent variable. Experiments have two fundamental features. The first is that the researchers manipulate, or systematically vary, the level of the independent variable. The different levels of the independent variable are called conditions . For example, in Darley and Latané’s experiment, the independent variable was the number of witnesses that participants believed to be present. The researchers manipulated this independent variable by telling participants that there were either one, two, or five other students involved in the discussion, thereby creating three conditions. For a new researcher, it is easy to confuse  these terms by believing there are three independent variables in this situation: one, two, or five students involved in the discussion, but there is actually only one independent variable (number of witnesses) with three different conditions (one, two or five students). The second fundamental feature of an experiment is that the researcher controls, or minimizes the variability in, variables other than the independent and dependent variable. These other variables are called extraneous variables . Darley and Latané tested all their participants in the same room, exposed them to the same emergency situation, and so on. They also randomly assigned their participants to conditions so that the three groups would be similar to each other to begin with. Notice that although the words  manipulation  and  control  have similar meanings in everyday language, researchers make a clear distinction between them. They manipulate  the independent variable by systematically changing its levels and control  other variables by holding them constant.

Four Big Validities

When we read about psychology experiments with a critical view, one question to ask is “is this study valid?” However, that question is not as straightforward as it seems because in psychology, there are many different kinds of validities. Researchers have focused on four validities to help assess whether an experiment is sound (Judd & Kenny, 1981; Morling, 2014) [1] [2] :internal validity, external validity, construct validity, and statistical validity. We will explore each validity in depth.

Internal Validity

Recall that two variables being statistically related does not necessarily mean that one causes the other. “Correlation does not imply causation.” For example, if it were the case that people who exercise regularly are happier than people who do not exercise regularly, this implication would not necessarily mean that exercising increases people’s happiness. It could mean instead that greater happiness causes people to exercise (the directionality problem) or that something like better physical health causes people to exercise   and  be happier (the third-variable problem).

The purpose of an experiment, however, is to show that two variables are statistically related and to do so in a way that supports the conclusion that the independent variable caused any observed differences in the dependent variable. The logic is based on this assumption : If the researcher creates two or more highly similar conditions and then manipulates the independent variable to produce just  one  difference between them, then any later difference between the conditions must have been caused by the independent variable. For example, because the only difference between Darley and Latané’s conditions was the number of students that participants believed to be involved in the discussion, this difference in belief must have been responsible for differences in helping between the conditions.

An empirical study is said to be high in  internal validity  if the way it was conducted supports the conclusion that the independent variable caused any observed differences in the dependent variable. Thus experiments are high in internal validity because the way they are conducted—with the manipulation of the independent variable and the control of extraneous variables—provides strong support for causal conclusions.

External Validity

At the same time, the way that experiments are conducted sometimes leads to a different kind of criticism. Specifically, the need to manipulate the independent variable and control extraneous variables means that experiments are often conducted under conditions that seem artificial (Bauman, McGraw, Bartels, & Warren, 2014) [3] .In many psychology experiments, the participants are all undergraduate students and come to a classroom or laboratory to fill out a series of paper-and-pencil questionnaires or to perform a carefully designed computerized task. Consider, for example, an experiment in which researcher Barbara Fredrickson and her colleagues had undergraduate students come to a laboratory on campus and complete a math test while wearing a swimsuit (Fredrickson, Roberts, Noll, Quinn, & Twenge, 1998) [4] .At first, this manipulation might seem silly. When will undergraduate students ever have to complete math tests in their swimsuits outside of this experiment?

The issue we are confronting is that of external validity . An empirical study is high in external validity if the way it was conducted supports generalizing the results to people and situations beyond those actually studied. As a general rule, studies are higher in external validity when the participants and the situation studied are similar to those that the researchers want to generalize to and participants encounter everyday, often described as mundane realism . Imagine, for example, that a group of researchers is interested in how shoppers in large grocery stores are affected by whether breakfast cereal is packaged in yellow or purple boxes. Their study would be high in external validity and have high mundane realism if they studied the decisions of ordinary people doing their weekly shopping in a real grocery store. If the shoppers bought much more cereal in purple boxes, the researchers would be fairly confident that this increase would be true for other shoppers in other stores. Their study would be relatively low in external validity, however, if they studied a sample of undergraduate students in a laboratory at a selective university who merely judged the appeal of various colours presented on a computer screen; however, this study would have high psychological realism where the same mental process is used in both the laboratory and in the real world.  If the students judged purple to be more appealing than yellow, the researchers would not be very confident that this preference is relevant to grocery shoppers’ cereal-buying decisions because of low external validity but they could be confident that the visual processing of colours has high psychological realism.

We should be careful, however, not to draw the blanket conclusion that experiments are low in external validity. One reason is that experiments need not seem artificial. Consider that Darley and Latané’s experiment provided a reasonably good simulation of a real emergency situation. Or consider  field experiments  that are conducted entirely outside the laboratory. In one such experiment, Robert Cialdini and his colleagues studied whether hotel guests choose to reuse their towels for a second day as opposed to having them washed as a way of conserving water and energy (Cialdini, 2005) [5] . These researchers manipulated the message on a card left in a large sample of hotel rooms. One version of the message emphasized showing respect for the environment, another emphasized that the hotel would donate a portion of their savings to an environmental cause, and a third emphasized that most hotel guests choose to reuse their towels. The result was that guests who received the message that most hotel guests choose to reuse their towels reused their own towels substantially more often than guests receiving either of the other two messages. Given the way they conducted their study, it seems very likely that their result would hold true for other guests in other hotels.

A second reason not to draw the blanket conclusion that experiments are low in external validity is that they are often conducted to learn about psychological processes  that are likely to operate in a variety of people and situations. Let us return to the experiment by Fredrickson and colleagues. They found that the women in their study, but not the men, performed worse on the math test when they were wearing swimsuits. They argued that this gender difference was due to women’s greater tendency to objectify themselves—to think about themselves from the perspective of an outside observer—which diverts their attention away from other tasks. They argued, furthermore, that this process of self-objectification and its effect on attention is likely to operate in a variety of women and situations—even if none of them ever finds herself taking a math test in her swimsuit.

Construct Validity

In addition to the generalizability of the results of an experiment, another element to scrutinize in a study is the quality of the experiment’s manipulations, or the construct validity . The research question that Darley and Latané started with is “does helping behaviour become diffused?” They hypothesized that participants in a lab would be less likely to help when they believed there were more potential helpers besides themselves. This conversion from research question to experiment design is called operationalization (see Chapter 2 for more information about the operational definition). Darley and Latané operationalized the independent variable of diffusion of responsibility by increasing the number of potential helpers. In evaluating this design, we would say that the construct validity was very high because the experiment’s manipulations very clearly speak to the research question; there was a crisis, a way for the participant to help, and increasing the number of other students involved in the discussion, they provided a way to test diffusion.

What if the number of conditions in Darley and Latané’s study changed? Consider if there were only two conditions: one student involved in the discussion or two. Even though we may see a decrease in helping by adding another person, it may not be a clear demonstration of diffusion of responsibility, just merely the presence of others. We might think it was a form of Bandura’s social inhibition  (discussed in Chapter 4). The construct validity would be lower. However, had there been five conditions, perhaps we would see the decrease continue with more people in the discussion or perhaps it would plateau after a certain number of people. In that situation, we may not necessarily be learning more about diffusion of responsibility or it may become a different phenomenon. By adding more conditions, the construct validity may not get higher. When designing your own experiment, consider how well the research question is operationalized your study.

Statistical Validity

A common critique of experiments is that a study did not have enough participants. The main reason for this criticism is that it is difficult to generalize about a population from a small sample. At the outset, it seems as though this critique is about external validity but there are studies where small sample sizes are not a problem (Chapter 10 will discuss how small samples, even of only 1 person, are still very illuminating for psychology research). Therefore, small sample sizes are actually a critique of statistical validity . The statistical validity speaks to whether the statistics conducted in the study support the conclusions that are made.

Proper statistical analysis should be conducted on the data to determine whether the difference or relationship that was predicted was found. The number of conditions and the number of total participants will determine the overall size of the effect. With this information, a power analysis can be conducted to ascertain whether you are likely to find a real difference. When designing a study, it is best to think about the power analysis so that the appropriate number of participants can be recruited and tested (more on effect sizes in Chapter 12). To design a statistically valid experiment, thinking about the statistical tests at the beginning of the design will help ensure the results can be believed.

Prioritizing Validities

These four big validities–internal, external, construct, and statistical–are useful to keep in mind when both reading about other experiments and designing your own. However, researchers must prioritize and often it is not possible to have high validity in all four areas. In Cialdini’s study on towel usage in hotels, the external validity was high but the statistical validity was more modest. This discrepancy does not invalidate the study but it shows where there may be room for improvement for future follow-up studies (Goldstein, Cialdini, & Griskevicius, 2008) [6] . Morling (2014) points out that most psychology studies have high internal and construct validity but sometimes sacrifice external validity.

Manipulation of the Independent Variable

Again, to  manipulate  an independent variable means to change its level systematically so that different groups of participants are exposed to different levels of that variable, or the same group of participants is exposed to different levels at different times. For example, to see whether expressive writing affects people’s health, a researcher might instruct some participants to write about traumatic experiences and others to write about neutral experiences. As discussed earlier in this chapter, the different levels of the independent variable are referred to as  conditions , and researchers often give the conditions short descriptive names to make it easy to talk and write about them. In this case, the conditions might be called the “traumatic condition” and the “neutral condition.”

Notice that the manipulation of an independent variable must involve the active intervention of the researcher. Comparing groups of people who differ on the independent variable before the study begins is not the same as manipulating that variable. For example, a researcher who compares the health of people who already keep a journal with the health of people who do not keep a journal has not manipulated this variable and therefore not conducted an experiment. This distinction  is important because groups that already differ in one way at the beginning of a study are likely to differ in other ways too. For example, people who choose to keep journals might also be more conscientious, more introverted, or less stressed than people who do not. Therefore, any observed difference between the two groups in terms of their health might have been caused by whether or not they keep a journal, or it might have been caused by any of the other differences between people who do and do not keep journals. Thus the active manipulation of the independent variable is crucial for eliminating the third-variable problem.

Of course, there are many situations in which the independent variable cannot be manipulated for practical or ethical reasons and therefore an experiment is not possible. For example, whether or not people have a significant early illness experience cannot be manipulated, making it impossible to conduct an experiment on the effect of early illness experiences on the development of hypochondriasis. This caveat does not mean it is impossible to study the relationship between early illness experiences and hypochondriasis—only that it must be done using nonexperimental approaches. We will discuss this type of methodology in detail later in the book.

In many experiments, the independent variable is a construct that can only be manipulated indirectly. For example, a researcher might try to manipulate participants’ stress levels indirectly by telling some of them that they have five minutes to prepare a short speech that they will then have to give to an audience of other participants. In such situations, researchers often include a manipulation check  in their procedure. A manipulation check is a separate measure of the construct the researcher is trying to manipulate. For example, researchers trying to manipulate participants’ stress levels might give them a paper-and-pencil stress questionnaire or take their blood pressure—perhaps right after the manipulation or at the end of the procedure—to verify that they successfully manipulated this variable.

Control of Extraneous Variables

As we have seen previously in the chapter, an  extraneous variable  is anything that varies in the context of a study other than the independent and dependent variables. In an experiment on the effect of expressive writing on health, for example, extraneous variables would include participant variables (individual differences) such as their writing ability, their diet, and their shoe size. They would also include situational or task variables such as the time of day when participants write, whether they write by hand or on a computer, and the weather. Extraneous variables pose a problem because many of them are likely to have some effect on the dependent variable. For example, participants’ health will be affected by many things other than whether or not they engage in expressive writing. This influencing factor can make it difficult to separate the effect of the independent variable from the effects of the extraneous variables, which is why it is important to  control  extraneous variables by holding them constant.

Extraneous Variables as “Noise”

Extraneous variables make it difficult to detect the effect of the independent variable in two ways. One is by adding variability or “noise” to the data. Imagine a simple experiment on the effect of mood (happy vs. sad) on the number of happy childhood events people are able to recall. Participants are put into a negative or positive mood (by showing them a happy or sad video clip) and then asked to recall as many happy childhood events as they can. Table 6.1 shows what the data might look like if there were no extraneous variables and the number of happy childhood events participants recalled was affected only by their moods. Every participant in the happy mood condition recalled exactly four happy childhood events, and every participant in the sad mood condition recalled exactly three. The effect of mood here is quite obvious.

Table 6.1 Hypothetical Noiseless Data
Number of happy childhood events recalled when in a happy mood Number of happy childhood events recalled when in a sad mood
4 3
4 3
4 3
4 3
4 3
4 3
4 3
4 3
4 3
4 3
= 4 = 3

In reality, however, the data would probably look more like those Table 6.2 . Even in the happy mood condition, some participants would recall fewer happy memories because they have fewer to draw on, use less effective recall strategies, or are less motivated. And even in the sad mood condition, some participants would recall more happy childhood memories because they have more happy memories to draw on, they use more effective recall strategies, or they are more motivated.

Table 6.2 Realistic Noisy Data
Number of happy childhood events recalled when in a happy mood Number of happy childhood events recalled when in a sad mood
3 1
6 3
2 4
4 0
5 5
2 7
3 2
1 5
6 1
8 2
 = 4  = 3

Although the mean difference between the two groups is the same as in the idealized data, this difference is much less obvious in the context of the greater variability in the data. Thus one reason researchers try to control extraneous variables is so their data look more like the idealized data in  Table 6.1 , which makes the effect of the independent variable easier to detect (although real data never look quite  that  good).

One way to control extraneous variables is to hold them constant. This technique can mean holding situation or task variables constant by testing all participants in the same location, giving them identical instructions, treating them in the same way, and so on. It can also mean holding participant variables constant. For example, many studies of language limit participants to right-handed people, who generally have their language areas isolated in their left cerebral hemispheres. Left-handed people are more likely to have their language areas isolated in their right cerebral hemispheres or distributed across both hemispheres, which can change the way they process language and thereby add noise to the data.

In principle, researchers can control extraneous variables by limiting participants to one very specific category of person, such as 20-year-old, heterosexual, female, right-handed psychology majors. The obvious downside to this approach is that it would lower the external validity of the study—in particular, the extent to which the results can be generalized beyond the people actually studied. For example, it might be unclear whether results obtained with a sample of younger heterosexual women would apply to older homosexual men. In many situations, the advantages of a diverse sample outweigh the reduction in noise achieved by a homogeneous one.

Extraneous Variables as Confounding Variables

The second way that extraneous variables can make it difficult to detect the effect of the independent variable is by becoming confounding variables. A confounding variable  is an extraneous variable that differs on average across  levels of the independent variable. For example, in almost all experiments, participants’ intelligence quotients (IQs) will be an extraneous variable. But as long as there are participants with lower and higher IQs at each level of the independent variable so that the average IQ is roughly equal, then this variation is probably acceptable (and may even be desirable). What would be bad, however, would be for participants at one level of the independent variable to have substantially lower IQs on average and participants at another level to have substantially higher IQs on average. In this case, IQ would be a confounding variable.

To confound means to confuse , and this effect is exactly why confounding variables are undesirable. Because they differ across conditions—just like the independent variable—they provide an alternative explanation for any observed difference in the dependent variable.  Figure 6.1  shows the results of a hypothetical study, in which participants in a positive mood condition scored higher on a memory task than participants in a negative mood condition. But if IQ is a confounding variable—with participants in the positive mood condition having higher IQs on average than participants in the negative mood condition—then it is unclear whether it was the positive moods or the higher IQs that caused participants in the first condition to score higher. One way to avoid confounding variables is by holding extraneous variables constant. For example, one could prevent IQ from becoming a confounding variable by limiting participants only to those with IQs of exactly 100. But this approach is not always desirable for reasons we have already discussed. A second and much more general approach—random assignment to conditions—will be discussed in detail shortly.

""

Key Takeaways

  • An experiment is a type of empirical study that features the manipulation of an independent variable, the measurement of a dependent variable, and control of extraneous variables.
  • Studies are high in internal validity to the extent that the way they are conducted supports the conclusion that the independent variable caused any observed differences in the dependent variable. Experiments are generally high in internal validity because of the manipulation of the independent variable and control of extraneous variables.
  • Studies are high in external validity to the extent that the result can be generalized to people and situations beyond those actually studied. Although experiments can seem “artificial”—and low in external validity—it is important to consider whether the psychological processes under study are likely to operate in other people and situations.
  • Practice: List five variables that can be manipulated by the researcher in an experiment. List five variables that cannot be manipulated by the researcher in an experiment.
  • Effect of parietal lobe damage on people’s ability to do basic arithmetic.
  • Effect of being clinically depressed on the number of close friendships people have.
  • Effect of group training on the social skills of teenagers with Asperger’s syndrome.
  • Effect of paying people to take an IQ test on their performance on that test.
  • Judd, C.M. & Kenny, D.A. (1981). Estimating the effects of social interventions . Cambridge, MA: Cambridge University Press. ↵
  • Morling, B. (2014, April). Teach your students to be better consumers. APS Observer . Retrieved from http://www.psychologicalscience.org/index.php/publications/observer/2014/april-14/teach-your-students-to-be-better-consumers.html ↵
  • Bauman, C.W., McGraw, A.P., Bartels, D.M., & Warren, C. (2014). Revisiting external validity: Concerns about trolley problems and other sacrificial dilemmas in moral psychology. Social and Personality Psychology Compass, 8/9 , 536-554. ↵
  • Fredrickson, B. L., Roberts, T.-A., Noll, S. M., Quinn, D. M., & Twenge, J. M. (1998). The swimsuit becomes you: Sex differences in self-objectification, restrained eating, and math performance. Journal of Personality and Social Psychology, 75 , 269–284. ↵
  • Cialdini, R. (2005, April). Don’t throw in the towel: Use social influence research. APS Observer . Retrieved from http://www.psychologicalscience.org/index.php/publications/observer/2005/april-05/dont-throw-in-the-towel-use-social-influence-research.html ↵
  • Goldstein, N. J., Cialdini, R. B., & Griskevicius, V. (2008). A room with a viewpoint: Using social norms to motivate environmental conservation in hotels. Journal of Consumer Research, 35 , 472–482. ↵

A study in which the researcher manipulates the independent variable.

The different levels of the independent variable.

Anything that varies in the context of a study other than the independent and dependent variables.

When the way an experiment was conducted supports the conclusion that the independent variable caused observed differences in the dependent variable. These studies provide strong support for causal conclusions.

When the way a study is conducted supports generalizing the results to people and situations beyond those actually studied.

The participants and the situation studied are similar to those that the researchers want to generalize to and participants encounter everyday.

The same mental process is used in both the laboratory and in the real world.

The quality of the experiment’s manipulations.

Conversion from research question to experiment design.

Whether the statistics conducted in the study support the conclusions that are made.

To change an independent variable’s level systematically so that different groups of participants are exposed to different levels of that variable, or the same group of participants is exposed to different levels at different times.

A separate measure of the construct the researcher is trying to manipulate.

Method of holding extraneous variables at a constant.

An extraneous variable that differs on average across levels of the independent variable.

Research Methods in Psychology - 2nd Canadian Edition Copyright © 2015 by Paul C. Price, Rajiv Jhangiani, & I-Chant A. Chiang is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

psychology types of experiments

Logo for Kwantlen Polytechnic University

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Experimental Research

23 Experiment Basics

Learning objectives.

  • Explain what an experiment is and recognize examples of studies that are experiments and studies that are not experiments.
  • Distinguish between the manipulation of the independent variable and control of extraneous variables and explain the importance of each.
  • Recognize examples of confounding variables and explain how they affect the internal validity of a study.
  • Define what a control condition is, explain its purpose in research on treatment effectiveness, and describe some alternative types of control conditions.

What Is an Experiment?

As we saw earlier in the book, an  experiment is a type of study designed specifically to answer the question of whether there is a causal relationship between two variables. In other words, whether changes in one variable (referred to as an independent variable ) cause a change in another variable (referred to as a dependent variable ). Experiments have two fundamental features. The first is that the researchers manipulate, or systematically vary, the level of the independent variable. The different levels of the independent variable are called conditions . For example, in Darley and Latané’s experiment, the independent variable was the number of witnesses that participants believed to be present. The researchers manipulated this independent variable by telling participants that there were either one, two, or five other students involved in the discussion, thereby creating three conditions. For a new researcher, it is easy to confuse these terms by believing there are three independent variables in this situation: one, two, or five students involved in the discussion, but there is actually only one independent variable (number of witnesses) with three different levels or conditions (one, two or five students). The second fundamental feature of an experiment is that the researcher exerts control over, or minimizes the variability in, variables other than the independent and dependent variable. These other variables are called extraneous variables . Darley and Latané tested all their participants in the same room, exposed them to the same emergency situation, and so on. They also randomly assigned their participants to conditions so that the three groups would be similar to each other to begin with. Notice that although the words  manipulation  and  control  have similar meanings in everyday language, researchers make a clear distinction between them. They manipulate  the independent variable by systematically changing its levels and control  other variables by holding them constant.

Manipulation of the Independent Variable

Again, to  manipulate an independent variable means to change its level systematically so that different groups of participants are exposed to different levels of that variable, or the same group of participants is exposed to different levels at different times. For example, to see whether expressive writing affects people’s health, a researcher might instruct some participants to write about traumatic experiences and others to write about neutral experiences. The different levels of the independent variable are referred to as conditions , and researchers often give the conditions short descriptive names to make it easy to talk and write about them. In this case, the conditions might be called the “traumatic condition” and the “neutral condition.”

Notice that the manipulation of an independent variable must involve the active intervention of the researcher. Comparing groups of people who differ on the independent variable before the study begins is not the same as manipulating that variable. For example, a researcher who compares the health of people who already keep a journal with the health of people who do not keep a journal has not manipulated this variable and therefore has not conducted an experiment. This distinction  is important because groups that already differ in one way at the beginning of a study are likely to differ in other ways too. For example, people who choose to keep journals might also be more conscientious, more introverted, or less stressed than people who do not. Therefore, any observed difference between the two groups in terms of their health might have been caused by whether or not they keep a journal, or it might have been caused by any of the other differences between people who do and do not keep journals. Thus the active manipulation of the independent variable is crucial for eliminating potential alternative explanations for the results.

Of course, there are many situations in which the independent variable cannot be manipulated for practical or ethical reasons and therefore an experiment is not possible. For example, whether or not people have a significant early illness experience cannot be manipulated, making it impossible to conduct an experiment on the effect of early illness experiences on the development of hypochondriasis. This caveat does not mean it is impossible to study the relationship between early illness experiences and hypochondriasis—only that it must be done using nonexperimental approaches. We will discuss this type of methodology in detail later in the book.

Independent variables can be manipulated to create two conditions and experiments involving a single independent variable with two conditions are often referred to as a single factor two-level design .  However, sometimes greater insights can be gained by adding more conditions to an experiment. When an experiment has one independent variable that is manipulated to produce more than two conditions it is referred to as a single factor multi level design .  So rather than comparing a condition in which there was one witness to a condition in which there were five witnesses (which would represent a single-factor two-level design), Darley and Latané’s experiment used a single factor multi-level design, by manipulating the independent variable to produce three conditions (a one witness, a two witnesses, and a five witnesses condition).

Control of Extraneous Variables

As we have seen previously in the chapter, an  extraneous variable  is anything that varies in the context of a study other than the independent and dependent variables. In an experiment on the effect of expressive writing on health, for example, extraneous variables would include participant variables (individual differences) such as their writing ability, their diet, and their gender. They would also include situational or task variables such as the time of day when participants write, whether they write by hand or on a computer, and the weather. Extraneous variables pose a problem because many of them are likely to have some effect on the dependent variable. For example, participants’ health will be affected by many things other than whether or not they engage in expressive writing. This influencing factor can make it difficult to separate the effect of the independent variable from the effects of the extraneous variables, which is why it is important to control extraneous variables by holding them constant.

Extraneous Variables as “Noise”

Extraneous variables make it difficult to detect the effect of the independent variable in two ways. One is by adding variability or “noise” to the data. Imagine a simple experiment on the effect of mood (happy vs. sad) on the number of happy childhood events people are able to recall. Participants are put into a negative or positive mood (by showing them a happy or sad video clip) and then asked to recall as many happy childhood events as they can. The two leftmost columns of  Table 5.1 show what the data might look like if there were no extraneous variables and the number of happy childhood events participants recalled was affected only by their moods. Every participant in the happy mood condition recalled exactly four happy childhood events, and every participant in the sad mood condition recalled exactly three. The effect of mood here is quite obvious. In reality, however, the data would probably look more like those in the two rightmost columns of  Table 5.1 . Even in the happy mood condition, some participants would recall fewer happy memories because they have fewer to draw on, use less effective recall strategies, or are less motivated. And even in the sad mood condition, some participants would recall more happy childhood memories because they have more happy memories to draw on, they use more effective recall strategies, or they are more motivated. Although the mean difference between the two groups is the same as in the idealized data, this difference is much less obvious in the context of the greater variability in the data. Thus one reason researchers try to control extraneous variables is so their data look more like the idealized data in  Table 5.1 , which makes the effect of the independent variable easier to detect (although real data never look quite  that  good).

4 3 3 1
4 3 6 3
4 3 2 4
4 3 4 0
4 3 5 5
4 3 2 7
4 3 3 2
4 3 1 5
4 3 6 1
4 3 8 2
 = 4  = 3  = 4  = 3

One way to control extraneous variables is to hold them constant. This technique can mean holding situation or task variables constant by testing all participants in the same location, giving them identical instructions, treating them in the same way, and so on. It can also mean holding participant variables constant. For example, many studies of language limit participants to right-handed people, who generally have their language areas isolated in their left cerebral hemispheres [1] . Left-handed people are more likely to have their language areas isolated in their right cerebral hemispheres or distributed across both hemispheres, which can change the way they process language and thereby add noise to the data.

In principle, researchers can control extraneous variables by limiting participants to one very specific category of person, such as 20-year-old, heterosexual, female, right-handed psychology majors. The obvious downside to this approach is that it would lower the external validity of the study—in particular, the extent to which the results can be generalized beyond the people actually studied. For example, it might be unclear whether results obtained with a sample of younger lesbian women would apply to older gay men. In many situations, the advantages of a diverse sample (increased external validity) outweigh the reduction in noise achieved by a homogeneous one.

Extraneous Variables as Confounding Variables

The second way that extraneous variables can make it difficult to detect the effect of the independent variable is by becoming confounding variables. A confounding variable  is an extraneous variable that differs on average across  levels of the independent variable (i.e., it is an extraneous variable that varies systematically with the independent variable). For example, in almost all experiments, participants’ intelligence quotients (IQs) will be an extraneous variable. But as long as there are participants with lower and higher IQs in each condition so that the average IQ is roughly equal across the conditions, then this variation is probably acceptable (and may even be desirable). What would be bad, however, would be for participants in one condition to have substantially lower IQs on average and participants in another condition to have substantially higher IQs on average. In this case, IQ would be a confounding variable.

To confound means to confuse , and this effect is exactly why confounding variables are undesirable. Because they differ systematically across conditions—just like the independent variable—they provide an alternative explanation for any observed difference in the dependent variable.  Figure 5.1  shows the results of a hypothetical study, in which participants in a positive mood condition scored higher on a memory task than participants in a negative mood condition. But if IQ is a confounding variable—with participants in the positive mood condition having higher IQs on average than participants in the negative mood condition—then it is unclear whether it was the positive moods or the higher IQs that caused participants in the first condition to score higher. One way to avoid confounding variables is by holding extraneous variables constant. For example, one could prevent IQ from becoming a confounding variable by limiting participants only to those with IQs of exactly 100. But this approach is not always desirable for reasons we have already discussed. A second and much more general approach—random assignment to conditions—will be discussed in detail shortly.

Figure 5.1 Hypothetical Results From a Study on the Effect of Mood on Memory. Because IQ also differs across conditions, it is a confounding variable.

Treatment and Control Conditions

In psychological research, a treatment is any intervention meant to change people’s behavior for the better. This intervention includes psychotherapies and medical treatments for psychological disorders but also interventions designed to improve learning, promote conservation, reduce prejudice, and so on. To determine whether a treatment works, participants are randomly assigned to either a treatment condition , in which they receive the treatment, or a control condition , in which they do not receive the treatment. If participants in the treatment condition end up better off than participants in the control condition—for example, they are less depressed, learn faster, conserve more, express less prejudice—then the researcher can conclude that the treatment works. In research on the effectiveness of psychotherapies and medical treatments, this type of experiment is often called a randomized clinical trial .

There are different types of control conditions. In a no-treatment control condition , participants receive no treatment whatsoever. One problem with this approach, however, is the existence of placebo effects. A placebo is a simulated treatment that lacks any active ingredient or element that should make it effective, and a placebo effect is a positive effect of such a treatment. Many folk remedies that seem to work—such as eating chicken soup for a cold or placing soap under the bed sheets to stop nighttime leg cramps—are probably nothing more than placebos. Although placebo effects are not well understood, they are probably driven primarily by people’s expectations that they will improve. Having the expectation to improve can result in reduced stress, anxiety, and depression, which can alter perceptions and even improve immune system functioning (Price, Finniss, & Benedetti, 2008) [2] .

Placebo effects are interesting in their own right (see Note “The Powerful Placebo” ), but they also pose a serious problem for researchers who want to determine whether a treatment works. Figure 5.2 shows some hypothetical results in which participants in a treatment condition improved more on average than participants in a no-treatment control condition. If these conditions (the two leftmost bars in Figure 5.2 ) were the only conditions in this experiment, however, one could not conclude that the treatment worked. It could be instead that participants in the treatment group improved more because they expected to improve, while those in the no-treatment control condition did not.

Figure 5.2 Hypothetical Results From a Study Including Treatment, No-Treatment, and Placebo Conditions

Fortunately, there are several solutions to this problem. One is to include a placebo control condition , in which participants receive a placebo that looks much like the treatment but lacks the active ingredient or element thought to be responsible for the treatment’s effectiveness. When participants in a treatment condition take a pill, for example, then those in a placebo control condition would take an identical-looking pill that lacks the active ingredient in the treatment (a “sugar pill”). In research on psychotherapy effectiveness, the placebo might involve going to a psychotherapist and talking in an unstructured way about one’s problems. The idea is that if participants in both the treatment and the placebo control groups expect to improve, then any improvement in the treatment group over and above that in the placebo control group must have been caused by the treatment and not by participants’ expectations. This difference is what is shown by a comparison of the two outer bars in Figure 5.4 .

Of course, the principle of informed consent requires that participants be told that they will be assigned to either a treatment or a placebo control condition—even though they cannot be told which until the experiment ends. In many cases the participants who had been in the control condition are then offered an opportunity to have the real treatment. An alternative approach is to use a wait-list control condition , in which participants are told that they will receive the treatment but must wait until the participants in the treatment condition have already received it. This disclosure allows researchers to compare participants who have received the treatment with participants who are not currently receiving it but who still expect to improve (eventually). A final solution to the problem of placebo effects is to leave out the control condition completely and compare any new treatment with the best available alternative treatment. For example, a new treatment for simple phobia could be compared with standard exposure therapy. Because participants in both conditions receive a treatment, their expectations about improvement should be similar. This approach also makes sense because once there is an effective treatment, the interesting question about a new treatment is not simply “Does it work?” but “Does it work better than what is already available?

The Powerful Placebo

Many people are not surprised that placebos can have a positive effect on disorders that seem fundamentally psychological, including depression, anxiety, and insomnia. However, placebos can also have a positive effect on disorders that most people think of as fundamentally physiological. These include asthma, ulcers, and warts (Shapiro & Shapiro, 1999) [3] . There is even evidence that placebo surgery—also called “sham surgery”—can be as effective as actual surgery.

Medical researcher J. Bruce Moseley and his colleagues conducted a study on the effectiveness of two arthroscopic surgery procedures for osteoarthritis of the knee (Moseley et al., 2002) [4] . The control participants in this study were prepped for surgery, received a tranquilizer, and even received three small incisions in their knees. But they did not receive the actual arthroscopic surgical procedure. Note that the IRB would have carefully considered the use of deception in this case and judged that the benefits of using it outweighed the risks and that there was no other way to answer the research question (about the effectiveness of a placebo procedure) without it. The surprising result was that all participants improved in terms of both knee pain and function, and the sham surgery group improved just as much as the treatment groups. According to the researchers, “This study provides strong evidence that arthroscopic lavage with or without débridement [the surgical procedures used] is not better than and appears to be equivalent to a placebo procedure in improving knee pain and self-reported function” (p. 85).

  • Knecht, S., Dräger, B., Deppe, M., Bobe, L., Lohmann, H., Flöel, A., . . . Henningsen, H. (2000). Handedness and hemispheric language dominance in healthy humans. Brain: A Journal of Neurology, 123 (12), 2512-2518. http://dx.doi.org/10.1093/brain/123.12.2512 ↵
  • Price, D. D., Finniss, D. G., & Benedetti, F. (2008). A comprehensive review of the placebo effect: Recent advances and current thought. Annual Review of Psychology, 59 , 565–590. ↵
  • Shapiro, A. K., & Shapiro, E. (1999). The powerful placebo: From ancient priest to modern physician . Baltimore, MD: Johns Hopkins University Press. ↵
  • Moseley, J. B., O’Malley, K., Petersen, N. J., Menke, T. J., Brody, B. A., Kuykendall, D. H., … Wray, N. P. (2002). A controlled trial of arthroscopic surgery for osteoarthritis of the knee. The New England Journal of Medicine, 347 , 81–88. ↵

A type of study designed specifically to answer the question of whether there is a causal relationship between two variables.

The variable the experimenter manipulates.

The variable the experimenter measures (it is the presumed effect).

The different levels of the independent variable to which participants are assigned.

Holding extraneous variables constant in order to separate the effect of the independent variable from the effect of the extraneous variables.

Any variable other than the dependent and independent variable.

Changing the level, or condition, of the independent variable systematically so that different groups of participants are exposed to different levels of that variable, or the same group of participants is exposed to different levels at different times.

An experiment design involving a single independent variable with two conditions.

When an experiment has one independent variable that is manipulated to produce more than two conditions.

An extraneous variable that varies systematically with the independent variable, and thus confuses the effect of the independent variable with the effect of the extraneous one.

Any intervention meant to change people’s behavior for the better.

The condition in which participants receive the treatment.

The condition in which participants do not receive the treatment.

An experiment that researches the effectiveness of psychotherapies and medical treatments.

The condition in which participants receive no treatment whatsoever.

A simulated treatment that lacks any active ingredient or element that is hypothesized to make the treatment effective, but is otherwise identical to the treatment.

An effect that is due to the placebo rather than the treatment.

Condition in which the participants receive a placebo rather than the treatment.

Condition in which participants are told that they will receive the treatment but must wait until the participants in the treatment condition have already received it.

Research Methods in Psychology Copyright © 2019 by Rajiv S. Jhangiani, I-Chant A. Chiang, Carrie Cuttler, & Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Experimental Methods In Psychology

March 7, 2021 - paper 2 psychology in context | research methods.

There are three experimental methods in the field of psychology; Laboratory, Field and Natural Experiments. Each of the experimental methods holds different characteristics in relation to; the manipulation of the IV, the control of the EVs and the ability to accurately replicate the study in exactly the same way.











·  A highly controlled setting Â·  Artificial setting·  High control over the IV and EVs·  For example, Loftus and Palmer’s study looking at leading questions(+) High level of control, researchers are able to control the IV and potential EVs. This is a strength because researchers are able to establish a cause and effect relationship and there is high internal validity.  (+) Due to the high level of control it means that a lab experiment can be replicated in exactly the same way under exactly the same conditions. This is a strength as it means that the reliability of the research can be assessed (i.e. a reliable study will produce the same findings over and over again).(-) Low ecological validity. A lab experiment takes place in an unnatural, artificial setting. As a result participants may behave in an unnatural manner. This is a weakness because it means that the experiment may not be measuring real-life behaviour.  (-) Another weakness is that there is a high chance of demand characteristics. For example as the laboratory setting makes participants aware they are taking part in research, this may cause them to change their behaviour in some way. For example, a participant in a memory experiment might deliberately remember less in one experimental condition if they think that is what the experimenter expects them to do to avoid ruining the results. This is a problem because it means that the results do not reflect real-life as they are responding to demand characteristics and not just the independent variable.
·  Real life setting Â·  Experimenter can control the IV·  Experimenter doesn’t have control over EVs (e.g. weather etc )·  For example, research looking at altruistic behaviour had a stooge (actor) stage a collapse in a subway and recorded how many passers-by stopped to help.(+) High ecological validity. Due to the fact that a field experiment takes place in a real-life setting, participants are unaware that they are being watched and therefore are more likely to act naturally. This is a strength because it means that the participants behaviour will be reflective of their real-life behaviour.  (+) Another strength is that there is less chance of demand characteristics. For example, because the research consists of a real life task in a natural environment it’s unlikely that participants will change their behaviour in response to demand characteristics. This is positive because it means that the results reflect real-life as they are not responding to demand characteristics, just the independent variable. (-) Low degree of control over variables. For example,  such as the weather (if a study is taking place outdoors), noise levels or temperature are more difficult to control if the study is taking place outside the laboratory. This is problematic because there is a greater chance of extraneous variables affecting participant’s behaviour which reduces the experiments internal validity and makes a cause and effect relationship difficult to establish. (-) Difficult to replicate. For example, if a study is taking place outdoors, the weather might change between studies and affect the participants’ behaviour. This is a problem because it reduces the chances of the same results being found time and time again and therefore can reduce the reliability of the experiment. 
·  Real-life setting Â·  Experimenter has no control over EVs or the IV·  IV is naturally occurring·  For example, looking at the changes in levels of aggression after the introduction of the television. The introduction of the TV is the natural occurring IV and the DV is the changes in aggression (comparing aggression levels before and after the introduction of the TV).The   of the natural experiment are exactly the same as the strengths of the field experiment:  (+) High ecological validity due to the fact that the research is taking place in a natural setting and therefore is reflective of real-life natural behaviour. (+) Low chance of demand characteristics. Because participants do not know that they are taking part in a study they will not change their behaviour and act unnaturally therefore the experiment can be said to be measuring real-life natural behaviour.The   of the natural experiment are exactly the same as the strengths of the field experiment:  (-)Low control over variables. For example, the researcher isn’t able to control EVs and the IV is naturally occurring. This means that a cause and effect relationship cannot be established and there is low internal validity. (-) Due to the fact that there is no control over variables, a natural experiment cannot be replicated and therefore reliability is difficult to assess for.

When conducting research, it is important to create an aim and a hypothesis,  click here  to learn more about the formation of aims and hypotheses.

We're not around right now. But you can send us an email and we'll get back to you, asap.

helpful professor logo

Experimental Psychology: 10 Examples & Definition

Experimental Psychology: 10 Examples & Definition

Dave Cornell (PhD)

Dr. Cornell has worked in education for more than 20 years. His work has involved designing teacher certification for Trinity College in London and in-service training for state governments in the United States. He has trained kindergarten teachers in 8 countries and helped businessmen and women open baby centers and kindergartens in 3 countries.

Learn about our Editorial Process

Experimental Psychology: 10 Examples & Definition

Chris Drew (PhD)

This article was peer-reviewed and edited by Chris Drew (PhD). The review process on Helpful Professor involves having a PhD level expert fact check, edit, and contribute to articles. Reviewers ensure all content reflects expert academic consensus and is backed up with reference to academic studies. Dr. Drew has published over 20 academic articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education and holds a PhD in Education from ACU.

psychology types of experiments

Experimental psychology refers to studying psychological phenomena using scientific methods. Originally, the primary scientific method involved manipulating one variable and observing systematic changes in another variable.

Today, psychologists utilize several types of scientific methodologies.

Experimental psychology examines a wide range of psychological phenomena, including: memory, sensation and perception, cognitive processes, motivation, emotion, developmental processes, in addition to the neurophysiological concomitants of each of these subjects.

Studies are conducted on both animal and human participants, and must comply with stringent requirements and controls regarding the ethical treatment of both.

Definition of Experimental Psychology

Experimental psychology is a branch of psychology that utilizes scientific methods to investigate the mind and behavior.

It involves the systematic and controlled study of human and animal behavior through observation and experimentation .

Experimental psychologists design and conduct experiments to understand cognitive processes, perception, learning, memory, emotion, and many other aspects of psychology. They often manipulate variables ( independent variables ) to see how this affects behavior or mental processes (dependent variables).

The findings from experimental psychology research are often used to better understand human behavior and can be applied in a range of contexts, such as education, health, business, and more.

Experimental Psychology Examples

1. The Puzzle Box Studies (Thorndike, 1898) Placing different cats in a box that can only be escaped by pulling a cord, and then taking detailed notes on how long it took for them to escape allowed Edward Thorndike to derive the Law of Effect: actions followed by positive consequences are more likely to occur again, and actions followed by negative consequences are less likely to occur again (Thorndike, 1898).

2. Reinforcement Schedules (Skinner, 1956) By placing rats in a Skinner Box and changing when and how often the rats are rewarded for pressing a lever, it is possible to identify how each schedule results in different behavior patterns (Skinner, 1956). This led to a wide range of theoretical ideas around how rewards and consequences can shape the behaviors of both animals and humans.

3. Observational Learning (Bandura, 1980) Some children watch a video of an adult punching and kicking a Bobo doll. Other children watch a video in which the adult plays nicely with the doll. By carefully observing the children’s behavior later when in a room with a Bobo doll, researchers can determine if television violence affects children’s behavior (Bandura, 1980).

4. The Fallibility of Memory (Loftus & Palmer, 1974) A group of participants watch the same video of two cars having an accident. Two weeks later, some are asked to estimate the rate of speed the cars were going when they “smashed” into each other. Some participants are asked to estimate the rate of speed the cars were going when they “bumped” into each other. Changing the phrasing of the question changes the memory of the eyewitness.

5. Intrinsic Motivation in the Classroom (Dweck, 1990) To investigate the role of autonomy on intrinsic motivation, half of the students are told they are “free to choose” which tasks to complete. The other half of the students are told they “must choose” some of the tasks. Researchers then carefully observe how long the students engage in the tasks and later ask them some questions about if they enjoyed doing the tasks or not.

6. Systematic Desensitization (Wolpe, 1958) A clinical psychologist carefully documents his treatment of a patient’s social phobia with progressive relaxation. At first, the patient is trained to monitor, tense, and relax various muscle groups while viewing photos of parties. Weeks later, they approach a stranger to ask for directions, initiate a conversation on a crowded bus, and attend a small social gathering. The therapist’s notes are transcribed into a scientific report and published in a peer-reviewed journal.

7. Study of Remembering (Bartlett, 1932) Bartlett’s work is a seminal study in the field of memory, where he used the concept of “schema” to describe an organized pattern of thought or behavior. He conducted a series of experiments using folk tales to show that memory recall is influenced by cultural schemas and personal experiences.

8. Study of Obedience (Milgram, 1963) This famous study explored the conflict between obedience to authority and personal conscience. Milgram found that a majority of participants were willing to administer what they believed were harmful electric shocks to a stranger when instructed by an authority figure, highlighting the power of authority and situational factors in driving behavior.

9. Pavlov’s Dog Study (Pavlov, 1927) Ivan Pavlov, a Russian physiologist, conducted a series of experiments that became a cornerstone in the field of experimental psychology. Pavlov noticed that dogs would salivate when they saw food. He then began to ring a bell each time he presented the food to the dogs. After a while, the dogs began to salivate merely at the sound of the bell. This experiment demonstrated the principle of “classical conditioning.”

10, Piaget’s Stages of Development (Piaget, 1958) Jean Piaget proposed a theory of cognitive development in children that consists of four distinct stages: the sensorimotor stage (birth to 2 years), where children learn about the world through their senses and motor activities, through to the the formal operational stage (12 years and beyond), where abstract reasoning and hypothetical thinking develop. Piaget’s theory is an example of experimental psychology as it was developed through systematic observation and experimentation on children’s problem-solving behaviors .

Types of Research Methodologies in Experimental Psychology 

Researchers utilize several different types of research methodologies since the early days of Wundt (1832-1920).

1. The Experiment

The experiment involves the researcher manipulating the level of one variable, called the Independent Variable (IV), and then observing changes in another variable, called the Dependent Variable (DV).

The researcher is interested in determining if the IV causes changes in the DV. For example, does television violence make children more aggressive?

So, some children in the study, called research participants, will watch a show with TV violence, called the treatment group. Others will watch a show with no TV violence, called the control group.

So, there are two levels of the IV: violence and no violence. Next, children will be observed to see if they act more aggressively. This is the DV.

If TV violence makes children more aggressive, then the children that watched the violent show will me more aggressive than the children that watched the non-violent show.

A key requirement of the experiment is random assignment . Each research participant is assigned to one of the two groups in a way that makes it a completely random process. This means that each group will have a mix of children: different personality types, diverse family backgrounds, and range of intelligence levels.

2. The Longitudinal Study

A longitudinal study involves selecting a sample of participants and then following them for years, or decades, periodically collecting data on the variables of interest.

For example, a researcher might be interested in determining if parenting style affects academic performance of children. Parenting style is called the predictor variable , and academic performance is called the outcome variable .

Researchers will begin by randomly selecting a group of children to be in the study. Then, they will identify the type of parenting practices used when the children are 4 and 5 years old.

A few years later, perhaps when the children are 8 and 9, the researchers will collect data on their grades. This process can be repeated over the next 10 years, including through college.

If parenting style has an effect on academic performance, then the researchers will see a connection between the predictor variable and outcome variable.

Children raised with parenting style X will have higher grades than children raised with parenting style Y.

3. The Case Study

The case study is an in-depth study of one individual. This is a research methodology often used early in the examination of a psychological phenomenon or therapeutic treatment.

For example, in the early days of treating phobias, a clinical psychologist may try teaching one of their patients how to relax every time they see the object that creates so much fear and anxiety, such as a large spider.

The therapist would take very detailed notes on how the teaching process was implemented and the reactions of the patient. When the treatment had been completed, those notes would be written in a scientific form and submitted for publication in a scientific journal for other therapists to learn from.

There are several other types of methodologies available which vary different aspects of the three described above. The researcher will select a methodology that is most appropriate to the phenomenon they want to examine.

They also must take into account various practical considerations such as how much time and resources are needed to complete the study. Conducting research always costs money.

People and equipment are needed to carry-out every study, so researchers often try to obtain funding from their university or a government agency. 

Origins and Key Developments in Experimental Psychology

timeline of experimental psychology, explained below

Wilhelm Maximilian Wundt (1832-1920) is considered one of the fathers of modern psychology. He was a physiologist and philosopher and helped establish psychology as a distinct discipline (Khaleefa, 1999).  

In 1879 he established the world’s first psychology research lab at the University of Leipzig. This is considered a key milestone for establishing psychology as a scientific discipline. In addition to being the first person to use the term “psychologist,” to describe himself, he also founded the discipline’s first scientific journal Philosphische Studien in 1883.

Another notable figure in the development of experimental psychology is Ernest Weber . Trained as a physician, Weber studied sensation and perception and created the first quantitative law in psychology.

The equation denotes how judgments of sensory differences are relative to previous levels of sensation, referred to as the just-noticeable difference (jnd). This is known today as Weber’s Law (Hergenhahn, 2009).    

Gustav Fechner , one of Weber’s students, published the first book on experimental psychology in 1860, titled Elemente der Psychophysik. His worked centered on the measurement of psychophysical facets of sensation and perception, with many of his methods still in use today.    

The first American textbook on experimental psychology was Elements of Physiological Psychology, published in 1887 by George Trumball Ladd .

Ladd also established a psychology lab at Yale University, while Stanley Hall and Charles Sanders continued Wundt’s work at a lab at Johns Hopkins University.

In the late 1800s, Charles Pierce’s contribution to experimental psychology is especially noteworthy because he invented the concept of random assignment (Stigler, 1992; Dehue, 1997).

Go Deeper: 15 Random Assignment Examples

This procedure ensures that each participant has an equal chance of being placed in any of the experimental groups (e.g., treatment or control group). This eliminates the influence of confounding factors related to inherent characteristics of the participants.

Random assignment is a fundamental criterion for a study to be considered a valid experiment.

From there, experimental psychology flourished in the 20th century as a science and transformed into an approach utilized in cognitive psychology, developmental psychology, and social psychology .

Today, the term experimental psychology refers to the study of a wide range of phenomena and involves methodologies not limited to the manipulation of variables.

The Scientific Process and Experimental Psychology

The one thing that makes psychology a science and distinguishes it from its roots in philosophy is the reliance upon the scientific process to answer questions. This makes psychology a science was the main goal of its earliest founders such as Wilhelm Wundt.

There are numerous steps in the scientific process, outlined in the graphic below.

an overview of the scientific process, summarized in text in the appendix

1. Observation

First, the scientist observes an interesting phenomenon that sparks a question. For example, are the memories of eyewitnesses really reliable, or are they subject to bias or unintentional manipulation?

2. Hypothesize

Next, this question is converted into a testable hypothesis. For instance: the words used to question a witness can influence what they think they remember.

3. Devise a Study

Then the researcher(s) select a methodology that will allow them to test that hypothesis. In this case, the researchers choose the experiment, which will involve randomly assigning some participants to different conditions.

In one condition, participants are asked a question that implies a certain memory (treatment group), while other participants are asked a question which is phrased neutrally and does not imply a certain memory (control group).

The researchers then write a proposal that describes in detail the procedures they want to use, how participants will be selected, and the safeguards they will employ to ensure the rights of the participants.

That proposal is submitted to an Institutional Review Board (IRB). The IRB is comprised of a panel of researchers, community representatives, and other professionals that are responsible for reviewing all studies involving human participants.

4. Conduct the Study

If the IRB accepts the proposal, then the researchers may begin collecting data. After the data has been collected, it is analyzed using a software program such as SPSS.

Those analyses will either support or reject the hypothesis. That is, either the participants’ memories were affected by the wording of the question, or not.

5. Publish the study

Finally, the researchers write a paper detailing their procedures and results of the statistical analyses. That paper is then submitted to a scientific journal.

The lead editor of that journal will then send copies of the paper to 3-5 experts in that subject. Each of those experts will read the paper and basically try to find as many things wrong with it as possible. Because they are experts, they are very good at this task.

After reading those critiques, most likely, the editor will send the paper back to the researchers and require that they respond to the criticisms, collect more data, or reject the paper outright.

In some cases, the study was so well-done that the criticisms were minimal and the editor accepts the paper. It then gets published in the scientific journal several months later.

That entire process can easily take 2 years, usually more. But, the findings of that study went through a very rigorous process. This means that we can have substantial confidence that the conclusions of the study are valid.

Experimental psychology refers to utilizing a scientific process to investigate psychological phenomenon.

There are a variety of methods employed today. They are used to study a wide range of subjects, including memory, cognitive processes, emotions and the neurophysiological basis of each.

The history of psychology as a science began in the 1800s primarily in Germany. As interest grew, the field expanded to the United States where several influential research labs were established.

As more methodologies were developed, the field of psychology as a science evolved into a prolific scientific discipline that has provided invaluable insights into human behavior.

Bartlett, F. C., & Bartlett, F. C. (1995).  Remembering: A study in experimental and social psychology . Cambridge university press.

Dehue, T. (1997). Deception, efficiency, and random groups: Psychology and the gradual origination of the random group design. Isis , 88 (4), 653-673.

Ebbinghaus, H. (2013). Memory: A contribution to experimental psychology.  Annals of neurosciences ,  20 (4), 155.

Hergenhahn, B. R. (2009). An introduction to the history of psychology. Belmont. CA: Wadsworth Cengage Learning .

Khaleefa, O. (1999). Who is the founder of psychophysics and experimental psychology? American Journal of Islam and Society , 16 (2), 1-26.

Loftus, E. F., & Palmer, J. C. (1974).  Reconstruction of auto-mobile destruction : An example of the interaction between language and memory.  Journal of Verbal Learning and Verbal behavior , 13, 585-589.

Pavlov, I.P. (1927). Conditioned reflexes . Dover, New York.

Piaget, J. (1959).  The language and thought of the child  (Vol. 5). Psychology Press.

Piaget, J., Fraisse, P., & Reuchlin, M. (2014). Experimental psychology its scope and method: Volume I (Psychology Revivals): History and method . Psychology Press.

Skinner, B. F. (1956). A case history in scientlfic method. American Psychologist, 11 , 221-233

Stigler, S. M. (1992). A historical view of statistical concepts in psychology and educational research. American Journal of Education , 101 (1), 60-70.

Thorndike, E. L. (1898). Animal intelligence: An experimental study of the associative processes in animals. Psychological Review Monograph Supplement 2 .

Wolpe, J. (1958). Psychotherapy by reciprocal inhibition. Stanford, CA: Stanford University Press.

Appendix: Images reproduced as Text

Definition: Experimental psychology is a branch of psychology that focuses on conducting systematic and controlled experiments to study human behavior and cognition.

Overview: Experimental psychology aims to gather empirical evidence and explore cause-and-effect relationships between variables. Experimental psychologists utilize various research methods, including laboratory experiments, surveys, and observations, to investigate topics such as perception, memory, learning, motivation, and social behavior .

Example: The Pavlov’s Dog experimental psychology experiment used scientific methods to develop a theory about how learning and association occur in animals. The same concepts were subsequently used in the study of humans, wherein psychology-based ideas about learning were developed. Pavlov’s use of the empirical evidence was foundational to the study’s success.

Experimental Psychology Milestones:

1890: William James publishes “The Principles of Psychology”, a foundational text in the field of psychology.

1896: Lightner Witmer opens the first psychological clinic at the University of Pennsylvania, marking the beginning of clinical psychology.

1913: John B. Watson publishes “Psychology as the Behaviorist Views It”, marking the beginning of Behaviorism.

1920: Hermann Rorschach introduces the Rorschach inkblot test.

1938: B.F. Skinner introduces the concept of operant conditioning .

1967: Ulric Neisser publishes “Cognitive Psychology” , marking the beginning of the cognitive revolution.

1980: The third edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-III) is published, introducing a new classification system for mental disorders.

The Scientific Process

  • Observe an interesting phenomenon
  • Formulate testable hypothesis
  • Select methodology and design study
  • Submit research proposal to IRB
  • Collect and analyzed data; write paper
  • Submit paper for critical reviews

Dave

  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 23 Achieved Status Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 25 Defense Mechanisms Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 15 Theory of Planned Behavior Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 18 Adaptive Behavior Examples

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 23 Achieved Status Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Ableism Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 25 Defense Mechanisms Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Theory of Planned Behavior Examples

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

5.2 Experimental Design

Learning objectives.

  • Explain the difference between between-subjects and within-subjects experiments, list some of the pros and cons of each approach, and decide which approach to use to answer a particular research question.
  • Define random assignment, distinguish it from random sampling, explain its purpose in experimental research, and use some simple strategies to implement it
  • Define several types of carryover effect, give examples of each, and explain how counterbalancing helps to deal with them.

In this section, we look at some different ways to design an experiment. The primary distinction we will make is between approaches in which each participant experiences one level of the independent variable and approaches in which each participant experiences all levels of the independent variable. The former are called between-subjects experiments and the latter are called within-subjects experiments.

Between-Subjects Experiments

In a  between-subjects experiment , each participant is tested in only one condition. For example, a researcher with a sample of 100 university  students might assign half of them to write about a traumatic event and the other half write about a neutral event. Or a researcher with a sample of 60 people with severe agoraphobia (fear of open spaces) might assign 20 of them to receive each of three different treatments for that disorder. It is essential in a between-subjects experiment that the researcher assigns participants to conditions so that the different groups are, on average, highly similar to each other. Those in a trauma condition and a neutral condition, for example, should include a similar proportion of men and women, and they should have similar average intelligence quotients (IQs), similar average levels of motivation, similar average numbers of health problems, and so on. This matching is a matter of controlling these extraneous participant variables across conditions so that they do not become confounding variables.

Random Assignment

The primary way that researchers accomplish this kind of control of extraneous variables across conditions is called  random assignment , which means using a random process to decide which participants are tested in which conditions. Do not confuse random assignment with random sampling. Random sampling is a method for selecting a sample from a population, and it is rarely used in psychological research. Random assignment is a method for assigning participants in a sample to the different conditions, and it is an important element of all experimental research in psychology and other fields too.

In its strictest sense, random assignment should meet two criteria. One is that each participant has an equal chance of being assigned to each condition (e.g., a 50% chance of being assigned to each of two conditions). The second is that each participant is assigned to a condition independently of other participants. Thus one way to assign participants to two conditions would be to flip a coin for each one. If the coin lands heads, the participant is assigned to Condition A, and if it lands tails, the participant is assigned to Condition B. For three conditions, one could use a computer to generate a random integer from 1 to 3 for each participant. If the integer is 1, the participant is assigned to Condition A; if it is 2, the participant is assigned to Condition B; and if it is 3, the participant is assigned to Condition C. In practice, a full sequence of conditions—one for each participant expected to be in the experiment—is usually created ahead of time, and each new participant is assigned to the next condition in the sequence as he or she is tested. When the procedure is computerized, the computer program often handles the random assignment.

One problem with coin flipping and other strict procedures for random assignment is that they are likely to result in unequal sample sizes in the different conditions. Unequal sample sizes are generally not a serious problem, and you should never throw away data you have already collected to achieve equal sample sizes. However, for a fixed number of participants, it is statistically most efficient to divide them into equal-sized groups. It is standard practice, therefore, to use a kind of modified random assignment that keeps the number of participants in each group as similar as possible. One approach is block randomization . In block randomization, all the conditions occur once in the sequence before any of them is repeated. Then they all occur again before any of them is repeated again. Within each of these “blocks,” the conditions occur in a random order. Again, the sequence of conditions is usually generated before any participants are tested, and each new participant is assigned to the next condition in the sequence.  Table 5.2  shows such a sequence for assigning nine participants to three conditions. The Research Randomizer website ( http://www.randomizer.org ) will generate block randomization sequences for any number of participants and conditions. Again, when the procedure is computerized, the computer program often handles the block randomization.

4 B
5 C
6 A

Random assignment is not guaranteed to control all extraneous variables across conditions. The process is random, so it is always possible that just by chance, the participants in one condition might turn out to be substantially older, less tired, more motivated, or less depressed on average than the participants in another condition. However, there are some reasons that this possibility is not a major concern. One is that random assignment works better than one might expect, especially for large samples. Another is that the inferential statistics that researchers use to decide whether a difference between groups reflects a difference in the population takes the “fallibility” of random assignment into account. Yet another reason is that even if random assignment does result in a confounding variable and therefore produces misleading results, this confound is likely to be detected when the experiment is replicated. The upshot is that random assignment to conditions—although not infallible in terms of controlling extraneous variables—is always considered a strength of a research design.

Matched Groups

An alternative to simple random assignment of participants to conditions is the use of a matched-groups design . Using this design, participants in the various conditions are matched on the dependent variable or on some extraneous variable(s) prior the manipulation of the independent variable. This guarantees that these variables will not be confounded across the experimental conditions. For instance, if we want to determine whether expressive writing affects people’s health then we could start by measuring various health-related variables in our prospective research participants. We could then use that information to rank-order participants according to how healthy or unhealthy they are. Next, the two healthiest participants would be randomly assigned to complete different conditions (one would be randomly assigned to the traumatic experiences writing condition and the other to the neutral writing condition). The next two healthiest participants would then be randomly assigned to complete different conditions, and so on until the two least healthy participants. This method would ensure that participants in the traumatic experiences writing condition are matched to participants in the neutral writing condition with respect to health at the beginning of the study. If at the end of the experiment, a difference in health was detected across the two conditions, then we would know that it is due to the writing manipulation and not to pre-existing differences in health.

Within-Subjects Experiments

In a  within-subjects experiment , each participant is tested under all conditions. Consider an experiment on the effect of a defendant’s physical attractiveness on judgments of his guilt. Again, in a between-subjects experiment, one group of participants would be shown an attractive defendant and asked to judge his guilt, and another group of participants would be shown an unattractive defendant and asked to judge his guilt. In a within-subjects experiment, however, the same group of participants would judge the guilt of both an attractive  and  an unattractive defendant.

The primary advantage of this approach is that it provides maximum control of extraneous participant variables. Participants in all conditions have the same mean IQ, same socioeconomic status, same number of siblings, and so on—because they are the very same people. Within-subjects experiments also make it possible to use statistical procedures that remove the effect of these extraneous participant variables on the dependent variable and therefore make the data less “noisy” and the effect of the independent variable easier to detect. We will look more closely at this idea later in the book .  However, not all experiments can use a within-subjects design nor would it be desirable to do so.

One disadvantage of within-subjects experiments is that they make it easier for participants to guess the hypothesis. For example, a participant who is asked to judge the guilt of an attractive defendant and then is asked to judge the guilt of an unattractive defendant is likely to guess that the hypothesis is that defendant attractiveness affects judgments of guilt. This  knowledge could  lead the participant to judge the unattractive defendant more harshly because he thinks this is what he is expected to do. Or it could make participants judge the two defendants similarly in an effort to be “fair.”

Carryover Effects and Counterbalancing

The primary disadvantage of within-subjects designs is that they can result in order effects. An order effect  occurs when participants’ responses in the various conditions are affected by the order of conditions to which they were exposed. One type of order effect is a carryover effect. A  carryover effect  is an effect of being tested in one condition on participants’ behavior in later conditions. One type of carryover effect is a  practice effect , where participants perform a task better in later conditions because they have had a chance to practice it. Another type is a fatigue effect , where participants perform a task worse in later conditions because they become tired or bored. Being tested in one condition can also change how participants perceive stimuli or interpret their task in later conditions. This  type of effect is called a  context effect (or contrast effect) . For example, an average-looking defendant might be judged more harshly when participants have just judged an attractive defendant than when they have just judged an unattractive defendant. Within-subjects experiments also make it easier for participants to guess the hypothesis. For example, a participant who is asked to judge the guilt of an attractive defendant and then is asked to judge the guilt of an unattractive defendant is likely to guess that the hypothesis is that defendant attractiveness affects judgments of guilt. 

Carryover effects can be interesting in their own right. (Does the attractiveness of one person depend on the attractiveness of other people that we have seen recently?) But when they are not the focus of the research, carryover effects can be problematic. Imagine, for example, that participants judge the guilt of an attractive defendant and then judge the guilt of an unattractive defendant. If they judge the unattractive defendant more harshly, this might be because of his unattractiveness. But it could be instead that they judge him more harshly because they are becoming bored or tired. In other words, the order of the conditions is a confounding variable. The attractive condition is always the first condition and the unattractive condition the second. Thus any difference between the conditions in terms of the dependent variable could be caused by the order of the conditions and not the independent variable itself.

There is a solution to the problem of order effects, however, that can be used in many situations. It is  counterbalancing , which means testing different participants in different orders. The best method of counterbalancing is complete counterbalancing  in which an equal number of participants complete each possible order of conditions. For example, half of the participants would be tested in the attractive defendant condition followed by the unattractive defendant condition, and others half would be tested in the unattractive condition followed by the attractive condition. With three conditions, there would be six different orders (ABC, ACB, BAC, BCA, CAB, and CBA), so some participants would be tested in each of the six orders. With four conditions, there would be 24 different orders; with five conditions there would be 120 possible orders. With counterbalancing, participants are assigned to orders randomly, using the techniques we have already discussed. Thus, random assignment plays an important role in within-subjects designs just as in between-subjects designs. Here, instead of randomly assigning to conditions, they are randomly assigned to different orders of conditions. In fact, it can safely be said that if a study does not involve random assignment in one form or another, it is not an experiment.

A more efficient way of counterbalancing is through a Latin square design which randomizes through having equal rows and columns. For example, if you have four treatments, you must have four versions. Like a Sudoku puzzle, no treatment can repeat in a row or column. For four versions of four treatments, the Latin square design would look like:

A B C D
B C D A
C D A B
D A B C

You can see in the diagram above that the square has been constructed to ensure that each condition appears at each ordinal position (A appears first once, second once, third once, and fourth once) and each condition preceded and follows each other condition one time. A Latin square for an experiment with 6 conditions would by 6 x 6 in dimension, one for an experiment with 8 conditions would be 8 x 8 in dimension, and so on. So while complete counterbalancing of 6 conditions would require 720 orders, a Latin square would only require 6 orders.

Finally, when the number of conditions is large experiments can use  random counterbalancing  in which the order of the conditions is randomly determined for each participant. Using this technique every possible order of conditions is determined and then one of these orders is randomly selected for each participant. This is not as powerful a technique as complete counterbalancing or partial counterbalancing using a Latin squares design. Use of random counterbalancing will result in more random error, but if order effects are likely to be small and the number of conditions is large, this is an option available to researchers.

There are two ways to think about what counterbalancing accomplishes. One is that it controls the order of conditions so that it is no longer a confounding variable. Instead of the attractive condition always being first and the unattractive condition always being second, the attractive condition comes first for some participants and second for others. Likewise, the unattractive condition comes first for some participants and second for others. Thus any overall difference in the dependent variable between the two conditions cannot have been caused by the order of conditions. A second way to think about what counterbalancing accomplishes is that if there are carryover effects, it makes it possible to detect them. One can analyze the data separately for each order to see whether it had an effect.

When 9 Is “Larger” Than 221

Researcher Michael Birnbaum has argued that the  lack  of context provided by between-subjects designs is often a bigger problem than the context effects created by within-subjects designs. To demonstrate this problem, he asked participants to rate two numbers on how large they were on a scale of 1-to-10 where 1 was “very very small” and 10 was “very very large”.  One group of participants were asked to rate the number 9 and another group was asked to rate the number 221 (Birnbaum, 1999) [1] . Participants in this between-subjects design gave the number 9 a mean rating of 5.13 and the number 221 a mean rating of 3.10. In other words, they rated 9 as larger than 221! According to Birnbaum, this  difference  is because participants spontaneously compared 9 with other one-digit numbers (in which case it is  relatively large) and compared 221 with other three-digit numbers (in which case it is relatively  small).

Simultaneous Within-Subjects Designs

So far, we have discussed an approach to within-subjects designs in which participants are tested in one condition at a time. There is another approach, however, that is often used when participants make multiple responses in each condition. Imagine, for example, that participants judge the guilt of 10 attractive defendants and 10 unattractive defendants. Instead of having people make judgments about all 10 defendants of one type followed by all 10 defendants of the other type, the researcher could present all 20 defendants in a sequence that mixed the two types. The researcher could then compute each participant’s mean rating for each type of defendant. Or imagine an experiment designed to see whether people with social anxiety disorder remember negative adjectives (e.g., “stupid,” “incompetent”) better than positive ones (e.g., “happy,” “productive”). The researcher could have participants study a single list that includes both kinds of words and then have them try to recall as many words as possible. The researcher could then count the number of each type of word that was recalled. 

Between-Subjects or Within-Subjects?

Almost every experiment can be conducted using either a between-subjects design or a within-subjects design. This possibility means that researchers must choose between the two approaches based on their relative merits for the particular situation.

Between-subjects experiments have the advantage of being conceptually simpler and requiring less testing time per participant. They also avoid carryover effects without the need for counterbalancing. Within-subjects experiments have the advantage of controlling extraneous participant variables, which generally reduces noise in the data and makes it easier to detect a relationship between the independent and dependent variables.

A good rule of thumb, then, is that if it is possible to conduct a within-subjects experiment (with proper counterbalancing) in the time that is available per participant—and you have no serious concerns about carryover effects—this design is probably the best option. If a within-subjects design would be difficult or impossible to carry out, then you should consider a between-subjects design instead. For example, if you were testing participants in a doctor’s waiting room or shoppers in line at a grocery store, you might not have enough time to test each participant in all conditions and therefore would opt for a between-subjects design. Or imagine you were trying to reduce people’s level of prejudice by having them interact with someone of another race. A within-subjects design with counterbalancing would require testing some participants in the treatment condition first and then in a control condition. But if the treatment works and reduces people’s level of prejudice, then they would no longer be suitable for testing in the control condition. This difficulty is true for many designs that involve a treatment meant to produce long-term change in participants’ behavior (e.g., studies testing the effectiveness of psychotherapy). Clearly, a between-subjects design would be necessary here.

Remember also that using one type of design does not preclude using the other type in a different study. There is no reason that a researcher could not use both a between-subjects design and a within-subjects design to answer the same research question. In fact, professional researchers often take exactly this type of mixed methods approach.

Key Takeaways

  • Experiments can be conducted using either between-subjects or within-subjects designs. Deciding which to use in a particular situation requires careful consideration of the pros and cons of each approach.
  • Random assignment to conditions in between-subjects experiments or counterbalancing of orders of conditions in within-subjects experiments is a fundamental element of experimental research. The purpose of these techniques is to control extraneous variables so that they do not become confounding variables.
  • You want to test the relative effectiveness of two training programs for running a marathon.
  • Using photographs of people as stimuli, you want to see if smiling people are perceived as more intelligent than people who are not smiling.
  • In a field experiment, you want to see if the way a panhandler is dressed (neatly vs. sloppily) affects whether or not passersby give him any money.
  • You want to see if concrete nouns (e.g.,  dog ) are recalled better than abstract nouns (e.g.,  truth).
  • Birnbaum, M.H. (1999). How to show that 9>221: Collect judgments in a between-subjects design. Psychological Methods, 4 (3), 243-249. ↵

Creative Commons License

Share This Book

  • Increase Font Size

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

soccer ball in the goal

experimental psychology

Our editors will review what you’ve submitted and determine whether to revise the article.

  • American Psychological Association - Understanding Experimental Psychology

experimental psychology , a method of studying psychological phenomena and processes. The experimental method in psychology attempts to account for the activities of animals (including humans) and the functional organization of mental processes by manipulating variables that may give rise to behaviour; it is primarily concerned with discovering laws that describe manipulable relationships. The term generally connotes all areas of psychology that use the experimental method.

These areas include the study of sensation and perception , learning and memory , motivation , and biological psychology . There are experimental branches in many other areas, however, including child psychology , clinical psychology , educational psychology , and social psychology . Usually the experimental psychologist deals with normal, intact organisms; in biological psychology, however, studies are often conducted with organisms modified by surgery, radiation, drug treatment, or long-standing deprivations of various kinds or with organisms that naturally present organic abnormalities or emotional disorders. See also psychophysics .

American Psychological Association Logo

Experimental Psychology Studies Humans and Animals

Experimental psychologists use science to explore the processes behind human and animal behavior.

Understanding Experimental Psychology

Our personalities, and to some degree our life experiences, are defined by the way we behave. But what influences the way we behave in the first place? How does our behavior shape our experiences throughout our lives? 

Experimental psychologists are interested in exploring theoretical questions, often by creating a hypothesis and then setting out to prove or disprove it through experimentation. They study a wide range of behavioral topics among humans and animals, including sensation, perception, attention, memory, cognition and emotion.

Experimental Psychology Applied

Experimental psychologists use scientific methods to collect data and perform research. Often, their work builds, one study at a time, to a larger finding or conclusion. Some researchers have devoted their entire career to answering one complex research question. 

These psychologists work in a variety of settings, including universities, research centers, government agencies and private businesses. The focus of their research is as varied as the settings in which they work. Often, personal interest and educational background will influence the research questions they choose to explore. 

In a sense, all psychologists can be considered experimental psychologists since research is the foundation of the discipline, and many psychologists split their professional focus among research, patient care, teaching or program administration. Experimental psychologists, however, often devote their full attention to research — its design, execution, analysis and dissemination. 

Those focusing their careers specifically on experimental psychology contribute work across subfields . For example, they use scientific research to provide insights that improve teaching and learning, create safer workplaces and transportation systems, improve substance abuse treatment programs and promote healthy child development.

Pursuing a Career in Experimental Psychology

Related books

Deliberate Practice in Interpersonal Psychotherapy

APA Handbook of Health Psychology

Methodological Issues and Strategies, 5e

Essentials of Constructivist Critical Incident ...

How to Mix Methods

Psychology subfields

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Understanding the Milgram Experiment in Psychology

A closer look at Milgram's controversial studies of obedience

Isabelle Adam (CC BY-NC-ND 2.0) via Flickr

Factors That Influence Obedience

  • Ethical Concerns
  • Replications

How far do you think people would go to obey an authority figure? Would they refuse to obey if the order went against their values or social expectations? Those questions were at the heart of an infamous and controversial study known as the Milgram obedience experiments.

Yale University  psychologist   Stanley Milgram  conducted these experiments during the 1960s. They explored the effects of authority on obedience. In the experiments, an authority figure ordered participants to deliver what they believed were dangerous electrical shocks to another person. These results suggested that people are highly influenced by authority and highly obedient . More recent investigations cast doubt on some of the implications of Milgram's findings and even the results and procedures themselves. Despite its problems, the study has, without question, made a significant impact on psychology .

At a Glance

Milgram's experiments posed the question: Would people obey orders, even if they believed doing so would harm another person? Milgram's findings suggested the answer was yes, they would. The experiments have long been controversial, both because of the startling findings and the ethical problems with the research. More recently, experts have re-examined the studies, suggesting that participants were often coerced into obeying and that at least some participants recognized that the other person was just pretending to be shocked. Such findings call into question the study's validity and authenticity, but some replications suggest that people are surprisingly prone to obeying authority.

History of the Milgram Experiments

Milgram started his experiments in 1961, shortly after the trial of the World War II criminal Adolf Eichmann had begun. Eichmann’s defense that he was merely following instructions when he ordered the deaths of millions of Jews roused Milgram’s interest.

In his 1974 book "Obedience to Authority," Milgram posed the question, "Could it be that Eichmann and his million accomplices in the Holocaust were just following orders? Could we call them all accomplices?"

Procedure in the Milgram Experiment

The participants in the most famous variation of the Milgram experiment were 40 men recruited using newspaper ads. In exchange for their participation, each person was paid $4.50.

Milgram developed an intimidating shock generator, with shock levels starting at 15 volts and increasing in 15-volt increments all the way up to 450 volts. The many switches were labeled with terms including "slight shock," "moderate shock," and "danger: severe shock." The final three switches were labeled simply with an ominous "XXX."

Each participant took the role of a "teacher" who would then deliver a shock to the "student" in a neighboring room whenever an incorrect answer was given. While participants believed that they were delivering real shocks to the student, the “student” was a confederate in the experiment who was only pretending to be shocked.

As the experiment progressed, the participant would hear the learner plead to be released or even complain about a heart condition. Once they reached the 300-volt level, the learner would bang on the wall and demand to be released.

Beyond this point, the learner became completely silent and refused to answer any more questions. The experimenter then instructed the participant to treat this silence as an incorrect response and deliver a further shock.

Most participants asked the experimenter whether they should continue. The experimenter then responded with a series of commands to prod the participant along:

  • "Please continue."
  • "The experiment requires that you continue."
  • "It is absolutely essential that you continue."
  • "You have no other choice; you must go on."

Results of the Milgram Experiment

In the Milgram experiment, obedience was measured by the level of shock that the participant was willing to deliver. While many of the subjects became extremely agitated, distraught, and angry at the experimenter, they nevertheless continued to follow orders all the way to the end.

Milgram's results showed that 65% of the participants in the study delivered the maximum shocks. Of the 40 participants in the study, 26 delivered the maximum shocks, while 14 stopped before reaching the highest levels.

Why did so many of the participants in this experiment perform a seemingly brutal act when instructed by an authority figure? According to Milgram, there are some situational factors that can explain such high levels of obedience:

  • The physical presence of an authority figure dramatically increased compliance .
  • The fact that Yale (a trusted and authoritative academic institution) sponsored the study led many participants to believe that the experiment must be safe.
  • The selection of teacher and learner status seemed random.
  • Participants assumed that the experimenter was a competent expert.
  • The shocks were said to be painful, not dangerous.

Later experiments conducted by Milgram indicated that the presence of rebellious peers dramatically reduced obedience levels. When other people refused to go along with the experimenter's orders, 36 out of 40 participants refused to deliver the maximum shocks.

More recent work by researchers suggests that while people do tend to obey authority figures, the process is not necessarily as cut-and-dried as Milgram depicted it.

In a 2012 essay published in PLoS Biology , researchers suggested that the degree to which people are willing to obey the questionable orders of an authority figure depends largely on two key factors:

  • How much the individual agrees with the orders
  • How much they identify with the person giving the orders

While it is clear that people are often far more susceptible to influence, persuasion , and obedience than they would often like to be, they are far from mindless machines just taking orders. 

Another study that analyzed Milgram's results concluded that eight factors influenced the likelihood that people would progress up to the 450-volt shock:

  • The experimenter's directiveness
  • Legitimacy and consistency
  • Group pressure to disobey
  • Indirectness of proximity
  • Intimacy of the relation between the teacher and learner
  • Distance between the teacher and learner

Ethical Concerns in the Milgram Experiment

Milgram's experiments have long been the source of considerable criticism and controversy. From the get-go, the ethics of his experiments were highly dubious. Participants were subjected to significant psychological and emotional distress.

Some of the major ethical issues in the experiment were related to:

  • The use of deception
  • The lack of protection for the participants who were involved
  • Pressure from the experimenter to continue even after asking to stop, interfering with participants' right to withdraw

Due to concerns about the amount of anxiety experienced by many of the participants, everyone was supposedly debriefed at the end of the experiment. The researchers reported that they explained the procedures and the use of deception.

Critics of the study have argued that many of the participants were still confused about the exact nature of the experiment, and recent findings suggest that many participants were not debriefed at all.

Replications of the Milgram Experiment

While Milgram’s research raised serious ethical questions about the use of human subjects in psychology experiments , his results have also been consistently replicated in further experiments. One review further research on obedience and found that Milgram’s findings hold true in other experiments. In one study, researchers conducted a study designed to replicate Milgram's classic obedience experiment. The researchers made several alterations to Milgram's experiment.

  • The maximum shock level was 150 volts as opposed to the original 450 volts.
  • Participants were also carefully screened to eliminate those who might experience adverse reactions to the experiment.

The results of the new experiment revealed that participants obeyed at roughly the same rate that they did when Milgram conducted his original study more than 40 years ago.

Some psychologists suggested that in spite of the changes made in the replication, the study still had merit and could be used to further explore some of the situational factors that also influenced the results of Milgram's study. But other psychologists suggested that the replication was too dissimilar to Milgram's original study to draw any meaningful comparisons.

One study examined people's beliefs about how they would do compared to the participants in Milgram's experiments. They found that most people believed they would stop sooner than the average participants. These findings applied to both those who had never heard of Milgram's experiments and those who were familiar with them. In fact, those who knew about Milgram's experiments actually believed that they would stop even sooner than other people.

Another novel replication involved recruiting participants in pairs and having them take turns acting as either an 'agent' or 'victim.' Agents then received orders to shock the victim. The results suggest that only around 3.3% disobeyed the experimenter's orders.

Recent Criticisms and New Findings

Psychologist Gina Perry suggests that much of what we think we know about Milgram's famous experiments is only part of the story. While researching an article on the topic, she stumbled across hundreds of audiotapes found in Yale archives that documented numerous variations of Milgram's shock experiments.

Participants Were Often Coerced

While Milgram's reports of his process report methodical and uniform procedures, the audiotapes reveal something different. During the experimental sessions, the experimenters often went off-script and coerced the subjects into continuing the shocks.

"The slavish obedience to authority we have come to associate with Milgram’s experiments comes to sound much more like bullying and coercion when you listen to these recordings," Perry suggested in an article for Discover Magazine .

Few Participants Were Really Debriefed

Milgram suggested that the subjects were "de-hoaxed" after the experiments. He claimed he later surveyed the participants and found that 84% were glad to have participated, while only 1% regretted their involvement.

However, Perry's findings revealed that of the 700 or so people who took part in different variations of his studies between 1961 and 1962, very few were truly debriefed.

A true debriefing would have involved explaining that the shocks weren't real and that the other person was not injured. Instead, Milgram's sessions were mainly focused on calming the subjects down before sending them on their way.

Many participants left the experiment in a state of considerable distress. While the truth was revealed to some months or even years later, many were simply never told a thing.

Variations Led to Differing Results

Another problem is that the version of the study presented by Milgram and the one that's most often retold does not tell the whole story. The statistic that 65% of people obeyed orders applied only to one variation of the experiment, in which 26 out of 40 subjects obeyed.

In other variations, far fewer people were willing to follow the experimenters' orders, and in some versions of the study, not a single participant obeyed.

Participants Guessed the Learner Was Faking

Perry even tracked down some of the people who took part in the experiments, as well as Milgram's research assistants. What she discovered is that many of his subjects had deduced what Milgram's intent was and knew that the "learner" was merely pretending.

Such findings cast Milgram's results in a new light. It suggests that not only did Milgram intentionally engage in some hefty misdirection to obtain the results he wanted but that many of his participants were simply playing along.

An analysis of an unpublished study by Milgram's assistant, Taketo Murata, found that participants who believed they were really delivering a shock were less likely to obey, while those who did not believe they were actually inflicting pain were more willing to obey. In other words, the perception of pain increased defiance, while skepticism of pain increased obedience.

A review of Milgram's research materials suggests that the experiments exerted more pressure to obey than the original results suggested. Other variations of the experiment revealed much lower rates of obedience, and many of the participants actually altered their behavior when they guessed the true nature of the experiment.

Impact of the Milgram Experiment

Since there is no way to truly replicate the experiment due to its serious ethical and moral problems, determining whether Milgram's experiment really tells us anything about the power of obedience is impossible to determine.

So why does Milgram's experiment maintain such a powerful hold on our imaginations, even decades after the fact? Perry believes that despite all its ethical issues and the problem of never truly being able to replicate Milgram's procedures, the study has taken on the role of what she calls a "powerful parable."

Milgram's work might not hold the answers to what makes people obey or even the degree to which they truly obey. It has, however, inspired other researchers to explore what makes people follow orders and, perhaps more importantly, what leads them to question authority.

Recent findings undermine the scientific validity of the study. Milgram's work is also not truly replicable due to its ethical problems. However, the study has led to additional research on how situational factors can affect obedience to authority.

Milgram’s experiment has become a classic in psychology , demonstrating the dangers of obedience. The research suggests that situational variables have a stronger sway than personality factors in determining whether people will obey an authority figure. However, other psychologists argue that both external and internal factors heavily influence obedience, such as personal beliefs and overall temperament.

Milgram S.  Obedience to Authority: An Experimental View.  Harper & Row.

Russell N, Gregory R. The Milgram-Holocaust linkage: challenging the present consensus . State Crim J. 2015;4(2):128-153.

Russell NJC. Milgram's obedience to authority experiments: origins and early evolution . Br J Soc Psychol . 2011;50:140-162. doi:10.1348/014466610X492205

Haslam SA, Reicher SD. Contesting the "nature" of conformity: What Milgram and Zimbardo's studies really show . PLoS Biol. 2012;10(11):e1001426. doi:10.1371/journal.pbio.1001426

Milgram S. Liberating effects of group pressure . J Person Soc Psychol. 1965;1(2):127-234. doi:10.1037/h0021650

Haslam N, Loughnan S, Perry G. Meta-Milgram: an empirical synthesis of the obedience experiments .  PLoS One . 2014;9(4):e93927. doi:10.1371/journal.pone.0093927

Perry G. Deception and illusion in Milgram's accounts of the obedience experiments . Theory Appl Ethics . 2013;2(2):79-92.

Blass T. The Milgram paradigm after 35 years: some things we now know about obedience to authority . J Appl Soc Psychol. 1999;29(5):955-978. doi:10.1111/j.1559-1816.1999.tb00134.x

Burger J. Replicating Milgram: Would people still obey today? . Am Psychol . 2009;64(1):1-11. doi:10.1037/a0010932

Elms AC. Obedience lite . American Psychologist . 2009;64(1):32-36. doi:10.1037/a0014473

Miller AG. Reflections on “replicating Milgram” (Burger, 2009) . American Psychologist . 2009;64(1):20-27. doi:10.1037/a0014407

Grzyb T, Dolinski D. Beliefs about obedience levels in studies conducted within the Milgram paradigm: Better than average effect and comparisons of typical behaviors by residents of various nations .  Front Psychol . 2017;8:1632. doi:10.3389/fpsyg.2017.01632

Caspar EA. A novel experimental approach to study disobedience to authority .  Sci Rep . 2021;11(1):22927. doi:10.1038/s41598-021-02334-8

Haslam SA, Reicher SD, Millard K, McDonald R. ‘Happy to have been of service’: The Yale archive as a window into the engaged followership of participants in Milgram’s ‘obedience’ experiments . Br J Soc Psychol . 2015;54:55-83. doi:10.1111/bjso.12074

Perry G, Brannigan A, Wanner RA, Stam H. Credibility and incredulity in Milgram’s obedience experiments: A reanalysis of an unpublished test . Soc Psychol Q . 2020;83(1):88-106. doi:10.1177/0190272519861952

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

IMAGES

  1. A-Level Psychology

    psychology types of experiments

  2. PPT

    psychology types of experiments

  3. PPT

    psychology types of experiments

  4. Types of Experiment

    psychology types of experiments

  5. PPT

    psychology types of experiments

  6. Types of experiments

    psychology types of experiments

COMMENTS

  1. Experimental Method In Psychology

    There are three types of experiments you need to know: 1. Lab Experiment. A laboratory experiment in psychology is a research method in which the experimenter manipulates one or more independent variables and measures the effects on the dependent variable under controlled conditions. A laboratory experiment is conducted under highly controlled ...

  2. Types of Experiment: Overview

    Experimental (Laboratory, Field & Natural) & Non experimental ( correlations, observations, interviews, questionnaires and case studies). All the three types of experiments have characteristics in common. They all have: there will be at least two conditions in which participants produce data. Note - natural and quasi experiments are often ...

  3. Experimental Design: Types, Examples & Methods

    Three types of experimental designs are commonly used: 1. Independent Measures. Independent measures design, also known as between-groups, is an experimental design where different participants are used in each condition of the independent variable. This means that each condition of the experiment includes a different group of participants.

  4. 6.1 Experiment Basics

    Experiments have two fundamental features. The first is that the researchers manipulate, or systematically vary, the level of the independent variable. The different levels of the independent variable are called conditions. For example, in Darley and Latané's experiment, the independent variable was the number of witnesses that participants ...

  5. 6.2 Experimental Design

    Random assignment is a method for assigning participants in a sample to the different conditions, and it is an important element of all experimental research in psychology and other fields too. In its strictest sense, random assignment should meet two criteria. One is that each participant has an equal chance of being assigned to each condition ...

  6. How the Experimental Method Works in Psychology

    Types of Experiments . There are a few different types of experiments that researchers might use when studying psychology. Each has pros and cons depending on the participants being studied, the hypothesis, and the resources available to conduct the research.

  7. Overview of the Types of Research in Psychology

    Psychology research can usually be classified as one of three major types. 1. Causal or Experimental Research. When most people think of scientific experimentation, research on cause and effect is most often brought to mind. Experiments on causal relationships investigate the effect of one or more variables on one or more outcome variables.

  8. Research Methods In Psychology

    Olivia Guy-Evans, MSc. Research methods in psychology are systematic procedures used to observe, describe, predict, and explain behavior and mental processes. They include experiments, surveys, case studies, and naturalistic observations, ensuring data collection is objective and reliable to understand and explain psychological phenomena.

  9. Experiment Basics

    As we saw earlier in the book, an experiment is a type of study designed specifically to answer the question of whether there is a causal relationship between two variables. In other words, whether changes in an independent variable cause changes in a dependent variable. Experiments have two fundamental features.

  10. Experiment Basics

    Experiments have two fundamental features. The first is that the researchers manipulate, or systematically vary, the level of the independent variable. The different levels of the independent variable are called conditions. For example, in Darley and Latané's experiment, the independent variable was the number of witnesses that participants ...

  11. 19+ Experimental Design Examples (Methods + Types)

    1) True Experimental Design. In the world of experiments, the True Experimental Design is like the superstar quarterback everyone talks about. Born out of the early 20th-century work of statisticians like Ronald A. Fisher, this design is all about control, precision, and reliability.

  12. Experimental Methods In Psychology

    There are three experimental methods in the field of psychology; Laboratory, Field and Natural Experiments. Each of the experimental methods holds different characteristics in relation to; the manipulation of the IV, the control of the EVs and the ability to accurately replicate the study in exactly the same way. Method. Description of Method.

  13. How Does Experimental Psychology Study Behavior?

    The experimental method in psychology helps us learn more about how people think and why they behave the way they do. Experimental psychologists can research a variety of topics using many different experimental methods. Each one contributes to what we know about the mind and human behavior. 4 Sources.

  14. Experimental Psychology: 10 Examples & Definition

    Types of Research Methodologies in Experimental Psychology . Researchers utilize several different types of research methodologies since the early days of Wundt (1832-1920).. 1. The Experiment. The experiment involves the researcher manipulating the level of one variable, called the Independent Variable (IV), and then observing changes in another variable, called the Dependent Variable (DV).

  15. 5.2 Experimental Design

    Random assignment is a method for assigning participants in a sample to the different conditions, and it is an important element of all experimental research in psychology and other fields too. In its strictest sense, random assignment should meet two criteria. One is that each participant has an equal chance of being assigned to each condition ...

  16. Experimental psychology

    experimental psychology, a method of studying psychological phenomena and processes.The experimental method in psychology attempts to account for the activities of animals (including humans) and the functional organization of mental processes by manipulating variables that may give rise to behaviour; it is primarily concerned with discovering laws that describe manipulable relationships.

  17. Experimental psychology

    Experimental psychology refers to work done by those who apply experimental methods to psychological study and the underlying processes. Experimental psychologists employ human participants and animal subjects to study a great many topics, including (among others) sensation, perception, memory, cognition, learning, motivation, emotion; developmental processes, social psychology, and the neural ...

  18. 11+ Psychology Experiment Ideas (Goals + Methods)

    The Marshmallow Test. One of the most talked-about experiments of the 20th century was the Marshmallow Test, conducted by Walter Mischel in the late 1960s at Stanford University.. The goal was simple but profound: to understand a child's ability to delay gratification and exercise self-control.. Children were placed in a room with a marshmallow and given a choice: eat the marshmallow now or ...

  19. Experimental Research in Psychology

    Experimental research is a scientific method of gathering data whereby the one conducting the research is able to manipulate the independent variable. Experimental research psychology is the act ...

  20. Conducting an Experiment in Psychology

    Like other sciences, psychology utilizes the scientific method and bases conclusions upon empirical evidence. When conducting an experiment, it is important to follow the seven basic steps of the scientific method: Ask a testable question. Define your variables.

  21. Experimental Psychology Studies Humans and Animals

    Experimental psychologists are interested in exploring theoretical questions, often by creating a hypothesis and then setting out to prove or disprove it through experimentation. They study a wide range of behavioral topics among humans and animals, including sensation, perception, attention, memory, cognition and emotion.

  22. What are the different types of psychological experiment?

    Quasi-experiments: These are similar to laboratory experiments, but the researcher cannot randomly assign participants to different groups due to ethical or practical reasons. Observational studies: These involve observing and recording the behavior of participants without manipulating any variables. Correlational studies: These examine the ...

  23. 6 Classic Psychology Experiments

    Some of the most famous examples include Milgram's obedience experiment and Zimbardo's prison experiment. Explore some of these classic psychology experiments to learn more about some of the best-known research in psychology history. 1.

  24. Milgram Experiment: Overview, History, & Controversy

    Milgram's experiment has become a classic in psychology, demonstrating the dangers of obedience. The research suggests that situational variables have a stronger sway than personality factors in determining whether people will obey an authority figure.