logo

Patient Case #1: 19-Year-Old Male With ADHD

  • Craig Chepke, MD, DFAPA, FAPA
  • Andrew J. Cutler, MD

Stephen Faraone, PhD, presents the case of a 19-year-old male with ADHD.

adhd case study

EP: 1 . Prevalence of Adult ADHD

Ep: 2 . diagnosis and management of adults adhd compared to children.

adhd case study

EP: 3 . Diagnosing Adults With ADHD Based on Patient Presentation

adhd case study

EP: 4 . Unmet Needs in the Treatment of Adult ADHD

adhd case study

EP: 5 . Efficacy and Safety of Treatment Options Utilized in Adult ADHD

Ep: 6 . future of adult adhd, ep: 7 . patient case #1: 19-year-old male with adhd.

adhd case study

EP: 8 . Patient Case #1: Prompting an ADHD Consultation

Ep: 9 . patient case #1: differentiating between adhd and other psychiatric comorbidities, ep: 10 . patient case #1: co-managing adhd, ep: 11 . patient case #1: dealing with treatment delay in adult adhd, ep: 12 . patient case #2: a 23-year-old patient with adhd, ep: 13 . patient case #2: impressions and challenges in adult adhd, ep: 14 . patient case #2: dealing with comorbidities in adult adhd, ep: 15 . patient case #2: addressing non-adherence and stigma of adult adhd, ep: 16 . patient case #2: importance of an integrative approach in adult adhd, ep: 17 . case 3: 24-year-old patient with adhd, ep: 18 . case 3: treatment goals in adult adhd, ep: 19 . case 3: factors driving treatment selection in adult adhd, ep: 20 . implications of pharmacogenetic testing in adhd, ep: 21 . novel drug delivery systems in adhd and take-home messages.

Stephen Faraone, PhD: That's a good one, yes, I'd like that, it's a very creative one, thank you, thank you. OK, let's move on to the case presentation. This first patient is a 19-year-old male, who presented to his psychiatrist after being referred by his primary care provider, PCP for ADHD consultation, during the interview, he noted he was a sophomore in college and is taking 17 credits. This semester chief complaint includes a lack of ability to focus in class as well as struggling with time management. He complained that every time he's in class, he finds himself thinking about many other responsibilities he must complete at home and feels that he cannot control it. He has had this complaint for the past 6 years, but refused to seek help, because he feared being put on medication. In high school, he was assigned a counselor who taught him behavior techniques such as making a schedule, and going on walks, which he found to be very effective. However, these techniques were less effective once he started college. His symptoms tend to get worse before exams, he often feels very anxious, leading to horrible performance on exams, he claimed that he has been this anxious since he took his LSAT tests. Currently, he is on academic probation, and is not allowed to be part of the Student Work Program, which was his only source of income. The patient has no history of substance abuse, no history of taking any medications for his symptoms, and no history of suicidal thoughts.

Transcript edited for clarity

ADHD

WHO Addresses Gaps in Mental Health Care Delivery and Quality

Treating ADHD in Children: Concerns, Controversies, Safety Measures

Treating ADHD in Children: Concerns, Controversies, Safety Measures

Do physical health conditions in childhood affect ADHD symptoms at age 17 years? Researchers investigated these associations in a large cohort study.

Childhood Physical Health and ADHD Symptoms

ADHD in Older Adults

ADHD in Older Adults

A study assessed the associations between the use of ADHD medications and CVD over the course of 14 years. Here's what the investigators found.

Longitudinal Study Looks at Risk of Cardiovascular Disease With Long-Term ADHD Medication Use

Here are highlights from the week in Psychiatric Times.

The Week in Review: May 20-24

2 Commerce Drive Cranbury, NJ 08512

609-716-7777

adhd case study

Image

  • Presidential Message
  • Nominations/Elections
  • Past Presidents
  • Member Spotlight
  • Fellow List
  • Fellowship Nominations
  • Current Awardees
  • Award Nominations
  • SCP Mentoring Program
  • SCP Book Club
  • Pub Fee & Certificate Purchases
  • LEAD Program
  • Introduction
  • Find a Treatment
  • Submit Proposal
  • Dissemination and Implementation
  • Diversity Resources
  • Graduate School Applicants
  • Student Resources
  • Early Career Resources
  • Principles for Training in Evidence-Based Psychology
  • Advances in Psychotherapy
  • Announcements
  • Submit Blog
  • Student Blog
  • The Clinical Psychologist
  • CP:SP Journal
  • APA Convention
  • SCP Conference

CASE STUDY Jen (attention-deficit/hyperactivity disorder)

Case study details.

Jen is a 29 year-old woman who presents to your clinic in distress. In the interview she fidgets and has a hard time sitting still. She opens up by telling you she is about to be fired from her job. In addition, she tearfully tells you that she is in a major fight with her husband of 1 year because he is ready to have children but she fears that she is “too disorganized to be a good mother.” As you break down some of the processes that have led to her current crises, you learn that she has a hard time with time management and tends to be disorganized. She chronically misplaces everyday objects like her keys and runs late to appointments. Although she wants her work to be perfect, she is prone to making careless mistakes. The struggle for perfection makes starting a new task feel very stressful, leading her to procrastinate starting in the first place. As a consequence, she has recently received a number of warnings from her boss related to missing deadlines for assignments and errors in her work, which has led to her acute fear of being fired. As her performance at work has plummeted and she has grown increasingly anxious and doubting of herself, she has grown more pessimistic about starting a family. You learn that she received extra time for test taking in school as a child but never had any formal neuropsychological testing.  With Jen’s permission, you conduct additional structured assessments, including collecting collateral information from her fiancé, and conclude that she has adult ADHD.

  • Concentration Difficulties
  • Impulsivity

Diagnoses and Related Treatments

1. attention deficit hyperactivity disorder (adults).

Thank you for supporting the Society of Clinical Psychology. To enhance our membership benefits, we are requesting that members fill out their profile in full. This will help the Division to gather appropriate data to provide you with the best benefits. You will be able to access all other areas of the website, once your profile is submitted. Thank you and please feel free to email the Central Office at  [email protected] if you have any questions

Attention Deficit Hyperactivity Disorder (ADHD): A Case Study and Exploration of Causes and Interventions

  • First Online: 02 March 2019

Cite this chapter

adhd case study

  • Bijal Chheda-Varma 5  

3372 Accesses

The male to female ratio of ADHD is 4:1. This chapter on ADHD provides a wide perspective on understanding, diagnosis and treatment for ADHD. It relies on a neurodevelopmental perspective of ADHD. Signs and symptoms of ADHD are described through the DSM-V criteria. A case example (K, a patient of mine) is illustrated throughout the chapter to provide context and illustrations, and demonstrates the relative merits of “doing” (i.e. behavioural interventions) compared to cognitive insight, or medication alone. Finally, a discussion of the Cognitive Behavioral Modification Model (CBM) for the treatment of ADHD provides a snapshot of interventions used by clinicians providing psychological help.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

adhd case study

Psychological Treatments in Adult ADHD: A Systematic Review

adhd case study

Attention-Deficit Hyperactivity Disorder

adhd case study

ADHD and Its Therapeutics

Alderson, R. M., Hudec, K. L., Patros, C. H. G., & Kasper, L. J. (2013). Working memory deficits in adults with attention-deficit/hyperactivity disorder (ADHD): An examination of central executive and storage/rehearsal processes. Journal of Abnormal Psychology, 122 (2), 532–541. http://dx.doi.org/10.1037/a0031742 .

Arcia, E., & Conners, C. K. (1998). Gender differences in ADHD? Journal of Developmental and Behavioral Pediatrics, 19 (2), 77–83. http://dx.doi.org/10.1097/00004703-199804000-00002 .

Barkley, R. A. (1990). Attention deficit hyperactivity disorder: A handbook for diagnosis and treatment . New York: Guildford.

Google Scholar  

Barkley, R. A. (1997). ADHD and the nature of self-control . New York: Guilford Press.

Barkley, R. A. (2000). Commentary on the multimodal treatment study of children with ADHD. Journal of Abnormal Child Psychology, 28 (6), 595–599. https://doi.org/10.1023/A:1005139300209 .

Article   Google Scholar  

Barkley, R., Knouse, L., & Murphy, K. Correction to Barkley et al. (2011). Psychological Assessment [serial online]. June 2011; 23 (2), 446. Available from: PsycINFO, Ipswich, MA. Accessed December 11, 2014.

Beck, A. T. (1976). Cognitive therapy and the emotional disorders . New York, NY: International Universities Press.

Brown, T. E. (2005). Attention deficit disorder: The unfocused mind in children and adults . New Haven, CT: Yale University Press.

Brown, T. (2013). A new understanding of ADHD in children and adults . New York: Routledge.

Chacko, A., Kofler, M., & Jarrett, M. (2014). Improving outcomes for youth with ADHD: A conceptual framework for combined neurocognitive and skill-based treatment approaches. Clinical Child and Family Psychology Review . https://doi.org/10.1007/s10567-014-0171-5 .

Chronis, A., Jones, H. A., Raggi, V. L. (2006, August). Evidence-based psychosocial treatments for children and adolescents with attention-deficit/hyperactivity disorder. Clinical Psychology Review, 26 (4), 486–502. ISSN 0272-7358. http://dx.doi.org/10.1016/j.cpr.2006.01.002 .

Curatolo, P., D’Agati, E., & Moavero, R. (2010). The neurobiological basis of ADHD. Italian Journal of Pediatrics, 36 , 79. http://doi.org/10.1186/1824-7288-36-79 . http://www.sciencedirect.com/science/article/pii/S0272735806000031 .

Curtis, D. (2010). ADHD symptom severity following participation in a pilot, 10-week, manualized, family-based behavioral intervention. Child & Family Behavior Therapy, 32 , 231–241. https://doi.org/10.1080/07317107.2010.500526 .

De Young, R. (2014). Using the Stroop effect to test our capacity to direct attention: A tool for navigating urgent transitions. http://www.snre.umich.edu/eplab/demos/st0/stroopdesc.html .

Depue, B. E., Orr, J. M., Smolker, H. R., Naaz, F., & Banich, M. T. (2015). The organization of right prefrontal networks reveals common mechanisms of inhibitory regulation across cognitive, emotional, and motor processes. Cerebral Cortex (New York, NY: 1991), 26 (4), 1634–1646.

D’Onofrio, B. M., Van Hulle, C. A., Waldman, I. D., Rodgers, J. L., Rathouz, P. J., & Lahey, B. B. (2007). Causal inferences regarding prenatal alcohol exposure and childhood externalizing problems. Archives of General Psychiatry, 64, 1296–1304 [PubMed].

DSM-V. (2013). Diagnostic and statistical manual of mental disorders . American Psychological Association.

Eisenberg, D., & Campbell, B. (2009). Social context matters. The evolution of ADHD . http://evolution.binghamton.edu/evos/wp-content/uploads/2012/02/eisenberg-and-campbell-2011-the-evolution-of-ADHD-artice-in-SF-Medicine.pdf .

Gizer, I. R., Ficks, C., & Waldman, I. D. (2009). Hum Genet, 126 , 51. https://doi.org/10.1007/s00439-009-0694-x .

Hinshaw, S. P., & Scheffler, R. M. (2014). The ADHD explosion: Myths, medication, money, and today’s push for performance . New York: Oxford University Press.

Kapalka, G. M. (2008). Efficacy of behavioral contracting with students with ADHD . Boston: American Psychological Association.

Kapalka, G. (2010). Counselling boys and men with ADHD . New York: Routledge, Taylor & Francis Group.

Book   Google Scholar  

Knouse, L. E., et al. (2008, October). Recent developments in psychosocial treatments for adult ADHD. National Institute of Health, 8 (10), 1537–1548. https://doi.org/10.1586/14737175.8.10.1537 .

Laufer, M., Denhoff, E., & Solomons, G. (1957). Hyperkinetic impulse disorder in children’s behaviour problem. Psychosomatic Medicine, 19, 38–49.

Raggi, V. L., & Chronis, A. M. (2006). Interventions to address the academic impairment of children and adolescents with ADHD. Clinical Child and Family Psychology Review, 9 (2), 85–111. https://doi.org/10.1007/s10567-006-0006-0 .

Ramsay, J. R. (2011). Cognitive behavioural therapy for adult ADHD. Journal of Clinical Outcomes Management, 18 (11), 526–536.

Retz, W., & Retz-Junginger, P. (2014). Prediction of methylphenidate treatment outcome in adults with attention deficit/hyperactivity disorder (ADHD). European Archives of Psychiatry and Clinical Neuroscience . https://doi.org/10.1007/s00406-014-0542-4 .

Safren, S. A., Otto, M. W., Sprich, S., Winett, C. L., Wilens, T. E., & Biederman, J. (2005, July). Cognitive-behavioral therapy for ADHD in medication-treated adults with continued symptoms. Behaviour Research and Therapy, 43 (7), 831–842. ISSN 0005-7967. http://dx.doi.org/10.1016/j.brat.2004.07.001 . http://www.sciencedirect.com/science/article/pii/S0005796704001366 .

Sibley, M. H., Kuriyan, A. B., Evans, S. W., Waxmonsky, J. G., & Smith, B. H. (2014). Pharmacological and psychosocial treatments for adolescents with ADHD: An updated systematic review of the literature. Clinical Psychology Review, 34 (3), 218–232. https://doi.org/10.1016/j.cpr.2014.02.001 .

Simchon, Y., Weizman, A., & Rehavi, M. (2010). The effect of chronic methylphenidate administration on presynaptic dopaminergic parameters in a rat model for ADHD. European Neuropsychopharmacology, 20 (10), 714–720. ISSN 0924-977X. https://doi.org/10.1016/j.euroneuro.2010.04.007 . http://www.sciencedirect.com/science/article/pii/S0924977X10000891 .

Swanson, J. M., & Castellanos, F. X. (2002). Biological bases of ADHD: Neuroanatomy, genetics, and pathophysiology. In P. S. Jensen & J. R. Cooper (Eds.), Attention deficit hyperactivity disorder: State if the science, best practices (pp. 7-1–7-20). Kingston, NJ: Civic Research Institute.

Toplak, M. E., Connors, L., Shuster, J., Knezevic, B., & Parks, S. (2008, June). Review of cognitive, cognitive-behavioral, and neural-based interventions for attention-deficit/hyperactivity disorder (ADHD). Clinical Psychology Review, 28 (5), 801–823. ISSN 0272-7358. http://dx.doi.org/10.1016/j.cpr.2007.10.008 . http://www.sciencedirect.com/science/article/pii/S0272735807001870 .

Wu, J., Xiao, H., Sun, H., Zou, L., & Zhu, L.-Q. (2012). Role of dopamine receptors in ADHD: A systematic meta-analysis. Molecular Neurobiology, 45 , 605–620. https://doi.org/10.1007/s12035-012-8278-5 .

Download references

Author information

Authors and affiliations.

Foundation for Clinical Interventions, London, UK

Bijal Chheda-Varma

You can also search for this author in PubMed   Google Scholar

Editor information

Editors and affiliations.

UCL, London, UK

John A. Barry

Norfolk and Suffolk NHS Foundation Trust, Wymondham, UK

Roger Kingerlee

Change, Grow, Live, Dagenham/Southend, Essex, UK

Martin Seager

Community Interest Company, Men’s Minds Matter, London, UK

Luke Sullivan

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s)

About this chapter

Chheda-Varma, B. (2019). Attention Deficit Hyperactivity Disorder (ADHD): A Case Study and Exploration of Causes and Interventions. In: Barry, J.A., Kingerlee, R., Seager, M., Sullivan, L. (eds) The Palgrave Handbook of Male Psychology and Mental Health. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-04384-1_15

Download citation

DOI : https://doi.org/10.1007/978-3-030-04384-1_15

Published : 02 March 2019

Publisher Name : Palgrave Macmillan, Cham

Print ISBN : 978-3-030-04383-4

Online ISBN : 978-3-030-04384-1

eBook Packages : Behavioral Science and Psychology Behavioral Science and Psychology (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

American Psychological Association Logo

An ADHD diagnosis in adulthood comes with challenges and benefits

For adults, undiagnosed ADHD symptoms can lead to chronic stress and low self-esteem

Vol. 54 No. 2 Print version: page 52

  • Perception and Attention

adult woman outside leaning on a wood fence

When Terry Matlen, a clinical social worker, was in her 40s, she was diagnosed with ADHD. “My entire life, there was something off,” Matlen said. This included significant anxiety as well as academic and behavioral issues, all of which started at a young age. Although Matlen was initially quite skeptical of her diagnosis, going so far as to seek out a second and third opinion, she eventually came to accept that she had ADHD.

“This makes sense now. I can’t concentrate; I can’t finish projects; my house is a disaster; I can’t get dinner on the table,” Matlen said. “Anxiety doesn’t explain the extent of my disorganization.”

Matlen was diagnosed in the mid-1990s, when many specialists still didn’t understand what ADHD looked like in either girls or adults. Matlen didn’t look like the stereotypical little boy who couldn’t sit still. Although she struggled a lot with her symptoms, which included being unable to pay attention in class or stay organized, no one recognized that the underlying issue was undiagnosed ADHD.

ADHD has three subtypes, which include hyperactive ­impulsive, primarily inattentive, and combined. With inattentive type, the restlessness is internal. “A lot of kids with inattentive ADHD get overlooked,” said Peter Jaksa, PhD, a psychologist who specializes in treating ADHD. “The behavioral problems get more attention.” For many with inattentive ADHD, they are the ones daydreaming in class rather than paying attention. However, since they aren’t being disruptive, their symptoms can easily go unnoticed.

This is especially true with women and girls, as ADHD is more often diagnosed and treated in males than females, due to differences in how symptoms look ( Skogli, E. W., et al., BMC Psychiatry , Vol. 13, 2013 ). As a number of studies show, untreated ADHD leads to adverse effects on long-term academic performance ( Arnold, L. E., et al., Journal of Attention Disorders , Vol. 24, No. 1, 2015 ). In addition, a number of studies show that those with untreated ADHD fare worse than those with treated ADHD or no ADHD ( Harpin, V., et al., Journal of Attention Disorders , Vol. 20, No. 4, 2013 ).

The process of diagnosing adults

For symptoms to be considered ADHD, they must have started before the age of 12. This makes diagnosing adults more complicated, as the process requires creating a timeline of when symptoms first appeared. In addition to talking with his patient, Jaksa finds that it can be helpful to look at old report cards, where comments such as “Struggles to pay attention during class,” “Often forgets homework at home,” or “Isn’t living up to potential” can help give him a sense of when symptoms started appearing.

“We have a much longer history to look at,” he said. “The best diagnostic indicator for ADHD is not test scores; it’s history.” For the diagnostic process, Jaksa conducts a very structured interview—one that delves into their social, emotional, and academic history. If possible, he interviews a family member who can provide perspective on childhood behaviors.

Jaksa said adults often have comorbidities, such as anxiety and depression. With these comorbidities, untreated ADHD can either cause them or make them worse. “When ADHD is not diagnosed—when it’s not treated effectively—over time, chronic stress and frustration lead to anxiety,” Jaksa said. “This has a very negative impact on self-esteem. It’s very common to see adults with ADHD grow up with a strong sense of underachievement.” Continually hearing messages like “try harder” or “you should be doing better,” can get internalized and lead to anxiety and/or depression, Jaksa said.

In some patients, providers may recognize signs right away, such as tardiness, forgetting valuable personal items, or fidgeting while in the waiting room. Although no one symptom can be definitive, all of this added up can paint a picture of what the symptoms look like, how long they have been going on, and the degree of functional impairment. “My mind is shifting constantly,” said Lisa Green, an oncology nurse who was diagnosed with ADHD in her 40s.

It also helps the diagnosis if there is a family history of ADHD, as it is a highly heritable disorder. For Matlen, the process of seeking a diagnosis for her younger daughter was when she realized that she also had the disorder. “It’s pretty well established that ADHD is about 70% to 80% heritable,” said Eugene Arnold, a professor emeritus at The Ohio State University whose research focuses on ADHD.

Difficulties with diagnosing

One of the challenging aspects of diagnosing an adult is the presence of other comorbidities, some of which can mimic ADHD symptoms. These comorbidities can either be due to a separate disorder or be caused by the ADHD. For many people with ADHD, Matlen included, the lack of early treatment, combined with symptoms of ADHD, can lead to developing mood disorders such as anxiety and depression. If their underlying ADHD is not diagnosed and treated, treatment for their other comorbidities is often ineffective. ( Ginsberg, Y., et al., Primary Care Companion for CNS Disorders , Vol. 16, No. 3, 2014 ). “My anxiety is triggered a lot by being disorganized, by not being prepared, by being constantly overwhelmed,” Matlen said.

There’s also an overlap between ADHD and autism spectrum disorder (ASD). “About half of people with autism also have ADHD,” Arnold said. With ADHD being more common than ASD, the reverse is not true—with a lower proportion of people with ADHD also having ASD.

Jon Stevens, MD, a psychiatrist based in Houston, compares the onset of symptoms as being like layers of an onion: The deepest layer is developmental disorders, such as autism; the second deepest layer is ADHD, for which the symptoms can be observed quite early, followed by mood disorders such as anxiety and depression, which can develop as early as middle or high school. Finally, the outermost layer is schizophrenia and bipolar disorder, which tend to emerge during college years or a little later.

“These conditions, in my experience, develop inside out,” Stevens said. Symptoms of developmental disorders such as autism show up the earliest, while ADHD symptoms will show up a little later. Some of the more noticeable symptoms, such as hyperactivity, parents will start noticing early on, while other symptoms, such as inattentiveness, will start becoming more noticeable once children start school.

Another major difference is the persistence of symptoms. “If you think about anxiety and depression, those disorders and the symptoms that flow from them, tend to be more situational and more cyclic,” said Will Canu, PhD, a professor of psychology at Appalachian State University. With a disorder like ADHD, the symptoms are always there, with the caveat that they can be exacerbated under certain conditions, such as during times of stress or from anxiety or depression.

The effect of Covid -19 on adults with ADHD

The Covid -19 pandemic was particularly hard on those with ADHD because of the disruption in routine. Routines are important for people with ADHD, as they can help with executive functioning issues, such as staying organized and staying on track. However, developing and maintaining these routines is harder, which means that major changes in working and home life have been particularly hard to navigate.

[ Related:   Helping adults and children with ADHD in a pandemic world ]

In Stevens’ clinical practice, he has seen patients cope with stress from the pandemic in a number of ways. For adults who were actively receiving treatment, the shift to working from home offered some benefits. “Provided they kept taking their medication, they generally fared well,” he said. “A lot of my patients found [working from home] more helpful, because there were fewer distractions of the water cooler chatter or someone coming to your cubicle.” The big exception was if patients started self-medicating with alcohol or other substances.

Constant upheaval, combined with childcare disruptions, created extremely difficult conditions for women with undiagnosed ADHD and young children, Canu said. In addition to major disruptions in routines, the unpredictability of school and daycare closures has been particularly challenging for parents with young children.

The advantage of diagnosis and treatment

For many patients whose symptoms were overlooked during their early years, diagnosis can be both life changing, and bittersweet. In a 2020 study, researchers compared 444 adults with diagnosed ADHD with 1,055 adults who exhibited symptoms but had no formal diagnosis. After matching for age and gender, those with a diagnosis reported a higher quality of life, which included metrics for work productivity, self-esteem, and functional performance ( Pawaskar, M., et al., Journal of Attention Disorders , Vol. 24, No. 1, 2020 ).

Canu said being diagnosed helps people understand themselves better, which includes gaining perspective on the reasons for some of their struggles. “That can change the way they feel about themselves, which can cascade into a lot of positive things,” Canu said.

Treatments include behavioral strategies for managing their symptoms, for which working with an expert, such as a psychologist who is experienced in treating patients with ADHD, can be invaluable. This includes cognitive behavioral therapy for ADHD, which focuses on managing executive functioning difficulties such as time management, organizational skills, impulse control, and emotional self-regulation.

When necessary, medication can also help manage symptoms. For psychologists who do not have prescribing privileges, this can mean working in concert with integrated care teams, primary-care providers, or psychiatrists. For many patients, their most effective treatment regimen is a combination of behavioral strategies and medication. “With that in place, if it’s effective, they’re able to function better,” Canu said.

In a 2014 study, 250 previously nonmedicated adults who received the ADHD medication methylphenidate for the first time were followed for a full year, with those patients who either couldn’t tolerate or didn’t experience relief in symptoms switched to either an alternate stimulant medication or the nonstimulant medication atomoxetine. Compared with their peers who discontinued medication, those who were still on medication had reduced severity of symptoms ( Fredriksen, M., et al., European Neuropsychopharmacology , Vol. 24, No. 12, 2014 ). “Medication slows me down enough to breathe and to think,” Green said.

Dealing with late-life diagnosis

Receiving a diagnosis as an adult can often bring up some complicated emotions, whether it’s grief over lost opportunities, relief at finally understanding certain struggles, or anger over symptoms having been overlooked for so long. For Matlen, she felt an overwhelming sense of relief. “There was a concrete explanation,” she said.

For others, receiving a diagnosis later in life can lead to regrets about lost opportunities, whether it was failing out of school, struggling to establish a career, or experiencing relationship issues because of their ADHD symptoms going overlooked and untreated. “There is a lot of grief work that needs to be done to help work through the many years of struggling and not knowing why,” Matlen said. However, in her experience, “Once all those parts and pieces are looked at with this new understanding, people really take off, in a good way,” she said. Often, therapy is an important component of thriving after a diagnosis.

For Matlen, in addition to gaining a better understanding of why she was struggling so much, receiving a diagnosis and treatment changed her entire life. It ended up being the missing piece that helped ease her anxiety. Once she had a diagnosis and started treatment, her issues with anxiety started improving in a way that years of therapy and antianxiety medication had never been able to accomplish.

Given how life-changing her diagnosis was, combined with the lack of information and resources available, especially for women, Matlen ultimately made a career switch, combining her own experience of growing up with undiagnosed ADHD with her background as a clinical social worker. She went on to write the books The Queen of Distraction and Survival Tips for Women With AD/HD . She also founded a Facebook group for women with ADHD, which now has over 36,000 members, and she often consults with specialists on the realities of living with ADHD.

Now, almost 30 years after her initial diagnosis, Matlen still hasn’t seen nearly as much progress in the field as she had hoped, especially for girls and women. “I see the same stories even now,” she said.

Further reading

Meta-analysis of cognitive–behavioral treatments for adult ADHD Knouse, L. E., et al., Journal of Consulting and Clinical Psychology , 2017

Association between psychiatric symptoms and executive function in adults with attention deficit hyperactivity disorder Arellano-Virto, P. T., et al., Psychology & Neuroscience , 2021

The ADHD Symptom Infrequency Scale (ASIS): A novel measure designed to detect adult ADHD simulators Courrégé, S. C., et al., Psychological Assessment , 2019

A randomized controlled trial examining CBT for college students with ADHD Anastopoulos, A. D., et al., Journal of Consulting and Clinical Psychology , 2021

Succeeding With Adult ADHD: Daily Strategies to Help You Achieve Your Goals and Manage Your Life Levrini, A., APA LifeTools Series, 2023

Recommended Reading

What to Do When the News Scares You

Related topic

Six things psychologists are talking about.

The APA Monitor on Psychology ® sister e-newsletter offers fresh articles on psychology trends, new research, and more.

Welcome! Thank you for subscribing.

Speaking of Psychology

Subscribe to APA’s audio podcast series highlighting some of the most important and relevant psychological research being conducted today.

Subscribe to Speaking of Psychology and download via:

Listen to podcast on iTunes

Contact APA

You may also like.

  • Research article
  • Open access
  • Published: 12 August 2020

Females with ADHD: An expert consensus statement taking a lifespan approach providing guidance for the identification and treatment of attention-deficit/ hyperactivity disorder in girls and women

  • Susan Young   ORCID: orcid.org/0000-0002-8494-6949 1 , 2 ,
  • Nicoletta Adamo 3 , 4 ,
  • Bryndís Björk Ásgeirsdóttir 2 ,
  • Polly Branney 5 ,
  • Michelle Beckett 6 ,
  • William Colley 7 ,
  • Sally Cubbin 8 ,
  • Quinton Deeley 9 , 10 ,
  • Emad Farrag 11 ,
  • Gisli Gudjonsson 2 , 12 ,
  • Peter Hill 13 ,
  • Jack Hollingdale 14 ,
  • Ozge Kilic 15 ,
  • Tony Lloyd 16 ,
  • Peter Mason 17 ,
  • Eleni Paliokosta 18 ,
  • Sri Perecherla 19 ,
  • Jane Sedgwick 3 , 20 ,
  • Caroline Skirrow 21 , 22 ,
  • Kevin Tierney 23 ,
  • Kobus van Rensburg 24 &
  • Emma Woodhouse 10 , 25  

BMC Psychiatry volume  20 , Article number:  404 ( 2020 ) Cite this article

233k Accesses

153 Citations

709 Altmetric

Metrics details

There is evidence to suggest that the broad discrepancy in the ratio of males to females with diagnosed ADHD is due, at least in part, to lack of recognition and/or referral bias in females. Studies suggest that females with ADHD present with differences in their profile of symptoms, comorbidity and associated functioning compared with males. This consensus aims to provide a better understanding of females with ADHD in order to improve recognition and referral. Comprehensive assessment and appropriate treatment is hoped to enhance longer-term clinical outcomes and patient wellbeing for females with ADHD.

The United Kingdom ADHD Partnership hosted a meeting of experts to discuss symptom presentation, triggers for referral, assessment, treatment and multi-agency liaison for females with ADHD across the lifespan.

A consensus was reached offering practical guidance to support medical and mental health practitioners working with females with ADHD. The potential challenges of working with this patient group were identified, as well as specific barriers that may hinder recognition. These included symptomatic differences, gender biases, comorbidities and the compensatory strategies that may mask or overshadow underlying symptoms of ADHD. Furthermore, we determined the broader needs of these patients and considered how multi-agency liaison may provide the support to meet them.

Conclusions

This practical approach based upon expert consensus will inform effective identification, treatment and support of girls and women with ADHD. It is important to move away from the prevalent perspective that ADHD is a behavioural disorder and attend to the more subtle and/or internalised presentation that is common in females. It is essential to adopt a lifespan model of care to support the complex transitions experienced by females that occur in parallel to change in clinical presentation and social circumstances. Treatment with pharmacological and psychological interventions is expected to have a positive impact leading to increased productivity, decreased resource utilization and most importantly, improved long-term outcomes for girls and women.

Peer Review reports

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental condition described in diagnostic classification systems (ICD-10, DSM-5 [ 1 , 2 ]). It is characterised by difficulties in two subdomains: inattention, and hyperactivity-impulsivity. Three primary subtypes can be identified: predominantly inattentive, hyperactive-impulsive, and combined presentations. Symptoms persist over time, pervade across situations and cause significant impairment [ 3 ].

ADHD is present in childhood and symptoms tend to decline with increasing age [ 4 ], with consistent reductions documented in hyperactive-impulsive symptoms but more mixed results regarding the decline in inattentive symptoms [ 5 , 6 , 7 ]. This trajectory does not appear to be different in affected males or females [ 6 , 8 ]. A meta-analysis of longitudinal studies published in 2005 showed that up to one-third of childhood cases continued to meet full diagnostic criteria into their 20s, with around 65% continuing to experience impairing symptoms [ 9 ]. More recent studies in large clinical cohorts indicate that persistence of ADHD into adulthood may be much more common. Two studies from child mental health clinics in the UK and the Netherlands have reported persistence in around 80% of children with the combined type presentation into early adulthood [ 10 , 11 ], potentially relating to the high severity of ADHD in this group and the use of more objective ratings [ 12 ]. The proportion meeting full diagnostic criteria for ADHD then continues to decline in adult samples [ 13 ]. Simultaneously, experiences of ADHD symptoms often change over the course of development: hyperactivity may be replaced by feelings of ‘inner restlessness’ and discomfort; inattention may manifest as difficulty completing chores or work-based activities (e.g. filling out forms, remembering appointments, meeting deadlines) [ 1 ].

Psychiatric comorbidity is very common, which may complicate identification and treatment [ 14 ]. In children with ADHD this includes conduct disorder (CD), oppositional defiant disorder (ODD), disruptive mood dysregulation disorder, autism spectrum disorder (ASD), developmental coordination disorder, tic disorders, anxiety and depressive disorders, reading disorders, and learning and language disorders [ 15 , 16 , 17 ]. Comorbid conditions are also extremely common in adults and include ASD, anxiety and depressive disorders, bipolar disorder, eating disorders, obsessive compulsive disorder, substance use disorders, personality disorders, and impulse control disorders [ 18 , 19 ].

Prevalence of ADHD is estimated at 7.1% in children and adolescents [ 20 ], and 2.5-5% in adults [ 4 , 21 ], and around 2.8% in older adults [ 22 ]. Sex differences in the prevalence of ADHD are well documented. Clinical referrals in boys typically exceed those for girls, with ratios ranging from 3-1 to 16-1 [ 23 ]. The discrepancy of ADHD rates in community samples remains significant, although it is less extreme, at around a 3-1 ratio of boys to girls [ 4 ]. Nevertheless the discrepancy in the sex-ratio between clinic and community samples highlights that a large number of girls with ADHD are likely to remain unidentified and untreated, with implications for long-term social, educational and mental health outcomes [ 24 ].

This disparity in prevalence between boys and girls may stem from a variety of potential factors. The contribution of greater genetic vulnerability, endocrine factors, psychosocial contributors, or a propensity to respond negatively to certain early life stressors in boys have been proposed or investigated as potential contributors to sexual dimorphism in prevalence and presentation [ 25 , 26 ]. Whilst in childhood there is a clear male preponderance of ADHD, in adult samples sex differences in prevalence are more modest or absent [ 21 , 27 , 28 , 29 ]. This may be due to a variety of factors, with potential contributions from the greater reliance on self-report in older samples, greater persistence in females alongside increased levels of remission in males, and potentially more common late onset cases in females [ 25 , 26 , 28 ].

Comprehensive views of the aetiology of ADHD incorporate biological, environmental and cultural perspectives and influences [ 25 ]. Substantial genetic influences have been identified in ADHD [ 30 ]. Individuals who have ADHD are more likely to have children, parents and/or siblings with ADHD [ 31 , 32 ]. The ‘female protective effect’ theory suggests that girls and women may need to reach a higher threshold of genetic and environmental exposures for ADHD to be expressed, thereby accounting for the lower prevalence in females and the higher familial transmission rates seen in families where females are affected [ 33 , 34 ]. Research suggests that siblings of affected girls have more ADHD symptoms compared with siblings of affected boys [ 33 , 34 ].

There is increasing recognition that females with ADHD show a somewhat modified set of behaviours, symptoms and comorbidities when compared with males with ADHD; they are less likely to be identified and referred for assessment and thus their needs are less likely to be met. It is unknown how often a diagnosis of ADHD is being missed or misdiagnosed in females, but it has become clear that a better understanding of ADHD in girls and women is needed if we are to improve their longer-term wellbeing and functional and clinical outcomes [ 35 , 36 ].

This report provides a selective review the research literature on ADHD in girls and women, and aims to provide guidance to improve identification, treatment and support for girls and women with ADHD across the lifespan, developed through a multidisciplinary consensus meeting according to the clinical expertise and knowledge among attendees. To support medical and mental health practitioners in their understanding of ADHD in females, we provide consensus guidance on the presentation of ADHD in females and triggers for referral. We establish specific advice regarding the assessment, interventions, and multi-agency liaison needs in girls and women with ADHD.

In line with previous definitions, we use the terms sex to identify a biological category (male/female), and gender to define a social role and cultural-social properties [ 37 ]. However, we acknowledge the complex differences between the sexes that occur independently of ADHD status [ 38 ], and discuss both biological differences and social roles in the current consensus.

The consensus aimed to provide practical guidance to professionals working with girls and women with ADHD, drawing on the scientific literature and the professional experience of the authors. To achieve this aim, professionals specialising in ADHD convened in London on 30th November 2018 for a meeting hosted by the United Kingdom ADHD Partnership (UKAP; www.UKADHD.com ). Meeting attendees included experts in ADHD across a range of mental health professions, including healthcare specialists (nursing; general practice; child, adolescent and adult psychiatry; clinical and forensic psychology; counselling), academic, educational and occupational specialists. Service-users and ADHD charity workers were also represented. Attendees engaged in discussions throughout the day, with the aim of reaching consensus.

The meeting commenced with presentations of preliminary data obtained from (1) an ongoing systematic review on the clinical and psychosocial presentation of females in comparison with males with ADHD (currently being led by SY and OK); and (2) epidemiological research on sex differences in self-reported ADHD symptoms in population based adolescent cohorts. Following a question and answer session, attendees then separated into three breakout groups. Each group was tasked with providing practical solutions relevant to their assigned topic. Discussions were facilitated by group leaders and summarized by note-takers. Following the small-group work, all attendees re-assembled. Group leaders then presented findings to all meeting attendees for another round of discussion and debate, until consensus was reached. Group discussions included the following themes:

1: Identification and assessment of ADHD in females

Presentation in females and what might trigger referral?

Considering sex differences when conducting ADHD assessments

2: Interventions and treatments for ADHD in females

Pharmacological

Non-pharmacological

3: Multi-agency liaison

Educational considerations

Other multi-agency considerations

Taking a lifespan perspective, each theme was explored in relation to specific age groups considered to be associated with pertinent periods for environmental and biological change, and change in clinical needs and presentation. Recommendations that differed between age groups are presented separately.

The consensus group incorporated evidence from a broad range of sources. However, the assessment, pharmacological treatment, and multiagency support features reflect clinical practice and legislature in the United Kingdom (UK), and may differ in other countries.

All consensus proceedings, including group and feedback sessions were video-recorded and transcribed. One note-taker was allocated to each breakout group, and notes were subsequently circulated to each breakout group contributor for review and agreement. All materials were sent to the medical writer, who consolidated the meeting transcription, electronic slide presentations and small-group notes. The lead author worked closely with the medical writer to synthesise the consensus report, which was then circulated to all authors for review and feedback. A final draft was circulated to all authors for agreement and approval.

Results and consensus outcome

Presentation of adhd in females.

Although much of the scientific literature indicates an overlap in the clinical presentation of males and females with ADHD, the available evidence often draws on predominantly male samples [ 39 ] due to the higher prevalence of ADHD in males [ 4 ]. Some sex differences have been reported, which are described below, and briefly summarised in Table 1 .

ADHD symptoms

Research in population-based samples indicates that for both sexes the hyperactive-impulsive type predominates in pre-schoolers, whereas the inattentive-type is the most common presentation from mid-to-late childhood and into adulthood [ 4 , 21 ]. By contrast, clinical studies typically report a greater prevalence of combined-type ADHD [ 5 , 12 , 22 ]. Early meta-analyses of gender effects have found lower severity of hyperactivity-impulsivity [ 40 ], or all ADHD symptoms (inattention, hyperactivity, impulsivity) [ 24 ] in girls than boys, although individual studies show more mixed results [ 8 , 35 , 41 , 42 ].

Inconsistent findings may reflect that clinic referral and diagnosis tends to favour combined subtypes equally across genders, whilst community sampling points to greater prevalence of inattentive type ADHD in girls than in boys [ 43 ]. Hyperactive-impulsive symptoms have been linked to higher clinic ascertainment rates [ 4 ], and may be more commonly seen in boys [ 40 ], with inattention symptoms being less obvious and therefore less likely to be detected. These differences may lead to the perception that females with ADHD are less impaired [ 44 ].

People may experience and respond to the same behaviour of males and females in different ways due to gender-related behavioural expectations [ 42 ]. For example in two studies where teachers were presented with ADHD-like vignettes, when simply varying the child’s name and pronouns used from male to female, boys names were more likely to be referred for additional support [ 45 ] and considered more suitable for treatment [ 46 ]. Parents may also underestimate impairment and severity of hyperactive/impulsive symptoms in girls whilst over-rating these same symptoms in boys [ 47 ]. Compensatory behaviours in girls, such as socially adaptive behaviour, compliance, increased resilience [ 47 ] or coping strategies to mask behaviour [ 48 ] may also contribute to differing perceptions that may in turn prevent referral.

Less is known about the presentation of ADHD in older adults but evidence suggests whilst symptoms tend to decline, ADHD may persist into middle and old age, with a more even male-to-female community prevalence and referral rate with increasing age [ 22 , 49 ].

  • Comorbidity

Externalising problems are more prevalent in males with ADHD [ 24 ], manifesting as higher rates of comorbid oppositional defiant disorder (ODD) and conduct disorder (CD) [ 40 ], characterised by rule-breaking behaviour [ 50 , 51 ] and fights in school [ 36 ]. In adulthood, men with ADHD more commonly show antisocial behaviours characteristic of antisocial personality disorder [ 52 , 53 , 54 ]. Whilst these problems are more prevalent in males, they typically remain elevated in individuals with ADHD across both sexes in comparison with the general population. The lower rates of disruptive behavioural problems in females may contribute to lower rates of referral for ADHD assessment and support [ 48 , 55 ].

Compared with males with ADHD, internalising disorders (e.g. emotional problems, anxiety, depression) are more often reported in females [ 24 , 29 , 47 , 51 , 53 , 56 ]. Borderline personality traits in ADHD tend to be associated with women [ 57 ] with hyperactive/impulsive symptoms being associated with self-harming behaviours [ 58 ]. Additionally, women with ADHD have been found to be at higher risk for some adverse outcomes, including greater mental health impairment [ 29 ], severe mental illness (schizophrenia) [ 59 ] and admissions to in-patient psychiatric hospitals in adulthood [ 60 ].

The less overt presentation of ADHD in girls and women may mask the underlying condition due to females not meeting stereotypical expectations of ADHD behaviour. Instead females may be more likely to attract a primary diagnosis of internalising disorders or personality disorders, in turn delaying diagnosis and appropriate treatment [ 45 , 47 , 48 ].

Disordered eating behaviour has been associated with ADHD across both sexes. Whilst individual studies have shown increased disordered eating in girls and women with ADHD [ 53 , 61 ], a meta-analysis of twelve studies identified increased risk of all eating disorder syndromes (bulimia nervosa, anorexia nervosa and binge eating disorder), amongst individuals with ADHD, with similar risk estimates for males and females [ 62 ]. Meta-analysis has also confirmed increased co-occurrence of obesity in children and adults with ADHD [ 63 , 64 ], albeit with no difference between males and females.

Consensus meeting attendees highlighted the co-occurrence of somatic symptoms such as pain and fatigue with ADHD in females, based on clinical observation. There is little available research on sex differences in the prevalence of somatic symptoms such as pain and fatigue in people with ADHD. However, elevated ADHD symptoms have been reported in clinical cohorts with fibromyalgia [ 65 ], and chronic fatigue syndrome [ 66 ].

Young people with ADHD are at greater risk for tobacco and alcohol use in mid adolescence [ 67 ]. In adulthood they are more likely to become smokers [ 68 ], engage in higher rates of substance use [ 69 ] and develop alcohol and drug use disorders [ 70 ]. A prospective follow-up study of a nationwide birth cohort using Danish registry data reported that ADHD increased the risk of all substance use disorder (SUD) outcomes [ 71 ], with comparable risks seen for males and females. Females with ADHD (but without any comorbid conditions) had a higher risk of alcohol and cannabis abuse when compared with males.

Associated features, functional problems and impairments

In both children and adults ADHD is commonly accompanied by emotional lability and emotion dysregulation problems (irritability, low frustration tolerance, mood changes) [ 72 , 73 , 74 ]. Difficulties of this nature may be more common or severe in girls and women [ 30 , 56 , 57 , 58 ] and emotion dysregulation problems are associated with a broad range of impairments in adulthood, including educational, occupational, social, familial, criminal, driving and financial problems [ 75 , 76 ]. In an Icelandic study of ADHD symptoms in university students, poor social functioning best predicted dissatisfaction with life in males, whereas among females the best predictor of life dissatisfaction was poor emotional control [ 77 ].

Cognitive problems are well established in ADHD [ 78 , 79 , 80 ], spanning difficulties with executive dysfunction (such as inhibition, planning, working memory and set shifting) and non-executive cognitive domains (e.g. word reading, reaction times, colour or letter naming, response consistency). However, ADHD may also be associated with general impairments in intellectual functioning, which tends to be more prominent in females [ 24 , 40 ]. Subtle social cognition deficits, including facial and vocal emotion recognition, have also been reported in both males and females with ADHD, with no clear sex-related differences [ 81 ].

A similar level of social impairment has been identified for ADHD males and females [ 24 , 40 , 82 ]. Autistic-like symptoms, including social and communication impairments, are common in both girls and boys with ADHD, and although these present at a higher rate in boys, likely influenced by the higher base incidence of ASD in boys, alongside greater difficulties in detecting ASD in girls [ 16 ]

Children with ADHD are more likely to experience rejection and unpopularity and have fewer friendships than their peers [ 83 ] and social problems can persist into adulthood [ 75 ]. Disruption to relationships with parents, siblings and peers has been reported for females with ADHD [ 84 , 85 ]. Girls with ADHD may apply a range of ineffective strategies to resolve their peer relationship problems [ 86 , 87 ], and experience more bullying than their peers [ 88 ], including physical, social-relational, and cyberbullying victimisation [ 23 , 89 , 90 ], whilst in boys physical victimisation appears to be more common [ 91 ]. Peer victimisation has been associated with reduced self-esteem and self-efficacy, and increased anxiety and depression symptoms in young people with ADHD [ 90 , 91 ]. Adverse outcomes have been associated with interpersonal difficulties in females with ADHD including lower satisfaction with romantic relationships [ 92 ] and lower self esteem [ 48 ].

There is some evidence to suggest that elevated symptoms of ADHD are associated with excessive internet use in children and adolescents [ 93 ], as well as adults [ 94 ], but the causal direction of this association is unclear (i.e. elevated ADHD symptoms could trigger excessive internet use, or excessive internet use could lead to elevated symptoms of ADHD) [ 95 ]. Excessive gaming [ 96 ] has also been reported. It is not clear whether this association is stronger in males or females or if it is equivalent across the sexes [ 93 , 94 , 97 ]. A large web-based survey of adult internet behaviours and psychopathology in Norway found that elevated ADHD symptoms were associated with increased addictive technological behaviours, including social media use and gaming [ 98 ]. Overall however, addictive social media use was more common in women [ 98 ].

Throughout adolescence and the transition into adulthood, there is an increase in risk taking behaviour which may be associated with symptoms of hyperactivity and/or impulsivity [ 48 ]. For example, young people with ADHD become sexually active earlier, have more sexual partners and are more frequently treated for sexually transmitted infections [ 99 ]. Rates of teenage, early or unplanned pregnancies are elevated in girls and women with ADHD [ 100 , 101 , 102 ]. Pregnant women with ADHD are more likely to smoke up to the third trimester, or be obese or underweight [ 102 ].

A review of ADHD and driving reported that adults with a history of ADHD may be more likely to be unsafe or reckless drivers and have more frequent or severe crashes [ 103 ], albeit with no specific examination of sex differences. One study with data from the US National Epidemiologic Survey on Alcohol and Related Conditions, showed that reckless driving was significantly more frequent in men compared with women with ADHD, reflecting the same pattern as seen the general population [ 29 ]. This suggests that reckless driving is likely to be similarly proportionally enhanced in women as in men with ADHD.

Studies specifically reporting driving problems in women with ADHD have shown no significant association between ADHD and driving outcomes [ 68 , 100 , 104 ]. However, results from a prospective follow-up study of a nationwide birth cohort in Danish registers, reported increased mortality rate among individuals with ADHD; when compared with males with ADHD, females with ADHD had an increased mortality rate after controlling for comorbid CD, ODD and SUD [ 104 ]. The excess mortality in ADHD was mainly driven by deaths from unnatural causes, especially accidents. The authors speculate that the gender difference may be driven by females being less likely to be diagnosed and receive treatment than males with the disorder, leading to greater risk of accidental death.

Delinquency and criminality in females with ADHD is more common compared with their non-ADHD peers but less severe or prevalent than reported in males with ADHD [ 85 , 105 , 106 ]. A study examining adult criminal outcomes in children with ADHD, showed males were twice more likely to be convicted than females, but convictions in females occurred at eighteen times the rate seen in the general population [ 106 ]. Prevalence of ADHD in prison populations is estimated at 25%, with no significant differences seen in relation to gender or age [ 107 ].

Triggers for referral

There are multiple potential triggers that may prompt the referral of females for assessment, shown in Table 2 . Some of these triggers are indicative of other associated conditions and it is the clustering of multiple trait-like symptoms that are pervasive and impairing that is informative, rather than state-like symptoms showing situational change. The decision to refer would also be strongly supported if there is a first-degree relative with ADHD.

The stereotype of the ADHD ‘disruptive boy’ [ 47 ] is likely to influence the likelihood of referral and access to diagnosis and treatment. The key message is not to disregard females because they do not present with the externalising behavioural problems, or the disruptive, hard-to-manage presentation (e.g. engaging in boisterous, loud behaviours) commonly associated with males with ADHD. Females with ADHD may be overlooked and/or their symptoms misinterpreted, particularly for those in highly structured environments, receiving a high level of support, and for those who have developed strategies to mask or compensate for their difficulties.

It is important to be mindful that environmental demands (including educational, occupational, financial, familial and social functions and responsibilities) increase in number, scope and complexity with age and level of independence, whilst support resources decline [ 108 ]. Many young peoples’ struggles and impairments become apparent as they lose the family and educational scaffolding that was previously in place. Therefore, young people (both males and females) may be particularly vulnerable at times of transition, when symptoms become exposed. Increased functional demands on transition to secondary school (planning ahead, organising work and juggling assignments) may lead them to feel overwhelmed. This may impact on self-esteem and result in learner anxiety and perfectionism in an attempt to compensate. Periods of transition may therefore unmask unidentified ADHD by exposing or exacerbating symptoms, together with the development of internalising problems leading to increased vulnerability.

These environmental changes often occur at a time when girls undergo changes in their physiological and sexual maturation. There is growing recognition that puberty is a phase of high risk for mental health problems [ 109 ]. The developmental changes that occur during puberty and later in adolescence may lead females with ADHD to be particularly psychologically vulnerable if they are not able to access support.

Difficulty coping with more complex social interactions and resolving interpersonal conflict may also trigger cause for concern. As girls with ADHD move into their teenage years, difficulty maintaining friendships often becomes more marked and they may feel rejected and socially isolated. Some respond with bravado to buffer them from social isolation but a ‘brave face’ is unlikely to prevent them from feeling distressed and developing low mood and anxiety. Dysfunctional coping strategies and the lack of a support network may lead them to express these feelings by self-harming behaviours (e.g. cutting) or changes in eating patterns.

The identification of specific educational or learning problems may also be an important trigger for referral. Children may be diagnosed with specific learning difficulties, such as dyslexia, when a diagnosis of ADHD may be more appropriate. Parents/carers and teachers may note the disparity between educational performance (day-to-day classroom contribution) and achievement (end grades).

Many young people with ADHD do not exceed the mandatory minimum level of schooling, and the problems described above may become even more marked when they enter further education and/or leave home. Research suggests that adolescent school girls with elevated ADHD symptoms make significantly fewer plans for their future than their peers, suggesting that they leave this to chance and opportunistic encounters [ 86 ]. Those who enter the world of work may find that their difficulties evolve into employment impairments and limitations. However, as they mature young people may begin to develop greater awareness of their difficulties, leading to an increase in self-referrals.

For both males and females, a comprehensive assessment should be completed to accurately capture the symptoms of ADHD across multiple settings, their persistence over time and associated functional impairments. High rates of comorbidity are typically present. The assessment process is typically tripartite involving the use of rating scales, a clinical interview and ideally objective information from informants or school reports. Key recommendations for enhancing diagnostic assessment in girls and women are provided in Table 3 .

Rating Scales

Rating scales can obtain perspectives from different informants (e.g. family, teacher, youth worker, occupational health practitioner) in a consistent, quick and easy way. They are not the sole domain of healthcare practitioners and can be applied (with patient consent) by allied professionals, such as social care providers and those working in educational and occupational establishments, to guide whether referral might be merited.

While rating scales are useful aids for clinical assessment and treatment monitoring, findings should be interpreted cautiously if they are used for screening purposes as they are non-specific markers of potential problems [ 110 ]. Rigid adherence to cut-offs may lead to a high proportion of false positives and negatives. There are many rating scales available with varying merits and limitations and some are yet to be updated to reflect revisions to diagnostic criteria. Where possible both informant- and patient-rated scales should be obtained. Rating scales in common use are presented in Table 4 .

Rating scale norms are predominantly from male or mixed samples, which may disadvantage their use in females, although some provide female-specific norms (see Table 4 ). Where female norms are not available, greater emphasis should be placed on collateral information (e.g. parental and school reports). The Nadeau and Quinn checklists may also be used as indication of possible ADHD in girls and women [ 126 , 127 ], providing structured self-enquiry of ADHD symptoms and associated problems, including a range of difficulties such as learning problems, social/interpersonal and behavioural problems.

Since hyperactive and impulsive behaviours tend to decline as patients move into adulthood and impairments associated with inattention are often sustained, it is helpful to re-administer age appropriate scales as young people with ADHD become adults.

The clinical interview

A clinical diagnostic interview, supplemented by a mental state examination, should consider the extent to which the individual’s functioning is age appropriate and obtain examples of how difficulties interfere with functioning and development in home and education/work environments. For children this is usually carried out in the presence of a person close to the child, has known the child for a long time, and is familiar with their developmental history and functioning in different settings (commonly a parent or carer).

Age-appropriate, common co-occurring conditions in females with ADHD should be explored, including ASD, tics, mood disorders, anxiety, and eating disorders. Fibromyalgia, chronic fatigue syndrome, body dysmorphic disorder and gender dysphoria may also be explored as possible co-occurring conditions. The assessor needs to consider what is primary (i.e. occurring alongside and independently to ADHD) and what is secondary (i.e. caused or exacerbated by ADHD). It will help to determine whether the presenting problem is trait-like or episodic in nature. Clinicians should be alert to signs of self-harming behaviours (especially cutting), which typically peak in adolescence and early adulthood [ 128 , 129 ]. Substance and alcohol use disorders should also be assessed in teenagers and adults. Sleep problems are commonly seen in both males and females with ADHD [ 130 , 131 ], and it is important to determine whether this primarily relates to symptoms of ADHD or co-occurring anxiety.

Since heritability of ADHD is high, ranging between 70-80% in both children and adults [ 132 ], it is important to be mindful that informants who are family members may also have ADHD (possibly undiagnosed) which may affect their judgment of ‘typical’ behaviour. The assessor should therefore obtain specific examples of behaviour from the informant and use these to make clinically informed judgments, rather than relying upon the informants’ perception of what is typical or atypical.

Semi-structured clinical diagnostic interviews are helpful as they guide the healthcare practitioner to complete a comprehensive developmental and clinical interview, whilst allowing for individual differences to be considered. For example, symptoms relating to excessive talking, blurting out answers, fidgeting, interrupting and/or intruding on others have been reported as more frequently endorsed by women than men with ADHD [ 53 , 55 ] and may be more sensitive to the presentation in females. Small modifications may help to capture more female-centric behaviour (e.g. ‘excessive talking and giggling’ instead of ‘excessive talking’) [ 133 ]. Commonly used diagnostic interviews are presented in Table 4 . There are three clinical interviews that prompt the assessor to consider the presence of co-existing conditions (which may differ between males and females); ACE, ACE+ [ 134 ] and the DAWBA [ 118 ].

When assessing adults, the clinical interview is usually completed with the affected individual but whenever possible collateral information should also be obtained. This may be from a parent or carer or another close member of the family. If a reliable informant cannot be identified who knew (and can recall) the individual well during their childhood, it may be helpful to obtain information from an informant who currently knows the individual well (e.g. a partner or a close friend who has known them for a significant period time, 5 years or more) in order to supplement self-reported information with a secondary perspective. If available, reports from childhood (for example, school, social service and/or previous clinical reports) are likely to be informative. Importantly, however, it may not be possible to rely on school reports when assessing females, as subtle hyperactive-impulsive symptoms may have been missed by teachers and/or they omit to comment on interpersonal or relationship problems. School reports may comment more on attentional problems (such as daydreaming or lacking in motivation and effort).

Some girls and women with ADHD become competent at camouflaging their struggles with compensatory strategies, which may lead to an underestimation of their underlying problems. Often these strategies have an adaptive or functional purpose, for example, enabling them to remain focused or sustain attention, or to disguise stress and distress. However, not all strategies are helpful. Coping strategies may be less overt, such as avoiding specific events, settings or people, not facing up to problems, spending too much time online or not seeking out help when needed. Teenage and adult females with ADHD may turn to alcohol, cannabis and other substances to manage emotional turmoil, social isolation and rejection. Some may seek to obtain a social network by forming damaging relationships (for example, joining a gang, engaging in promiscuous and unsafe sexual practices, or criminal activities). If there is cause for concern, a risk assessment should be included that enquires into suicidal ideation, the use of illicit drugs, substances and alcohol, antisocial attitudes and behaviours, harm to self and others, bullying and assault, excessive internet use, unsafe sexual practices and exploitation of a sexual, financial or social nature. In some cases, a physical health assessment may be warranted.

With older age and persistent inattentive symptoms, there may be an increasing risk that individuals with ADHD are incorrectly diagnosed with mild cognitive impairment. Self- perceived ADHD symptoms, and in particular inattention, are found to increase with age in diagnosed adults and perceived symptom severity appears to be exacerbated by concurrent depressive symptoms [ 49 ]. It is not uncommon that adults with ADHD are treated for anxiety and/or depression in the first instance. Clinicians should be mindful that those with treatment resistant anxiety and/or depression should be screened for possible undiagnosed ADHD. Indeed, careful examination of developmental history will elucidate whether symptoms are longstanding and have been exacerbated by situational or biological changes, or whether they represent new-onset symptoms that are less indicative of ADHD.

Objective assessments

Whenever possible, the assessor should obtain collateral information from independent sources. This may include direct observations in a specific setting (e.g. in clinic, at home or at school). A wealth of useful information may be obtained from observing a child in school and speaking directly with teachers. When assessing adults, perusal of school, college and/or employment reports (if available) can be helpful.

Tests that assess executive dysfunction may help to determine deficits in higher order processing skills such as task switching, perseveration, planning, sequencing and organising information. Some have been specifically developed for ADHD populations and focus on assessing attention, impulsivity and vigilance in children and adults. Neuropsychological tests such as the Test of Everyday Attention (TEA) / Test of Everyday Attention for Children (TEACh), may be helpful supplements to the diagnostic process. Those most commonly used in clinical practice include the Conners’ Continuous Performance Test, third edition (CPT 3 [age 8+]) [ 135 ] and the QbTest [ 136 ], the latter including a measure of hyperactivity. QbTest scales have normative data specific to each sex (age 6-60) and may therefore be more sensitive to ADHD in females. The assessor should be mindful that an individual with ADHD may perform relatively well on novel tasks, especially those presented as computerised games providing immediate gratification via rapid feedback. Moreover, findings may lack ecological validity and not reflect performance in the ‘real world’. Neuropsychological assessments are not specific markers of ADHD and should only be used to augment clinical decision making and not be used as stand-alone diagnostic tools.

Interventions and Treatments

Prompt identification and treatment of ADHD is recommended, as there is evidence of long-term functional benefits associated with treatment [ 137 , 138 ]. ADHD is typically treated with psychoactive medication, psychoeducation and therapeutic interventions at all ages, and a stronger treatment effect has been reported with multi-modal treatment [ 138 ]. A brief summary of treatment recommendations is presented in Table 5 .

In the context of changes in the presentation of ADHD with development and ageing, regular treatment reviews are advised. These can revisit and optimise current pharmacological and non-pharmacological approaches, or revisit those patients who previously may not have been suitable for specific treatments or who did not show good response.

Pharmacological management

ADHD is commonly treated with psychostimulants, such as methylphenidate and amphetamine. In certain cases, a nonstimulant such as atomoxetine, an extended-release form of guanfacine or clonidine, or bupropion may be prescribed, especially when stimulants are inappropriate or have been unsuccessful. These medications, with the exception of bupropion are recommended by the National Institute of Health and Care Excellence (NICE) guidance [ 139 ]. A systematic review and network meta-analysis recommended methylphenidate for children and adolescents and amphetamines for adults, taking into account both efficacy and safety [ 140 ]. Larger confidence intervals in relation to the tolerability and efficacy of bupropion, clonidine and guanfacine were reported, indicating less conclusive results with regards to the efficacy and tolerability of these oral medications [ 140 ].

Treatment recommendations do not differ by sex and differ only modestly by age (NICE, 2018 [ 139 ]). The overarching opinion in the consensus group was that there are no differences in the medicines used to treat ADHD in girls and boys. Stimulant medications show good efficacy for improving ADHD symptoms in both children [ 141 ] and adults [ 142 ], and response appears comparable in females and males [ 143 , 144 ]. However girls with ADHD tend to be less likely to be prescribed stimulant treatment than boys with ADHD, and are likely to start treatment at an older age [ 145 ].

The potential benefits of treatment must be viewed in the context of lifetime adverse outcomes associated with poorly managed ADHD described previously. Prompt identification and treatment may help to improve longer-term functional, health and mental health outcomes. Reduced rates of comorbidity (including depression, anxiety disorders, and disruptive behaviour disorders) have been noted in stimulant treated ADHD populations [ 146 , 147 ], although the converse effect has also been reported [ 148 ]. Comorbid ADHD is associated with treatment resistant depression [ 149 ] and regular treatment for ADHD may reduce rates of treatment resistance [ 150 ]. Pharmacological treatment of ADHD is also associated with improved educational [ 146 ] and occupational [ 151 ] outcomes, as well reduced rates of criminality [ 152 ]. Pharmacotherapy for ADHD appears to be a protective factor for obesity [ 64 ], and some limited evidence suggests that it may increase efficacy of weight management strategies (reviewed in [ 153 ]). Additionally, there appears to be a benefit of ADHD treatment with regards to substance use disorders. A study of commercial healthcare claims showed reduced emergency department visits related to substance use disorders when patients were prescribed treatment for ADHD [ 154 ].

Whilst pharmacological treatments themselves should not differ by sex, the way in which they are managed and monitored should occur in a sex-sensitive manner. The consensus group observed that prescribers need to consider ADHD presentations and associated problems in females to appropriately target what medication aims to improve. It may be less helpful to strictly adhere to conventional rating scales or focus on behaviour management to identify treatment-related changes. Instead, treatment response may be better captured through individualised targets, such as measures of emotional regulation, participation in education, and academic attainment. In the UK, all government funded schools have attainment ratings for each child, which could be examined by the prescriber prior to commencement of medications and monitored over time in conjunction with prescribing. Girls with emotional regulation difficulties (for whom internalising difficulties are often a key component of their ADHD) could benefit from measuring changes in emotional lability with medication use.

Parents and carers may not be as aware of the benefits of medication in girls, especially those with inattentive presentations in the absence of challenging or disruptive behaviour. Psychoeducation regarding available treatments and what they are targeting, provided for parents and girls with ADHD themselves, may help to ensure engagement in treatment and improve adherence to treatment regimens. Where required, adherence may be improved by using long-acting stimulant medication in place of short-acting medications [ 155 , 156 , 157 ].

In early to late adolescence, recommended treatment regimens in ADHD remain the same as in early childhood, and do not differ between girls and boys. The use of medication should be followed up over time to verify if medications are effective and well tolerated, and to manage the effects of related conditions (e.g. anxiety, depression) if they emerge. Side effects of stimulants need to be considered, particularly the side effect of appetite suppression if eating disorders are a concern [ 158 ].

There is some early evidence to suggest that ADHD medications may differentially affect women depending on progression of their menstrual cycle. Two small studies have shown that hormonal changes during the menstrual cycle (oestrogen and progesterone levels) may impact on the subjective euphoric and stimulating effects of d-amphetamine in healthy women who are not affected by ADHD [ 159 , 160 ]. Changes in subjective ratings of stimulation have also been noted in young women unaffected by ADHD in response to d-amphetamine after application of estradiol patches (commonly used to treat problems associated with menopause) [ 161 ]. Cellular and small neuroimaging studies which show early evidence of a link between dopamine systems (implicated in the aetiology of ADHD) and gonadal hormones (reviewed in 49). In a case study, a woman with ADHD showed positive response to treatment adjustment around the menstrual cycle, which included augmentation with an antidepressant (fluoxetine) during the immediate pre-menstrual period to reduce problems with moodiness, irritability and inattention normally well controlled through stimulant medication alone [ 162 ].

Whilst the evidence above does not support treatment adjustment according to the menstrual cycle, anecdotal clinical accounts were given during the consensus meeting supporting that this approach benefits certain patients. The consensus group noted that this type of regular medication adjustment may be easier to manage for adult women who can take more control of their dosing, rather than adolescent girls who tend to respond better to routine. There were also anecdotal accounts of symptom exacerbation in women during the post-menopausal period. During this time physicians may consider the use of hormone replacement therapy, if deemed beneficial.

As hormonal changes take place during puberty, the postpartum period and the menopause, patients may report changes in their symptoms and re-evaluation of treatment regimens may be helpful. It may be advised that women track their symptoms during these periods to establish patterns which may help support changes to the medication regimen when reviewed by their physician.

There is no evidence to indicate that females in either early, middle or later adulthood should be treated any differently with respect to specific medicines for ADHD symptoms. However, given the complex clinical picture of many adults with ADHD, particularly with regards to the presence of comorbid conditions, prescribers need to be mindful of potential interactions with other drugs. If ADHD treatment improves co-morbid conditions, medication regimens could potentially be simplified.

Women with ADHD are highly likely to suffer from mental illness and SUDs. Clinicians need to be mindful of, and discuss with their patients, the risks around alcohol and drug use whilst on ADHD medications. Affective symptoms (most commonly emotional lability or volatility) associated with ADHD, may be misattributed to depressive disorders. For women with ADHD in whom depressive mood symptoms are apparent but not pervasive, it is advisable to treat the ADHD symptoms first and monitor for improvement. A more consistent low mood may be due to demoralization driven by ADHD and its functional impairments, and may improve with ADHD medication.

Symptoms or problems experienced by women with ADHD may also overlap with those indicating a personality disorder, such as BPD. Careful consideration is required to establish the underlying condition(s). This will have follow-on implications for treatments, which differ significantly between personality disorders and ADHD. Biosocial theory suggests that BPD may arise as a function of the interaction of early vulnerabilities (impulsivity and heightened emotional sensitivity) with the environment [ 163 ]. If ADHD symptomatology may predispose individuals to later personality disorders [ 164 ], it is possible that early detection and appropriate treatment could prevent the later development of these conditions [ 165 ]. However, there is no clear empirical evidence supporting this hypothesis at present [ 109 ].

Historically, prescribing ADHD medication during pregnancy or breastfeeding was not advised due to a lack of evidence for safety and risks of unknown adverse effects to the baby. However, a recently published systematic review and meta-analysis reported that exposure to ADHD medication during pregnancy does not appear to be associated with serious adverse maternal or neonatal outcomes [ 166 ]. Nevertheless, the group were cautious regarding this outcome and considered that until these findings have been robustly replicated, prescribing ADHD medication during pregnancy or breastfeeding should be avoided. There may be situations however where risks of not treating ADHD may outweigh potential risks to the foetus and continued prescribing may be necessary subject to more careful obstetric monitoring. In this case, women with ADHD need to be informed of these risks.

Women may find their ADHD symptoms worsen or become particularly difficult to manage while breastfeeding given additional life pressures that occur in the presence of a new baby. Whilst it may be possible to use short acting stimulant medication, timed around breastfeeding to minimise transfer between mother and child [ 167 ], there is minimal scientific evidence to support this approach, and it would be generally safer to advise the cessation of medications during this period altogether. Where ADHD medication is necessary, then an alternative to breastfeeding is needed to minimise any risk to the baby.

Prescribers should be aware that mothers with ADHD may experience difficulties in managing their own symptoms alongside the increased demands from family life, and these difficulties may be augmented by the presence of ADHD in their own children. They may benefit from more frequent evaluations of ancillary support requirements and/or a careful review of medication dosage.

Non-pharmacological management

A number of meta-analyses of data from child and adolescent samples have shown that non-pharmacological interventions targeting cognitive processes show small to moderate effects on ADHD symptom outcomes when rated by individuals who are close to the treatment setting (often parents), but that effects become attenuated or non-significant when outcomes are obtained from individuals who are blinded to the interventions (often teachers) or adequately controlled active or sham conditions [ 168 , 169 , 170 ]. Research has documented this effect for specific interventions such as cognitive training (for example, training of attention, memory, inhibitory functions) [ 169 ], and neurofeedback [ 170 ] - although more recent research suggests that effects of neurofeedback are more modest rather than absent when assessed by probably blinded evaluators [ 171 ].

Meta-analyses also show potentially more promising outcomes from non-pharmacological interventions that target behaviours and outcomes beyond ADHD symptoms alone in children and adolescents, with ADHD intervention in children producing a moderate effect on parent stress [ 172 ], and organisational skills interventions which resulted improved ratings from both parents and teachers and with modest improvement in academic function [ 173 ]. Behavioural interventions were found to have a moderate positive effects on a range of outcomes including changes in parenting and conduct problems, even when rated by blinded assessors [ 174 ].

Meta analyses also indicate more promising results from cognitive behavioural therapy, and mindfulness interventions on ADHD symptoms in studies with primarily adult samples, albeit without comparisons from blinded raters [ 175 , 176 ]. Benefits of non-pharmacological treatments in adults are also shown to range beyond improvements in ADHD symptoms, as shown in a recent report from a psychological intervention programme in adults with high levels of ADHD symptoms across three municipalities in Denmark. Participant outcomes were compared with matched controls receiving ‘treatment as usual’ drawn from the Danish Registers at 6 and 12 months post-treatment follow-up. The study showed that participation in the programme was associated with increased employment, education rates and reduced use of cash benefits and social services [ 177 ]

The efficacy of a psychological approach varies across the lifespan and the content of treatment should be tailored to meet the individual presentations and needs of individuals with ADHD [ 178 ]. Regular review of how a person is coping may be especially important at times of key transitions. Since the needs of females with ADHD differ considerably as they mature, the goals of treatment are presented across three age ranges: primary age (5-11 years), secondary age (12-18 years) and adulthood (age 18+).

Primary age

ADHD often places a significant psychological, emotional, and economic burden on families as well as the individual; increased stress and discord in the family unit has been reported [ 179 , 180 ]. Where ADHD affects females, it is also more common in their family members [ 33 , 34 ], resulting in bidirectional effects of ADHD in the mother-child relationship. The aim of non-pharmacological interventions therefore is to support individuals with ADHD and their families to develop and/or improve skills and coping strategies. Psychoeducation and psychological interventions directed at both patient and family are needed to achieve this, as they provide the tools to make helpful changes and achieve positive immediate and long-term functional outcomes.

There are two types of parenting intervention that may be offered to parents/carers in this age-group: (1) parent/carer support interventions, where people can meet and share experiences with others, and (2) parent/carer mediated interventions, sometimes referred to as ‘parent training’. The latter is an indirect intervention as the parent/carer is taught to deliver interventions to their child. Ideally both approaches should integrate a psychoeducational component as this is likely to lead to better outcomes.

Psychoeducation and interventions for girls in this age group should include discussion about the difficulties and challenges they will face at home, in school and in social activities - and how they may respond. At school this may relate to difficulty with sustaining attention, organisation, time management, planning activities, prioritising and organising tasks. They may also require generic skills for coping with interpersonal difficulties and/or social events, conflict management, emotional lability, anxiety and feelings of distress. Some girls may need interventions to address discrete problems, including sleep problems [ 131 ], enuresis [ 181 ], bullying [ 89 , 90 ] and repetitive behaviours such as nail biting [ 182 ]. It is important to emphasise that problems may be less overt in females with ADHD compared with boys due to them being less boisterous and hyperactive, yet their struggles with impulse control may manifest in a different way such as blurting out hurtful things to friends and family in anger, or deliberately self-harming behaviours.

Both group and individual sessions working directly with the child may be helpful additions to parent/carer mediated treatments, although individual treatments may be more appropriate for those with severe symptoms, intellectual limitations and/or those who are unable to tolerate group sessions (e.g. due to lack of confidence, poor social communication). Two specific programmes have been developed for young children with cognitive, emotional, social and/or behavioural problems; one for individual delivery [ 183 ] and the other for group delivery [ 184 , 185 ].

Secondary age

As children mature, they are more likely to receive direct interventions without input from their parents or carers. The best mode of psychological treatment is cognitive behavioural therapy (CBT) together with psychoeducation (which can be provided to both patients and parent/carers together or independently). Parents and carers need to be aware of the elevated risk of deliberate self-harming behaviour (e.g. cutting), eating disorders, substance abuse, risk-taking behaviours, and vulnerability to exploitation in teenage girls with ADHD. Thus psychoeducation should include indicators that problems of this nature may be developing.

The focus of treatment in this age group should include information and guidance on the need for adherence to medication. There is evidence that adherence to pharmacotherapy declines in the teenage years, although adherence appears to be modestly better in girls than in boys [ 155 , 157 , 186 ]. These changes have been attributed to adverse effects, sub-optimal response, reduction in parent supervision, increased need for autonomy, and social stigma associated with ADHD diagnosis and taking medication [ 155 , 156 ]. It is important to provide psychoeducation to encourage young people with ADHD to understand and take ownership of their diagnosis and treatment, rather than feeling it has been imposed on them. Those diagnosed with ADHD for the first time in their teenage years are likely to require different intervention strategies to those who have been treated pharmacologically earlier in childhood. For example, psychoeducation should include information on the purposes and benefits of particular medications, as well as strategies around self-management.

Problems presenting in younger childhood often become more marked with age due to increasing academic and social expectations. These are important years in terms of a young person’s education and interventions can help to support executive function (e.g. improving skills to address problems with time management, focus, sustaining attention, organisation and planning) which may in turn support their coping in secondary schooling. Teenage girls may particularly benefit from treatment aimed at improving self-concept and identity. This may be achieved by unpacking the association between ADHD, lack of achievement, poor self-efficacy, lack of self-confidence, poor self-image and low self-esteem.

Aside from addressing core ADHD symptoms and executive deficits, specific interventions should focus on developing skills and coping strategies for co-occurring conditions, such as managing poor emotional regulation, low mood and anxiety, controlling the impulse to deliberately self-harm (including skin picking and cutting), eating for pleasure or restricting food. Additional support for new skills required in teenage years, such as managing money, may also be helpful.

In adolescence, young people develop a strong focus on peer relationships and a tendency towards social conformity [ 187 ]. For teenage girls with ADHD, the desire to develop robust and supportive social networks can be strong, and the rejection and social isolation experienced by many may mean that family support is especially valued [ 87 ]. Simultaneously interpersonal conflict with family members is not uncommon, and girls may engage with dysfunctional social groups and activities in an attempt to gain a sense of ‘belonging’ and to be accepted. Girls with ADHD are at increased risk of being victims of bullying [ 23 , 90 ], and social media may provide additional challenges since it offers a public platform for victimisation.

Behavioural and oppositional problems remain elevated in teenage girls with ADHD in comparison with their peers, albeit not as elevated as in boys with ADHD. Girls with ADHD may attract detentions, suspensions or exclusions from school for their conduct or oppositional behaviour. Their behaviours may be more socially motivated (e.g. spiteful, manipulative, threatening behaviours and/or lashing out at peers) rather than overt aggression. Social skills and interpersonal relationship interventions become salient at this age. These may aim to develop coping strategies to regulate emotions, build confidence, raise self-esteem and manage peer pressure, deal with rejection and manage conflict.

Interventions to address impulsivity and associated risk-taking behaviour may be helpful. These problems may manifest in early onset of sexual behaviour. The desire to be accepted into a peer network may be a motivating factor. Girls with ADHD are more likely to be pressurised into sex or engage in risky sexual behaviour. They are also more vulnerable to sexual exploitation or perceived exhibitionism (including internet grooming, ‘sexting’ and posting inappropriate content [ 188 ]). This may result in disproportionate social stigma for adolescents and young women with ADHD, in the face of violations of social expectations of female sexuality (where promiscuity may enhance male but damage female reputations). As girls become sexually active, the need for contraception should be discussed.

Impulsive behaviour is also associated with substance misuse. The risks around substance use and interactions with ADHD medication, including risks for addiction, need to be discussed.

Considerations around pregnancy, the post-partum period and parenting may also be required, since rates of early pregnancy are higher in girls with ADHD. Early pregnancy, may load additional stress and impairment on young girls with ADHD. The consensus group noted difficulties in young ADHD mothers not only in relation to child discipline and behaviour management, but also in relation to the organisational demands of parenting (for example, ensuring bottles are washed, medical and other appointments are kept, child’s clothes are cleaned).

Both individual and group CBT interventions will be helpful in this age-group, the latter providing the opportunity to meet and talk to others who have similar experiences as well as acquire and rehearse social skills in a contained environment.

Many of the functional problems experienced by women with ADHD in relation to educational, social, and risk-related behaviours are a continuation of those present in their teenage years. In adulthood, psychoeducation and CBT interventions should continue to address core ADHD symptoms, executive dysfunction, comorbid conditions and dysfunctional strategies (e.g. substance abuse, deliberate self-harm). However, specific attention may be required to address the more complex situations adult females may face, e.g. multitasking occupational demands, home management and family/parenting responsibilities. It is important to encourage the patient to identify and focus on their strengths and positive attributes rather than solely on perceived weaknesses and failures.

Interventions need to address the potential for women with ADHD to be vulnerable in terms of their sexual behaviour and relationships, to support their sexual health and safety. Social stigma associated with risky sexual behaviour in women may augment social problems and limit occupational opportunities. In combination with low self-esteem, this may render women with ADHD vulnerable to sexual harassment, exploitation, and/or abusive or inappropriate relationships. The Adult Psychiatric Morbidity household survey conducted in England found that 27% of females who experienced extensive physical and sexual violence had ADHD traits [ 189 ].

The bulk of household, and parental and caring duties are often borne by women [ 190 , 191 , 192 ], reflecting social and cultural constraints and expectations. These may result in increased impairment and anxiety in relation to these roles and duties in women compared with men. The consensus group identified that the demands placed on mothers often differ from those of fathers and that low self-esteem may be related to perceived failure to reach societal expectations. Mothers may lack confidence or experience feelings of guilt over their perceived inadequacy as a parent. Dysfunctional beliefs of this nature may be reinforced if they have a difficult-to-manage child with ADHD and are offered ‘parent training’ interventions. The group acknowledged that the term ‘parent training’ is unhelpful and may be perceived as pejorative.

However, at the same time harsh, lax or negative parenting styles have been identified to be elevated in mothers with ADHD [ 193 ]. Mothers with ADHD may benefit from life skills coaching, guidance and support in parenting, including ancillary support around parenting strategies. This may be particularly helpful for more vulnerable mothers: those that are young, are sole caregivers for their children, and/or are parenting a child with ADHD. Tailored assessments, support plans and social interventions may help to improve outcomes for this vulnerable group.

Women with ADHD may experience problems in the workplace, such as disorganisation, forgetfulness, inattention, accepting constructive criticism and appraisal, and difficulties managing interpersonal relationships with colleagues. This is likely to be exacerbated in the presence of concurrent intellectual dysfunction and/or other comorbidity. For these types of problems, often a group intervention is helpful and cost-effective. However the decision of whether a group or individualised approach is preferable should be based on careful formulation and individual need. Women may also benefit from targeted support in managing feelings of stress and distress, managing and regulating emotions, coping with rejection and/or feelings of isolation, managing interpersonal conflict, assertiveness training, compromise and negotiation steps, which may help to improve their occupational outcomes and their ability to cope with everyday social interactions.

Multi-agency liaison

This section addresses issues that arise at a broader institutional level. Primarily, support for females with ADHD may be improved through the psychoeducation and training of individuals who work within these institutions. Some may act as referral gatekeepers and, as such, they have the potential to support or hinder the referral process and to positively or negatively influence the progress of young people and adults within these institutions. A brief summary of multi-agency liaison recommendations is presented in Table 6 .

Educational considerations and adjustments

ADHD is associated with low educational attainment and academic underachievement [ 99 , 146 , 195 ]. Interventions should focus on supporting attendance and engagement with education to avoid early school leaving, diminished educational attainment, and associated vulnerabilities. Since ADHD is classified as a disability under the UK Equality Act [ 196 ], reasonable adjustments to education provision are mandated (examples may include: additional examination time, academic coaching, rest-breaks during examination, or possibility for part-time study [ 197 ]). Research suggests that simple interventions, including physical adjustments (table set-up, creating a time-out corner), and behaviour management techniques, as well as joint goal setting with primary age children, can help to improve ADHD symptoms, social and emotional functioning, and reduce conduct problems in the classroom [ 198 ]. However, adjustments cannot be put in place unless ADHD is first recognised and diagnosed.

Young people affected by ADHD are at increased risk for repeating grades, dropping out of high school, being suspended or expelled, and failing to obtain school or higher education qualifications [ 85 , 99 , 199 ]. Maintaining strong links with school is key to promoting adolescent health and social development [ 110 ]. Whilst early or unplanned pregnancy is associated with a reduction in educational and occupational opportunities, school achievement problems in adolescent girls with ADHD have also been shown to predate and predict risky sexual behaviour and unplanned pregnancy [ 200 ]. The consensus group noted that exclusion, truancy and school phobia are associated with increased vulnerability of teenage girls with ADHD in relation to later substance misuse, antisocial behaviour, criminality, sexual exploitation and early pregnancy. There is a danger that punitive measures may be harsher for girls who display hyperactive or disruptive symptoms, due to this behaviour constituting a greater violation of social norms and expectations. Excessive punitive measures can lead to loss of engagement with education. Disciplinary problems (e.g. suspensions, verbal or written warnings or expulsions) predict earlier discontinuation of education in boys with ADHD [ 201 ], although disciplinary problems are less commonly reported in girls [ 85 ].

Externalising conditions have a stronger impact on behaviour in class, whilst internalising problems may impact on motivation and ability to engage in education. Girls with ADHD may present as easily distracted, disorganised, overwhelmed and lacking in effort or motivation. Inattention is more highly predictive of educational under-achievement compared with hyperactivity [ 202 , 203 ]. Females who are more likely to have the diagnosis missed or misdiagnosed, may be particularly disadvantaged since treatment with ADHD medication has been found to mediate educational outcome. For example, a large-scale study of cross-sectional and longitudinal data in ~10,000 12-year old twins from the Netherlands Twin Register showed the potential efficacy of treatment on academic outcomes [ 203 ]. Children taking ADHD medication scored significantly higher on an educational achievement test than children with ADHD who did not.

Individuals with ADHD and intellectual impairments, both male and female, present with complex needs that make it harder for them to engage in education. Many young people with ADHD will have associated specific learning difficulties such as dyslexia, dyscalculia and dysgraphia. Presenting problems may be attributed solely to these specific learning difficulties and/or ASD because school staff are more familiar with them and have a more limited knowledge about ADHD. It may be helpful for students (at all levels of education) who have or who are suspected of having specific learning difficulties to be screened for ADHD, since young people with ADHD may also present with difficulties in reading and writing.

It is important that both child and adult educational professionals have an understanding of ADHD in girls and young women, recognise its presentation and associated vulnerabilities, and have access to screening tools. Training should be disseminated broadly across school staff, including teachers and special educational needs coordinators, as well as teaching assistants, school lunch aides, and after-school club staff who are more likely to supervise children during less structured periods of the day or during one-to-one work in classrooms. It is important that key personnel avoid over-simplistic causation when assessing individual needs (e.g. focusing on their family situation) and understanding of the bi-directional nature of ADHD difficulties in terms of family relationships.

All educational staff should be trained in how to screen females for ADHD and how to make onward referrals for treatment, if indicated. School staff should be trained on the importance of early detection, educational needs and interventions and support strategies that can improve educational outcomes. Training sessions should raise awareness of the current bias towards males in the clinical referral process. Teaching staff may not be as aware of the benefits of referral and ADHD treatment in girls [ 45 ], and children with the inattentive subtype [ 204 ]. Addressing gender-specific ADHD issues, and gender expectations and stereotypes may help staff to better identify affected females. If ADHD is suspected, schools may consider adopting sensitive screening tools for ADHD (Table 4 ) or broader mental health problems (e.g. the SDQ [ 116 ]). These tend to be cost-effective, quick and reliable, and can help to identify vulnerable girls and young women. Difficulties can arise in maintaining medication treatment programmes in school and staff should be mindful that children may find this stigmatising, especially those who require short-acting medications to be dispensed at school.

Many of the training needs for educational staff remain the same in secondary as in primary school. However, transition to secondary school is accompanied by increased academic demands, and increased requirement for self-organisation and personal responsibility against a backdrop of navigating a new social environment. Young people with ADHD are likely to find this shift in self-management and responsibility especially challenging. ADHD symptoms may become exacerbated and more noticeable, triggering referral for the first time. Good learning and teaching practices (i.e. not necessarily ADHD specific) may help to mitigate many of the potential issues in the classroom by promoting engagement, increasing on-task behaviour and reducing social friction.

Efforts toward Technology Enhanced Learning or e-Learning, are likely to be especially helpful for young people with ADHD. With the appropriate content and support, these learning resources have the potential to go beyond improving academic outcomes in secondary school by improving psychosocial functioning (e.g. helping young people to acquire skills to manage risks of exploitation, bullying and/or victimisation in the school environment or online via social media and communication platforms). Although further research is required to determine the efficacy of e-learning methods for improving outcomes in ADHD, specific examples of successful application of these technologies have been reported (reviewed in [ 205 ]).

Careers advice should consider the strengths and weaknesses of female students rather than focus solely on current performance, bearing in mind the relative developmental delay, underachievement, immaturity (and sometimes naivety) of young people with ADHD. Research indicates that occupational ‘fit’ can serve to exacerbate or reduce impairments associated with ADHD. For example, some individuals with ADHD show a preference for more stimulating environments, active, hands-on, or busy and fast-paced jobs [ 206 ]. Career planning that incorporates work experience, non-linear progression towards tertiary education and opportunities to re-sit exams or demonstrate potential may be beneficial for those who have struggled to sustain their engagement in a formal school setting.

Guidance for those wishing to embark in further education should take account of the course demands involved (e.g. level of coursework, method of examination). For those who move away from home, transition is further complicated by the many challenges involved in independent living such as financial management, taking responsibility for domestic and occupational arrangements and healthcare. Moving away from home often escalates social demands, with pressure to integrate with people of different ages, cultural backgrounds and interests. It is essential that young people with ADHD make supportive links within the educational organisation (e.g. disability services or student support services) who can support them to access the help to meet their needs, and coordinate with primary health services. This needs to be planned and thought through in advance because a lack of structure and support at this key stage of transition may unveil or amplify ADHD symptoms, together with associated clinical and functional impairments. Adequate support can help young people with ADHD access additional resources. For example, students with ADHD in further or higher education can apply for Disabled Students Allowance ( https://www.gov.uk/disabled-students-allowances-dsas ), which can fund assistive technology (e.g. speech to text software), specialist mentoring (to help with organisational and planning skills) and “academic coaching”.

In general young people with ADHD reach or complete higher education at a later age than their peers [ 201 ]. This can be due to having to repeat years, re-take modules, and obtain extensions for coursework. Many drop out early due to educational or social problems, or early pregnancy. This emphasises the importance for young people having the opportunity to re-access education in later years. However whilst special educational needs support may be available up to age 25 in the UK, women with unrecognised ADHD may experience difficulties in accessing these provisions or meeting eligibility criteria for learning difficulties. Flexible learning systems and support with childcare are helpful initiatives, e.g. in the UK women with children who wish to return to education can obtain childcare support through government initiatives, such as Care to Learn ( https://www.gov.uk/care-to-learn ), and Childcare Grants ( https://www.gov.uk/childcare-grant ).

Occupational considerations and adjustments

In adulthood, ADHD is associated with unemployment or working in unskilled occupations [ 201 ], difficulty maintaining jobs [ 99 , 201 ], and impaired work performance and financial stress [ 207 ]. A longitudinal study following up girls age from eight until age 30, found that women with childhood ADHD were more likely than their peers to have no or few qualifications, be in poorly paid employment, claim benefits, live in temporary or social housing and have a low income [ 68 ].

ADHD qualifies as a disability under the UK Equality Act 2010 [ 196 ], because it can have a substantial and long-term impact on a person’s ability to perform day-to-day activities. This status can afford women with ADHD certain rights, and access to certain services. For women with ADHD commencing employment, additional support may be required regarding the decision to disclose they have a disability. They may need support in understanding the demands of an organisation, the work-role and personnel structure, how to manage interpersonal conflict, and guidance on how to manage their time, plan and prioritise tasks. Diaries, itineraries, lists, reminder notes and similar scaffolding techniques can be adapted to individual needs through a wide range of digital apps currently available at low or no cost.

Women with ADHD may experience particular difficulty returning to work after having children. This is associated with employment penalties linked to educational problems and potentially having left school early with few or no qualifications. Initiatives such as Specialist Employability Support ( https://www.gov.uk/specialist-employability-support ) are available to provide intensive support and training for unemployed people with a disability.

Occupational difficulties may be further compounded by a difficulty managing the effects of persisting ADHD symptoms on job-related and social performance in the workplace, together with the need to balance occupational demands with childcare. Reasonable adjustments in the workplace may be helpfully put in place [ 208 ] but these may only be achieved if women with ADHD elect to disclose they have a disability. This may not be an easy decision as the individual must balance the need to optimise the environment against their fear of social and occupational stigma, the latter including the possibility they may be held back in promotion and/or other career advancement.

On the other hand, disclosing a disability allows for women with ADHD to be treated more favourably under the UK Equality Act 2010 [ 196 ], and benefit from reasonable adjustments that remove barriers in the workplace that would otherwise disadvantage them. Reasonable adjustments are assessed on a case by case basis and extra support for the costs of making reasonable adjustments in the workplace can come from the Access to Work government initiative (see: https://www.gov.uk/access-to-work ). These rights apply to women with ADHD returning to work, taking up employment or becoming diagnosed at any time during their working lives. Employers who fail to comply with this duty would be liable for disability discrimination.

Health and social care

Research suggests an increased involvement of ADHD children with the social care and foster care systems [ 209 , 210 ]. Equipping social care professionals with tools similar to those used in school settings (e.g. the SDQ) may promote a higher level of insight and understanding. Males may be overrepresented in these systems due to high rates of comorbidity with disruptive behavioural problems. Females with ADHD may be more likely to come into contact with social services if they are young single parents struggling with child-care responsibilities; however their underlying ADHD may be unrecognised.

The overrepresentation of developmental disorders in the care population may be the result of a failure in existing services to recognise the specific contribution of these conditions to family breakdown, and an absence of targeted support in such cases. The group recommends that all children at risk of entering the care system should be systematically screened for developmental disorders. Social care professionals may struggle to identify the parenting potential in undiagnosed women with ADHD, and attribute difficulties more to a chaotic lifestyle choice rather than to any underlying disorder. Given the high heritability rates [ 132 ] it is also helpful to consider that other family members may also share symptoms and suffer with associated impairments, when examining family dynamics.

Social and family services will benefit from training so they can provide specific psychoeducational input to support young mothers of ADHD children and young mothers with ADHD. If deemed appropriate, they might refer mothers with ADHD to mental health services for targeted support that aims to develop skills and coping strategies, and to help them manage their own mental health and personal needs and those of their child.

The early sexual activity, promiscuity and higher risk for sexually transmitted diseases in some females with ADHD is likely to increase contact with sexual health clinics. ADHD training should therefore be extended to include service-providers at these clinics in order to raise awareness of the presentation and needs of females with ADHD. For example this may lead to better understanding of the need for additional sexual health education, including digital health education, which in turn may better support these young women and prevent sexual exploitation.

Criminal justice system

Increased rates of delinquent or criminal behaviour may lead to contact with the criminal justice system [ 107 ]. Prevalence of ADHD in incarcerated populations is high, estimated at around one quarter (25.5%) but with no significant differences overall in relation to gender or age. There is however a lower prevalence in adult women than men (22.1% in female adults v. 31.2%, male adults), whereas female youths have a similar prevalence to male youths (30.8% and 29.5%, respectively) [ 107 ]. One study reported that only 18.8% of male adult offenders diagnosed with ADHD in prison had a prior diagnosis of ADHD [ 211 ]. It is likely that this proportion is even lower for females.

Evidence indicates that ADHD treatment is associated with reduced rates of criminality [ 212 ], is tolerated and effective in prison inmates [ 213 ], and improves their quality of life and cognitive function [ 214 ]. This has led to speculation that effective identification and treatment of ADHD may help to reduce reoffending, albeit with reservations surrounding potential for diversion or misuse of medications, treatment adherence, and discontinuity of ADHD treatment after release [ 215 ]. Current best practice recommendations for screening, identifying, treating and supporting ADHD in prisoners and youth offenders are provided in a previous review and consensus report [ 194 ], with particular recommendations for support provided for female offenders.

Females with ADHD are likely to be perceived to deviate substantially from stereotypical expectations of behaviour. The differential diagnosis between BPD and ADHD may be particularly important for females in forensic settings, where a high rate of comorbidity has been reported [ 216 ]. In the criminal justice system, including prison, there may possibly be a more sympathetic approach toward female offenders but, as for males, their ADHD is unlikely to be recognised. The group noted that ADHD is commonly perceived as ‘bad behaviour’ rather than a vulnerability in this setting, perhaps reflecting high rates of critical incidents (verbal and physical aggression, damage to property, self-injury) being reported in prison [ 217 ]. This may be intensified in female offenders with ADHD due to poor understanding of the condition. Further research regarding the interface between the criminal justice system and females with ADHD is needed.

Over 30 years ago, Berry, Shaywitz and Shaywitz warned that girls constitute a ‘silent minority’ in ADHD, with more internalised behaviour making them less likely to be referred for assessment [ 36 ]. This does not appear to have changed. Females with ADHD remain more likely to be unrecognised or mis-identified leading to lower than expected rates of referral, assessment and treatment for ADHD. Whilst this has been attributed to the higher rate of internalised and inattentive only presentation in girls, this omission is remarkable, given that the predominantly inattentive subtype of ADHD has been endorsed by the Diagnostic and Statistical Manual, a key diagnostic tool, for many years.

There are specific barriers that seem to hinder the recognition of ADHD in girls and women. These include symptomatic differences, gender biases due to stereotypical expectations, comorbidities and compensatory functions, which mask or overshadow the effects of ADHD symptoms. There is strong public perception that ADHD is a behavioural disorder that primarily affects males. Hence the challenge is to raise awareness and provide training on the presence and presentation of ADHD in females to agencies that regularly interface with children, young people and adults.

The current health and social care system appears to be better geared toward identifying and treating ADHD presenting alongside behavioural and externalising problems, in particular those that present as overt, disruptive and aggressive in nature, and are more commonly seen in boys and men. It is erroneous to consider that females do not present with hyperactive and impulsive symptoms – they do. However, these are generally less overt and aggressive in nature than the conduct problems displayed by males and instead seem to relate to more social-relational and psychosexual problems and behaviours. Understanding the expression of ADHD in females is the first step towards improving detection, assessment, and treatment, and ultimately enhancing long-term outcomes for girls and women with ADHD.

One of the most consistent topics discussed at the consensus (and across all breakout groups) related to how social-relational and psychosexual problems seem to be more marked in females with ADHD compared with males. Difficulties in managing and maintaining functional interpersonal relationships hinder some girls and women from developing or maintaining a positive social network or accessing peer support. ADHD symptoms and emotional lability seem to be related to dysfunctional coping strategies and dissatisfaction with life [ 77 ]. Lack of planning for the future [ 86 ] may mean that girls and women with ADHD lack constructive activities and occupations in adulthood. These effects may lead to affected girls and women becoming overwhelmed, anxious and low in mood. In turn they may respond by applying dysfunctional coping strategies, such as self-harm and substance use.

Females with ADHD overall have an earlier onset of sexual activity, more sexual partners, and an increased risk of contracting sexually transmitted infections or having an unplanned pregnancy. They are at risk of sexual exploitation, perceived exhibitionism or being considered promiscuous. Social stigma associated with risky sexual behaviour in women may augment social problems, and render affected women vulnerable to being victimised, bullied, harassed, abused, or entering into unhealthy relationships. Young girls with ADHD may become young mothers with ADHD (and possibly also mothers of children with ADHD). This is associated with a further reduction in educational and occupational opportunities. Research is needed to tease out the motivations and causal mechanisms of these behaviours and outcomes in females with ADHD, and if, how and why they may differ from those of males.

Treatment has been reported to moderate the lifetime risks of ADHD for both males and females. The consensus group identified where adjustments to approaches in treatment are needed to better support girls and women with ADHD. This includes more frequent treatment monitoring and psychoeducation at times of personal transition, with a greater focus on functional and emotional aspects of the disorder. The consensus group considered that multi-agency liaison will also be needed to support some girls and women with ADHD. Furthermore, raising awareness of, and providing training about, ADHD in institutions (e.g. educational, social, family, sexual health and criminal justice services) as well as the key healthcare system (primary health, child and adolescent mental health services and adult general psychiatry) will be helpful to improve detection of girls and women with ADHD, increase understanding and reduce stigma.

The consensus highlighted the relative dearth of research on the life-span experience of females with ADHD. Given the higher prevalence of ADHD in males, it would be helpful if studies reporting sex-mixed cohorts segregated data and results by gender. This would be particularly helpful in large clinical or population-based studies, where information on girls with ADHD would otherwise be buried as variance under the predominant male group. Providing sex-segregated results and data for all studies of ADHD (perhaps under supplementary data) would provide information to inform future meta-analyses.

Future research should investigate the presentation and needs of females with ADHD: how they might better be identified and assessed, and how their treatment response should best be evaluated and monitored to effectively improve outcomes. The most recent meta-analyses of gender differences in ADHD symptom presentation and associated features was reported over 15 years ago. An updated meta-analysis including all recent data is now needed. More research is also required to elucidate the interaction of hormones, ADHD symptoms and stimulant medication on functioning during key times of hormonal change (e.g. during the menstrual cycle, pregnancy and the postpartum period, and menopause), to help inform treatment plans. Factors that are associated with hyperactive/impulsive symptoms in females with ADHD and how these differ to males should be investigated further, including sexual behaviours and their motivations in girls and women with ADHD, as well as vulnerabilities to victimisation, physical and sexual assault and cyberbullying.

This consensus will inform effective identification, treatment and support of girls and women with ADHD. To facilitate identification, it is important to move away from the previously predominating ‘disruptive boy’ stereotype of ADHD and understand the more subtle and internalised presentation that predominates in girls and women. In treatment, it is important to consider a lifespan model of care for females with ADHD, which supports the complex and developmentally changing presentation of ADHD in females. Appropriate intervention is expected to have a positive impact on affected girls and women with ADHD, their families, and more broadly on society leading to increased productivity, decreased resource utilization and, most importantly, better outcomes for girls and women.

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Abbreviations

ADHD Child Evaluation

Attention-Deficit/Hyperactivity Disorder

Autism Spectrum Disorder

Adult ADHD Self-report Rating Scale

Borderline Personality Disorder

Conners’ Adult Rating Scales

Cognitive Behavioural Therapy

Conners’ Comprehensive Behavior Rating Scales

Conduct Disorder

Conners’ Continuous Performance Test, third edition

Development and Wellbeing Assessment

Diagnostic Interview of Adult ADHD

Diagnostic Interview for ADHD in Adults with Intellectual Disability

Diagnostic and Statistical Manual of Mental Disorders

Education, Health and Care Plan

International Classification of Diseases

Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version

Learning Disability

Oppositional Defiant Disorder

Personalised Education Plan

The Vanderbilt ADHD Rating Scales

Quantified Behavior Test

Strengths and Difficulties Questionnaire

Swanson, Nolan, and Pelham-IV Questionnaire

Substance Use Disorder

United Kingdom of Great Britain and Northern Ireland

United Kingdom ADHD Partnership

American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington DC: American Psychiatric Association; 2013.

Book   Google Scholar  

World Health Organization. International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10): Version 2019. 2019. https://icd.who.int/browse10/2019/en . Accessed 24 Apr 2020.

Google Scholar  

Asherson P. ADHD across the lifespan. Medicine (Baltimore). 2016;40:623–7 https://doi.org/10.1016/j.mpmed.2016.08.012 .

Willcutt EG. The Prevalence of DSM-IV Attention-Deficit/Hyperactivity Disorder: A Meta-Analytic Review. Neurotherapeutics. 2012;9:490–9.

PubMed   PubMed Central   Google Scholar  

Larsson H, Dilshad R, Lichtenstein P, Barker ED. Developmental trajectories of DSM-IV symptoms of attention-deficit/ hyperactivity disorder: Genetic effects, family risk and associated psychopathology. J Child Psychol Psychiatry. 2011;52:954–63.

PubMed   Google Scholar  

Lapalme M, Déry M, Dubé M, Lemieux A. Developmental Course of ADHD Symptoms Based on Multirater Report in Girls and Boys With or Without a Disruptive Behavior Disorder. J Emot Behav Disord. 2018;26:106–18.

Hinshaw SP, Owens EB, Sami N, Fargeon S. Prospective follow-up of girls with attention-deficit/hyperactivity disorder into adolescence: Evidence for continuing cross-domain impairment. J Consult Clin Psychol. 2006;74:489–99.

Monuteaux MC, Mick E, Faraone SV, Biederman J. The influence of sex on the course and psychiatric correlates of ADHD from childhood to adolescence: A longitudinal study. J Child Psychol Psychiatry Allied Discip. 2010;51:233–41.

Faraone SV, Biederman J, Mick E. The age-dependent decline of attention deficit hyperactivity disorder: A meta-analysis of follow-up studies. Psychol Med. 2006;36:159–65.

Cheung CHM, Rijsdijk F, McLoughlin G, Brandeis D, Banaschewsk T, Asherson P, et al. Cognitive and neurophysiological markers of ADHD persistence and remission. Br J Psychiatry. 2016;208:548–55.

van Lieshout M, Luman M, Twisk JWR, van Ewijk H, Groenman AP, Thissen AJAM, et al. A 6-year follow-up of a large European cohort of children with attention-deficit/hyperactivity disorder-combined subtype: outcomes in late adolescence and young adulthood. Eur Child Adolesc Psychiatry. 2016;25:1007–17.

Du Rietz E, Cheung CHM, McLoughlin G, Brandeis D, Banaschewski T, Asherson P, et al. Self-report of ADHD shows limited agreement with objective markers of persistence and remittance. J Psychiatr Res. 2016;82:91–9.

Karam RG, Breda V, Picon FA, Rovaris DL, Victor MM, Salgado CAI, et al. Persistence and remission of ADHD during adulthood: A 7-year clinical follow-up study. Psychol Med. 2015;45:2045–56.

CAS   PubMed   Google Scholar  

Thapar A, Cooper M. Attention Deficit Hyperactivity Disorder. Lancet. 2016;387:1240–50.

Gillberg C, Gillberg IC, Rasmussen P, Kadesjö B, Söderström H, Råstam M, et al. Co-existing disorders in ADHD - Implications for diagnosis and intervention. Eur Child Adolesc Psychiatry, Suppl. 2004;13:80–92.

Young S, Fridman A, Mandy W. Autistic spectrum disorder symptoms in children and adolescents with attention-deficit/ hyperactivity disorder: ameta-analytical review. Psychological Medicine. 2019:1–14 https://doi.org/10.1017/S0033291719002368 .

Mayes SD, Calhoun SL, Waxmonsky JG, Kokotovich C, Baweja R, Lockridge R, et al. Demographic Differences in Disruptive Mood Dysregulation Disorder Symptoms in ADHD, Autism, and General Population Samples. J Atten Disord. 2019;23:849–58.

Sobanski E. Psychiatric comorbidity in adults with attention-deficit/hyperactivity disorder (ADHD). Eur Arch Psychiatry Clin Neurosci. 2006;256(Suppl. 1):26–31.

Kessler R, Adler L, Barkley R, Biederman J, Conner CK, Demler O, et al. The Prevalence and Correlates of Adult ADHD in the United States: Results From the National Comorbidity Survey Replication. Am J Psychiatry. 2006;163:716–23 https://ajp.psychiatryonline.org/doi/abs/10.1176/ajp.2006.163.4.716 .

Thomas R, Sanders S, Doust J, Beller E, Glasziou P. Prevalence of Attention-Deficit/Hyperactivity Disorder: A Systematic Review and Meta-analysis. Pediatrics. 2015;135:e994–1001.

Simon V, Czobor P, Bálint S, Mészáros Á, Bitter I, Meszáros Á, et al. Prevalence and correlates of adult attention-deficit hyperactivity disorder: meta-analysis. Br J Psychiatry. 2009;194:204–11.

Michielsen M, Semeijn E, Comijs HC, Van De Ven P, Beekman ATF, Deeg DJH, et al. Prevalence of attention-deficit hyperactivity disorder in older adults in the Netherlands. Br J Psychiatry. 2012;201:298–305.

Nøvik TS, Hervas A, Ralston SJ, Dalsgaard S, Rodrigues Pereira R, Lorenzo MJ, et al. Influence of gender on attention-deficit/hyperactivity disorder in Europe - ADORE. Eur Child Adolesc Psychiatry. 2006;15(Suppl. 1):1–24.

Gershon J. A Meta-Analytic Review of Gender Differences in ADHD. J Atten Disord. 2002;5:143–54.

Hinshaw SP. Attention Deficit Hyperactivity Disorder (ADHD): Controversy, Developmental Mechanisms, and Multiple Levels of Analysis. Annu Rev Clin Psychol. 2018;14:291–316.

Greven CU, Richards JS, Buitelaar JK. Sex differences in ADHD. In: Banaschewski T, Coghill D, Zuddas A, editors. Oxford Textbook of Attention Deficit Hyperactivity Disorder. Oxford: Oxford University Press; 2018.

De Zwaan M, Gruß B, Müller A, Graap H, Martin A, Glaesmer H, et al. The estimated prevalence and correlates of adult ADHD in a German community sample. Eur Arch Psychiatry Clin Neurosci. 2012;262:79–86.

Moffitt TE, Houts R, Asherson P, Belsky DW, Corcoran DL, Hammerle M, et al. Is adult ADHD a childhood-onset neurodevelopmental disorder? Evidence from a four-decade longitudinal cohort study. Am J Psychiatry. 2015;172:967–77.

Cortese S, Faraone SV, Bernardi S, Wang S, Blanco C. Gender differences in adult attention-deficit/hyperactivity disorder: Results from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). J Clin Psychiatry. 2016;77:e421–8.

Cortese S. The neurobiology and genetics of Attention-Deficit/Hyperactivity Disorder (ADHD): What every clinician should know. Eur J Paediatr Neurol. 2012;16:422–33 https://doi.org/10.1016/j.ejpn.2012.01.009 .

Biederman J, Faraone SV, Monuteaux MC. Impact of exposure to parental attention-deficit hyperactivity disorder on clinical features and dysfunction in the offspring. Psychol Med. 2002;32:817–27.

Banerjee TD, Middleton F, Faraone SV. Environmental risk factors for attention-deficit hyperactivity disorder. Acta Paediatr. 2007;96:1269–74.

Taylor MJ, Lichtenstein P, Larsson H, Anckarsäter H, Greven CU, Ronald A. Is There a Female Protective Effect Against Attention-Deficit/Hyperactivity Disorder? Evidence From Two Representative Twin Samples. J Am Acad Child Adolesc Psychiatry. 2016;55:504–12 e2.

Rhee SH, Waldman ID. Etiology of sex differences in the prevalence of ADHD: An examination of inattention and hyperactivity-impulsivity. Am J Med Genet. 2004;127B:60–4.

Biederman J, Kwon A, Aleardi M, Chouinard VA, Marino T, Cole H, et al. Absence of gender effects on attention deficit hyperactivity disorder: Findings in nonreferred subjects. Am J Psychiatry. 2005;162:1083–9.

Berry CA, Shaywitz JE, Shaywitz B. Girls with attention deficit disorder: a silent minority? A report on behavioral and cognitive characterisitics. Pediatrics. 1985;76:801–9.

Gentile DA. Special Section : Sex or Gender? Technical Commentary A Call for a New Terminological Standard. Psychol Sci. 2012;4:120–2.

Williamson D, Johnston C. Gender differences in adults with attention-deficit/hyperactivity disorder: A narrative review. Clin Psychol Rev. 2015;40:15–27 https://doi.org/10.1016/j.cpr.2015.05.005 .

Gershon J. Gender Differences in ADHD. ADHD Rep. 2016;10:8–16.

Gaub M, Carlson CL. Gender differences in ADHD: A meta-analysis and critical review. J Am Acad Child Adolesc Psychiatry. 1997;36:1036–45 https://doi.org/10.1097/00004583-199708000-00011 .

Newcorn JH, Halperin JM, Jensen PS, Abikoff HB, Arnold LE, Cantwell DP, et al. Symptom profiles in children with ADHD: Effects of comorbidity and gender. J Am Acad Child Adolesc Psychiatry. 2001;40:137–46 https://doi.org/10.1097/00004583-200102000-00008 .

Millenet S, Laucht M, Hohm E, Jennen-Steinmetz C, Hohmann S, Schmidt MH, et al. Sex-specific trajectories of ADHD symptoms from adolescence to young adulthood. Eur Child Adolesc Psychiatry. 2018;27:1067–75 https://doi.org/10.1007/s00787-018-1129-9 .

Mowlem FD, Rosenqvist MA, Martin J, Lichtenstein P, Asherson P, Larsson H. Sex differences in predicting ADHD clinical diagnosis and pharmacological treatment. Eur Child Adolesc Psychiatry. 2019;28:481–9 https://doi.org/10.1007/s00787-018-1211-3 .

Quinn P, Wigal S. Perceptions of girls and ADHD: Results from a national survey. Medscape Gen Med. 2004;6.

Sciutto MJ, Nolfi CJ, Bluhm C. Effects of child gender and symptom type on referrals for ADHD by elementary school teachers. J Emot Behav Disord. 2004;12:247–53.

Pisecco S, Huzinec C, Curtis D. The Effect of Child Characteristics on Teachers’ Acceptability of Classroom-Based Behavioral Strategies and Psychostimulant Medication for the Treatment of ADHD. J Clin Child Psychol. 2001;30:413–21.

Mowlem F, Agnew-Blais J, Taylor E, Asherson P. Do different factors influence whether girls versus boys meet ADHD diagnostic criteria? Sex differences among children with high ADHD symptoms. Psychiatry Res. 2018;2019(272):765–73 https://doi.org/10.1016/j.psychres.2018.12.128 .

Quinn PO, Madhoo M. A review of attention-deficit/hyperactivity disorder in women and girls: uncovering this hidden diagnosis. Prim Care Companion CNS Disord. 2014;16 https://doi.org/10.4088/PCC.13r01596 .

Bramham J, Murphy DGM, Xenitidis K, Asherson P, Hopkin G, Young S. Adults with attention deficit hyperactivity disorder: An investigation of age-related differences in behavioural symptoms, neuropsychological function and co-morbidity. Psychol Med. 2012;42:2225–34.

Abikoff HB, Jensen PS, Arnold LLE, Hoza B, Hechtman L, Pollack S, et al. Observed classroom behavior of children with ADHD: Relationship to gender and comorbidity. J Abnorm Child Psychol. 2002;30:349–59.

Skogli EW, Teicher MH, Andersen PN, Hovik KT, Øie M. ADHD in girls and boys - gender differences in co-existing symptoms and executive function measures. BMC Psychiatry. 2013;13.

Rasmussen K. Untreated ADHD in Adults Are There Sex Differences in Symptoms, Comorbidity, and Impairment? J Atten Disord. 2008;2010:353–60.

Edvinsson D, Lindström E, Bingefors K, Lewander T, Ekselius L. Gender differences of axis I and II comorbidity in subjects diagnosed with attention-deficit hyperactivity disorder as adults. Acta Neuropsychiatr. 2013;25:165–74.

Klein RG, Mannuzza S, Ramos Olazagasti MA, Roizen E, Hutchison JA, Lashua EC, et al. Clinical and functional outcome of childhood attention-deficit/ hyperactivity disorder 33 years later. Arch Gen Psychiatry. 2012;69:1295–303.

Biederman J, Faraone SV, Monuteaux MC, Bober M, Cadogen E. Gender effects on attention-deficit/hyperactivity disorder in adults, revisited. Biol Psychiatry. 2004;55:692–700.

Quinn P. Gender differences in ADHD. In: Buitelaar JK, Kan CC, Asherson P, editors. ADHD in Adults: Characterization, Diagnosis, and Treatment. Cambridge: Cambridge Univeristy Press; 2011.

Stepp SD, Burke JD, Hipwell AE, Loeber R. Trajectories of attention deficit hyperactivity disorder and oppositional defiant disorder symptoms as precursors of borderline personality disorder symptoms in adolescent girls. J Abnorm Child Psychol. 2012;40:7–20.

Hollingdale J, Woodhouse E, Asherson P, Gudjonsson GH, Young S. A Pilot Study Examining ADHD and Behavioural Disturbance in Female Mentally Disordered Offenders. AIMS Public Heal. 2014;1:100–8.

Dalsgaard S, Mortensen PB, Frydenberg M, Maibing CM, Nordentoft M, Thomsen PH. Association between attention-deficit hyperactivity disorder in childhood and schizophrenia later in adulthood. Eur Psychiatry. 2014;29:259–63 https://doi.org/10.1016/j.eurpsy.2013.06.004 .

Dalsgaard S, Mortensen PB, Frydenberg M, Thomsen PH. Conduct problems, gender and adult psychiatric outcome of children with attention-deficit hyperactivity disorder. Br J Psychiatry. 2002;181:416–21.

Brewerton TD, Duncan AE. Associations between Attention Deficit Hyperactivity Disorder and Eating Disorders by Gender: Results from the National Comorbidity Survey Replication. Eur Eat Disord Rev. 2016;24:536–40.

Nazar BP, Bernardes C, Peachey G, Sergeant J, Mattos P, Treasure J. The risk of eating disorders comorbid with attention-deficit/hyperactivity disorder: A systematic review and meta-analysis. Int J Eat Disord. 2016;49:1045–57.

Cortese S, Moreira-Maia CR, St Fleur D, Morcillo-Peñalver C, Rohde LA, Faraone SV. Association between ADHD and obesity: A systematic review and meta-analysis. Am J Psychiatry. 2016;173:34–43.

Kim J, Mutyala B, Agiovlasitis S, Fernhall B. Health behaviors and obesity among US children with attention deficit hyperactivity disorder by gender and medication use. Prev Med (Baltim). 2011;52:218–22 https://doi.org/10.1016/j.ypmed.2011.01.003 .

Reyero F, Ponce G, Rodriguez-Jimenez R, Fernandez-Dapica P, Taboada D, Martin V, et al. High frequency of childhood ADHD history in women with fibromyalgia. Eur Psychiatry. 2011;26:482–3 https://doi.org/10.1016/j.eurpsy.2010.03.012 .

Sáez-Francàs N, Alegre J, Calvo N, Antonio Ramos-Quiroga J, Ruiz E, Hernández-Vara J, et al. Attention-deficit hyperactivity disorder in chronic fatigue syndrome patients. Psychiatry Res. 2012;200:748–53.

Gudjonsson GH, Sigurdsson JF, Sigfusdottir ID, Young S. An epidemiological study of ADHD symptoms among young persons and the relationship with cigarette smoking, alcohol consumption and illicit drug use. J Child Psychol Psychiatry Allied Discip. 2012;53:304–12.

Brassett-Grundy A, Butler NR. Prevalence and adult outcomes of Attention-Deficit/Hyperactivity Disorder: evidence from a 30-year prospective longitudinal study. BG Occas Pap no 2. 2004. /core/documents/download.asp?id=1210&log_stat=1.

Huntley Z, Young S. Alcohol and Substance Use History Among ADHD Adults: The Relationship With Persistent and Remitting Symptoms, Personality, Employment, and History of Service Use. J Atten Disord. 2014;18:82–90.

Charach A, Yeung E, Climans T, Lillie E. Childhood attention-deficit/hyperactivity disorder and future substance use disorders: comparative meta-analyses. J Am Acad Child Adolesc Psychiatry. 2011;50:9–21 https://doi.org/10.1016/j.jaac.2010.09.019 .

Ottosen C, Petersen L, Larsen JT, Dalsgaard S. Gender Differences in Associations between Attention-Deficit/Hyperactivity Disorder and Substance Use Disorder. J Am Acad Child Adolesc Psychiatry. 2016;55:227–34.e4 https://doi.org/10.1016/j.jaac.2015.12.010 .

Shaw P, Stringaris A, Nigg J, Leibenluft E. Emotion Dysregulation in Attention Deficit Hyperactivity Disorder. Am J Psychiatry. 2014;171:276–93.

Corbisiero S, Mörstedt B, Bitto H, Stieglitz R-D. Emotional Dysregulation in Adults With Attention-Deficit/Hyperactivity Disorder-Validity, Predictability, Severity, and Comorbidity. J Clin Psychol. 2017;73:99–112 https://doi.org/10.1002/jclp.22317 .

Faraone SV, Rostain AL, Blader J, Busch B, Childress AC, Connor DF, et al. Practitioner Review: Emotional dysregulation in attention-deficit/hyperactivity disorder – implications for clinical recognition and intervention. J Child Psychol Psychiatry Allied Discip. 2019;60:133–50.

Barkley RA, Fischer M. The unique contribution of emotional impulsiveness to impairment in major life activities in hyperactive children as adults. J Am Acad Child Adolesc Psychiatry. 2010;49:503–13 https://doi.org/10.1016/j.jaac.2010.01.019 .

Skirrow C, Asherson P. Emotional lability, comorbidity and impairment in adults with attention-deficit hyperactivity disorder. J Affect Disord. 2013;147:80–6.

Gudjonsson GH, Sigurdsson JF, Eyjolfsdottir GA, Smari J, Young S. The relationship between satisfaction with life, ADHD symptoms, and associated problems among university students. J Atten Disord. 2009;12:507–15.

Willcutt EG, Doyle AE, Nigg JT, Faraone S, Pennington BF. Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol Psychiatry. 2005;57:1336–46 https://doi.org/10.1016/j.biopsych.2005.02.006 .

Boonstra AM, Oosterlaan J, Sergeant JA, Buitelaar JK. Executive functioning in adult ADHD: A meta-analytic review. Psychol Med. 2005;35:1097–108.

Rucklidge JJ, Tannock R. Neuropsychological profiles of adolescent with ADHD: Effects of reading difficulties and gender. J Child Psychol Psychiatry Allied Discip. 2002;43:988–1003.

Bora E, Pantelis C. Meta-analysis of social cognition in attention-deficit/hyperactivity disorder (ADHD): Comparison with healthy controls and autistic spectrum disorder. Psychol Med. 2016;46:699–716.

Ros R, Graziano PA. Social Functioning in Children With or At Risk for Attention Deficit/Hyperactivity Disorder: A Meta-Analytic Review. J Clin Child Adolesc Psychol. 2018;47:213–35 https://doi.org/10.1080/15374416.2016.1266644 .

Nijmeijer JS, Minderaa RB, Buitelaar JK, Mulligan A, Hartman CA, Hoekstra PJ. Attention-deficit/hyperactivity disorder and social dysfunctioning. Clin Psychol Rev. 2008;28:692–708.

Greene RW, Biederman J, Faraone SV, Monuteaux MC, Mick E, Dupre EP, et al. Social impairment in girls with ADHD: Patterns, gender comparisons, and correlates. J Am Acad Child Adolesc Psychiatry. 2001;40:704–10.

Babinski DE, Pelham WE, Molina BSG, Gnagy EM, Waschbusch DA, Yu J, et al. Late adolescent and young adult outcomes of girls diagnosed with ADHD in childhood: An exploratory investigation. J Atten Disord. 2011;15:204–14.

Young S, Heptinstall E, Sonuga-Barke EJS, Chadwick O, Taylor E. The adolescent outcome of hyperactive girls: Self-report of psychosocial status. J Child Psychol Psychiatry Allied Discip. 2005;46:255–62.

Young S, Chadwick O, Heptinstall E, Taylor E, Sonuga-Barke EJS. The adolescent outcome of hyperactive girls: Self-reported interpersonal relationships and coping mechanisms. Eur Child Adolesc Psychiatry. 2005;14:245–53.

Holmberg K, Hjern A. Bullying and attention-deficit-hyperactivity disorder in 10-year-olds in a Swedish community. Dev Med Child Neurol. 2008;50:134–8.

Sciberras E, Ohan J, Anderson V. Bullying and peer victimisation in adolescent girls with attention-deficit/hyperactivity disorder. Child Psychiatry Hum Dev. 2012;43:254–70.

Heiman T, Olenik-Shemesh D, Eden S. Cyberbullying involvement among students with ADHD: relation to loneliness, self-efficacy and social support. Eur J Spec Needs Educ. 2015;30:15–29 https://doi.org/10.1080/08856257.2014.943562 .

Becker SP, Mehari KR, Langberg JM, Evans SW. Rates of peer victimization in young adolescents with ADHD and associations with internalizing symptoms and self-esteem. Eur Child Adolesc Psychiatry. 2017;26:201–14.

Bruner MR, Kuryluk AD, Whitton SW. Attention-deficit/hyperactivity disorder symptom levels and romantic relationship quality in college students. J Am Coll Heal. 2015;63:98–108.

Yen JY, Ko CH, Yen CF, Wu HY, Yang MJ. The Comorbid Psychiatric Symptoms of Internet Addiction: Attention Deficit and Hyperactivity Disorder (ADHD), Depression, Social Phobia, and Hostility. J Adolesc Heal. 2007;41:93–8.

Ko C-H, Yen J-Y, Chen C-S, Chen C-C, Yen C-F. Psychiatric Comorbidity of Internet Addiction in College Students: An Interview Study. CNS Spectr. 2008;13:147–53 https://doi.org/10.1017/S1092852900016308 .

Wang B, Yao N, Zhou X, Liu J, Lv Z. The association between attention deficit/hyperactivity disorder and internet addiction: A systematic review and meta-analysis. BMC Psychiatry. 2017;17:1–12.

Yen JY, Liu TL, Wang PW, Chen CS, Yen CF, Ko CH. Association between Internet gaming disorder and adult attention deficit and hyperactivity disorder and their correlates: Impulsivity and hostility. Addict Behav. 2017;64:308–13 https://doi.org/10.1016/j.addbeh.2016.04.024 .

Yen J-Y, Yen C-F, Chen C-S, Tang T-C, Ko C-H. The Association between Adult ADHD Symptoms and Internet Addiction among College Students: The Gender Difference. CyberPsychology Behav. 2009;12:187–91 https://doi.org/10.1089/cpb.2008.0113 .

Andreassen CS, Billieux J, Griffiths MD, Kuss DJ, Demetrovics Z, Mazzoni E, et al. The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: A large-scale cross-sectional study. Psychol Addict Behav. 2016;30:252–62.

Barkley RA, Fischer M, Smallish L, Fletcher K. Young adult outcome of hyperactive children: Adaptive functioning in major life activities. J Am Acad Child Adolesc Psychiatry. 2006;45:192–202 https://doi.org/10.1097/01.chi.0000189134.97436.e2 .

Owens EB, Zalecki C, Gillette P, Hinshaw SP. Girls with Childhood ADHD as Adults: Cross-Domain Outcomes by Diagnostic Persistence. J Consult Clin Psychol. 2017;85:723–36 https://doi.org/10.1037/ccp0000217.Girls .

Lehti V, Niemelö S, Heinze M, Sillanmöki L, Helenius H, Piha J, et al. Childhood predictors of becoming a teenage mother among Finnish girls. Acta Obstet Gynecol Scand. 2012;91:1319–25.

Skoglund C, Kopp Kallner H, Skalkidou A, Wikström A-K, Lundin C, Hesselman S, et al. Association of Attention-Deficit/Hyperactivity Disorder With Teenage Birth Among Women and Girls in Sweden. JAMA Netw Open. 2019;2:e1912463 https://doi.org/10.1001/jamanetworkopen.2019.12463 .

Barkley RA, Cox D. A review of driving risks and impairments associated with attention-deficit/hyperactivity disorder and the effects of stimulant medication on driving performance. J Safety Res. 2007;38:113–28.

Dalsgaard S, Ostergaard SD, Leckman JF, Mortensen PB, Pedersen MG. Mortality in children, adolescents, and adults with attention deficit hyperactivity disorder: A nationwide cohort study. Lancet. 2015;385:2190–6.

Molina BSG, Flory K, Hinshaw SP, Greiner AR, Arnold LE, Swanson JM, et al. Delinquent behavior and emerging substance use in the MTA at 36 months: Prevalence, course, and treatment effects. J Am Acad Child Adolesc Psychiatry. 2007;46:1028–40 https://doi.org/10.1097/chi.0b013e3180686d96 .

Dalsgaard S, Mortensen PB, Frydenberg M, Thomse PH. Long-term criminal outcome of children with attention deficit hyperactivity disorder. Crim Behav Ment Heal. 2013;23:86–98.

Young S, Moss D, Sedgwick O, Fridman M, Hodgkins P. A meta-Analysis of the prevalence of attention deficit hyperactivity disorder in incarcerated populations. Psychol Med. 2015;45:247–58.

Turgay A, Goodman DW, Asherson P, Lasser RA, Babcock TF, Pucci ML, et al. Lifespan Persistence of ADHD: The life transition model and its application. J Clin Psychiatry. 2012;73:192–201.

Patton GC, Viner R. Pubertal transitions in health. Lancet. 2007;369:1130–9.

Taylor A, Deb S, Unwin G. Scales for the identification of adults with attention deficit hyperactivity disorder (ADHD): A systematic review. Res Dev Disabil. 2011;32:924–38 https://doi.org/10.1016/j.ridd.2010.12.036 .

Conners. Comprehensive Behavior Rating Scales (Conners CBRS). North Tonawanda: Multi-Health Systems Inc; 2008.

Swanson JM. The SNAP-IV Teacher and Parent Rating Scale: 90 item. http://www.shared-care.ca/files/Scoring_for_SNAP_IV_Guide_26-item.pdf . Accessed 1 Oct 2019.

Young S. Rate and Rate C Scales, ACE. https://www.psychology-services.uk.com/adhd.htm . Accessed 1 Oct 2019.

Kaufman J, Birmaher B, Axelson D, Perepletchikova F, Brent D, Ryan N. K-SADS-PL Screener (2016). 2016. https://www.kennedykrieger.org/sites/default/files/library/documents/faculty/ksads-dsm-5-screener.pdf . Accessed 1 Oct 2019.

Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, Williamson D, Ryan N. Schedule for affective disorders and Schizophrenia for schoolage children-present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry. 1997;36(7):980–8.

Goodman R. The Strengths and Difficulties Questionnaire: : A Research Note. J Child Psychol Psychiatry. 1997;38:581–6 http://www.sdqinfo.com/py/sdqinfo/b3.py?language=Englishqz (UK). Accessed 1 Oct 2019.

Wolraich M, Lambert W, Doffing M, Bickman L, Simmons T, Worley K. Psychometric Properties of the Vanderbilt ADHD Diagnostic Parent Rating Scale in a Referred Population. J Pediatr Psychol. 2003;28:559–86 https://www.nichq.org/sites/default/files/resource-file/NICHQ_Vanderbilt_Assessment_Scales.pdf . Accessed 1 Oct 2019.

Goodman R, Ford T, Richards H, Gatward R, Meltzer H. The Development and Well-Being Assessment: Description and initial validation of an integrated assessement of child and adolescent psychopathology. J Child Psychol Psychiatry Allied Discip. 2000;41:645–55 https://www.dawba.info/py/dawbainfo/b1list.py?language=English .

CAS   Google Scholar  

Conners C, Erhardt D, Sparrow E. The Conners adult ADHD rating scale. Toronto, Ontario, Canada: Multi-Health Systems Inc.; 1998.

Ustun B, Adler LA, Rudin C, Faraone SV, Spencer TJ, Berglund P, et al. The world health organization adult attention-deficit/hyperactivity disorder self-report screening scale for DSM-5. JAMA Psychiatry. 2017;74:520–6.

Psychology Services Limited. ADHD Child Evaluation: A diagnostic interview of ADHD in children. 2015. http://www.divacenter.eu/Content/Downloads/ACE.pdf . Accessed 16 May 2019.

DIVA Foundation. Young DIVA-5. 2017. http://www.divacenter.eu/DIVA.aspx?id=535&cc=GB . Accessed 16 May 2019.

Young S. Psychology Services Limited. ACE+: A diagnostic interview of ADHD in adults; 2016. p. 1–43. https://www.psychology-services.uk.com/resource-registration.htm?type=resources&id=ACEPLUS_English.pdf . Accessed 10 Jan 2020.

Epstein JN, Johnson DE, Conners CK. Conners’ Adult ADHD Diagnostic Interview for DSM-IV (CAADID). NorthTonawanda: Multi Health Systems; 2001. https://www.mhs.com/MHS-Assessment?prodname=caadhf .

DIVA Foundation. DIVA-5. 2017. http://www.divacenter.eu/DIVA.aspx?id=529&cc=GB . Accessed 16 May 2019.

Nadeau K, Littman E, Quinn P. AD/HD self-rating scale for girls. Advantage Books, LLC; 2015. https://www.researchgate.net/publication/242642028_ADHD_SELF-RATING_SCALE_FOR_GIRLS . Accessed 2 Oct 2019..

Nadeau K, Quinn P. Women’s AD/HD Self-assessment symptom inventory (SASI). In: Nadeau KG, Quinn PO, editors. Understanding Women With AD/HD. MD, USA: Advantage books; 2002. p. 24–43. http://www.merkercounseling.com/ADHDSelfAssessmentWomen.pdf . Accessed 1 Oct 2019.

Hinshaw SP, Owens EB, Zalecki C, Huggins SP, Montenegro-Nevado AJ, Schrodek E, et al. Prospective Follow-up of Girls with Attention-deficit/ Hyperactivity Disorder into Early Adulthood: Continuing Impairment Includes Elevated Risk for Suicide Attempts and Self-Injury. J Consult Clin Psychol. 2012;80:1041–51.

Swanson EN, Owens EB, Hinshaw SP. Pathways to self-harmful behaviors in young women with and without ADHD: A longitudinal examination of mediating factors. J Child Psychol Psychiatry Allied Discip. 2014;55:505–15.

Philipsen A, Hornyak M, Riemann D. Sleep and sleep disorders in adults with attention deficit / hyperactivity disorder. Sleep Med Rev. 2006;10:399–405.

Cortese S, Faraone SV, Konofal E, Lecendreux M. Sleep in Children With Attention-Deficit/Hyperactivity Disorder: Meta-Analysis of Subjective and Objective Studies. J Am Acad Child Adolesc Psychiatry. 2009;48:894–908 https://doi.org/10.1097/CHI.0b013e3181ae09c9 .

Kooij JJS, Bijlenga D, Salerno L, Jaeschke R, Bitter I, Balázs J, et al. Updated European Consensus Statement on diagnosis and treatment of adult ADHD. Eur Psychiatry. 2019;56:14–34 https://doi.org/10.1016/j.eurpsy.2018.11.001 .

Ohan JL, Johnston C. Gender appropriateness of symptom criteria for attention-deficit/ hyperactivity disorder, oppositional-defiant disorder, and conduct disorder. Child Psychiatry Hum Dev. 2005;35:359–81.

Young S. BGaze ACE. https://bgaze.com/en/ace . Accessed 2 Oct 2019.

Conners CK. Conners’ Continuous Performance Test - third edition. Bloomington: Pearson; 2014.

Ulberstad F. QbTest Technical Manual. rev. ed. Stockholm: QbTech AB; 2012.

Shaw M, Hodgkins P, Caci H, Young S, Kahle J, Woods AG, et al. A systematic review and analysis of long-term outcomes in attention deficit hyperactive disorder. BMC Med. 2012;10:1–15 https://doi.org/10.1186/1741-7015-10-99 .

Arnold LE, Hodgkins P, Caci H, Kahle J, Young S. Effect of treatment modality on long-term outcomes in attention-deficit/hyperactivity disorder: A systematic review. PLoS One. 2015;10:1–19.

National Institute for Health and Care Excellence. Attention deficit hyperactivity disorder: diagnosis and management. 2019. https://www.nice.org.uk/guidance/ng87 . Accessed 8 Nov 2019.

Cortese S, Adamo N, Del Giovane C, Mohr-Jensen C, Hayes AJ, Carucci S, et al. Comparative efficacy and tolerability of medications for attention-deficit hyperactivity disorder in children, adolescents, and adults: a systematic review and network meta-analysis. Lancet Psychiatry. 2018;5:727–38 https://doi.org/10.1016/S2215-0366(18)30269-4 .

Dulcan M, Dunne JE, Ayres W, Arnold V, Benson RS, Bernet W, et al. Practice parameters for the assessment and treatment of children, adolescents, and adults with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 1997;36(10 Suppl):85S–121S.

Mészáros Á, Czobor P, Bálint S, Komlósi S, Simon V, Bitter I. Pharmacotherapy of adult attention deficit hyperactivity disorder (ADHD): A meta-analysis. Int J Neuropsychopharmacol. 2009;12:1137–47.

Sharp WS, Walter JM, Marsh WL, Ritchie GF, Hamburger SD, Castellanos FX. ADHD in girls: Clinical comparability of a research sample. J Am Acad Child Adolesc Psychiatry. 1999;38:40–7.

Polanczyk G, Faraone SV, Bau CHD, Victor MM, Becker K, Pelz R, et al. The impact of individual and methodological factors in the variability of response to methylphenidate in ADHD pharmacogenetic studies from four different continents. Am J Med Genet Part B Neuropsychiatr Genet. 2008;147:1419–24.

Dalsgaard S, Leckman JF, Nielsen HS, Simonsen M. Gender and injuries predict stimulant medication use. J Child Adolesc Psychopharmacol. 2014;24:253–9.

CAS   PubMed   PubMed Central   Google Scholar  

Biederman J, Monuteaux MC, Spencer T, Wilens TE, Faraone SV. Do stimulants have a protective effect on the development of psychiatric disorders in youth with ADHD? A ten-year follow-up study. Pediatrics. 2009;124:71–8.

Daviss WB, Birmaher B, Diler RS, Mintz J. Does Pharmacotherapy for Attention-Deficit/Hyperactivity Disorder Predict Risk of Later Major Depression? J Child Adolesc Psychopharmacol. 2008;18:257–64 https://doi.org/10.1089/cap.2007.0100 .

Madjar N, Shlosberg D, Leventer-Roberts M, Akriv A, Ghilai A, Hoshen M, et al. Childhood methylphenidate adherence as a predictor of antidepressants use during adolescence. Eur Child Adolesc Psychiatry. 2019; https://doi.org/10.1007/s00787-019-01301-z .

Sternat T, Fotinos K, Fine A, Epstein I, Katzman MA. Low hedonic tone and attention-deficit hyperactivity disorder: Risk factors for treatment resistance in depressed adults. Neuropsychiatr Dis Treat. 2018;14:2379–87.

Chen MH, Pan TL, Hsu JW, Huang KL, Su TP, Li CT, et al. Attention-deficit hyperactivity disorder comorbidity and antidepressant resistance among patients with major depression: A nationwide longitudinal study. Eur Neuropsychopharmacol. 2016;26:1760–7 https://doi.org/10.1016/j.euroneuro.2016.09.369 .

Halmøy A, Fasmer OB, Gillberg C, Haavik J. Occupational Outcome in Adult ADHD: Impact of Symptom Profile, Comorbid Psychiatric Problems, and Treatment. J Atten Disord. 2009;13:175–87.

Dalsgaard S, Nielsen HS, Simonsen M. Consequences of ADHD medication use for children’s outcomes. J Health Econ. 2014;37:137–51 https://doi.org/10.1016/j.jhealeco.2014.05.005 .

Cortese S, Castellanos FX. The relationship between ADHD and obesity: Implications for therapy. Expert Rev Neurother. 2014;14:473–9.

Quinn PD, Chang Z, Hur K, Gibbons RD, Lahey BB, Rickert ME, et al. ADHD medication and substance-related problems. Am J Psychiatry. 2017;174:877–85.

Lachaine J, Beauchemin C, Sasane R, Hodgkins PS. Treatment patterns, adherence, and persistence in ADHD: A Canadian perspective. Postgrad Med. 2012;124:139–48.

Gajria K, Lu M, Sikirica V, Greven P, Zhong Y, Qin P, et al. Adherence, persistence, and medication discontinuation in patients with attention-deficit/hyperactivity disorder - A systematic literature review. Neuropsychiatr Dis Treat. 2014;10:1543–69.

Barner JC, Khoza S, Oladapo A. ADHD medication use, adherence, persistence and cost among Texas Medicaid children. Curr Med Res Opin. 2011;27:13–22.

Graham J, Coghill D. Adverse Effects of Pharmacotherapies for Attention-Deficit Hyperactivity Disorder : Epidemiology. Prevention and Management I. CNS Drugs. 2008;22:213–37.

Justice AJH, de Wit H. Acute effects of d -amphetamine during the follicular and luteal phases of the menstrual cycle in women. Psychopharmacology (Berl). 2002;145:67–75.

White TL, Justice AJH, De Wit H. Differential subjective effects of D-amphetamine by gender, hormone levels and menstrual cycle phase. Pharmacol Biochem Behav. 2002;73:729–41.

Justice AJH, de Wit H. Acute Effects of Estradiol Pretreatment on the Response to d-Amphetamine in Women. Neuroendocrinology. 2000;71:67–75.

Quinn PO. Treating adolescent girls and women with ADHD: Gender-specific issues. J Clin Psychol. 2005;61:579–87.

Crowell SE, Beauchaine TP, Linehan MM. A Biosocial Developmental Model of Borderline Personality: Elaborating and Extending Linehan’s Theory. Psychol Bull. 2009;135:495–510. https://doi.org/10.1037/a0015616 .

Matthies S, Philipsen A. Comorbidity of Personality Disorders and Adult Attention Deficit Hyperactivity Disorder (ADHD)—Review of Recent Findings. Curr Psychiatry Rep. 2016;18:1–7.

Young S, Gudjonsson GH. ADHD symptomatology and its relationship with emotional, social and delinquency problems. Psychol Crime Law. 2006;12:463–71.

Jiang HY, Zhang X, Jiang CM, Fu HB. Maternal and neonatal outcomes after exposure to ADHD medication during pregnancy: A systematic review and meta-analysis. Pharmacoepidemiol Drug Saf. 2019;28:288–95.

Spigset O, Brede WR, Zahlsen K. Excretion of Methylphenidate in Breast Milk Mirtazapine and Breastfeeding : Maternal and. Am J Psychiatry. 2007;2:348.

Sonuga-Barke E, Brandeis D, Cortese S, Daley D, Ferrin M, Holtmann M, et al. Nonpharmacological Interventions for ADHD: Systematic Review and Meta-analysis of Randomized Controlled Trials of Dietary and Psychological Treatments. Am J Psychiatry. 2013;170:275–89 https://doi.org/10.1176/appi.ajp.2012.12070991 .

Cortese S, Ferrin M, Brandeis D, Buitelaar J, Daley D, Dittmann RW, et al. Cognitive training for attention-deficit/hyperactivity disorder: Meta-analysis of clinical and neuropsychological outcomes from randomized controlled trials. J Am Acad Child Adolesc Psychiatry. 2015;54:164–74 https://doi.org/10.1016/j.jaac.2014.12.010 .

Cortese S, Ferrin M, Brandeis D, Holtmann M, Aggensteiner P, Daley D, et al. Neurofeedback for Attention-Deficit/Hyperactivity Disorder: Meta-Analysis of Clinical and Neuropsychological Outcomes From Randomized Controlled Trials. J Am Acad Child Adolesc Psychiatry. 2016;55:444–55.

Riesco-Matías P, Yela-Bernabé JR, Crego A, Sánchez-Zaballos E. What Do Meta-Analyses Have to Say About the Efficacy of Neurofeedback Applied to Children With ADHD? Review of Previous Meta-Analyses and a New Meta-Analysis. J Atten Disord. 2019.

Theule J, Cheung K, Aberdeen K. Children’s ADHD Interventions and Parenting Stress: A Meta-Analysis. J Child Fam Stud. 2018;27:2744–56 https://doi.org/10.1007/s10826-018-1137-x .

Bikic A, Reichow B, McCauley SA, Ibrahim K, Sukhodolsky DG. Meta-analysis of organizational skills interventions for children and adolescents with Attention-Deficit/Hyperactivity Disorder. Clin Psychol Rev. 2017;52:108–23 https://doi.org/10.1016/j.cpr.2016.12.004 .

Daley D, Van Der Oord S, Ferrin M, Danckaerts M, Doepfner M, Cortese S, et al. Behavioral interventions in attention-deficit/hyperactivity disorder: A meta-analysis of randomized controlled trials across multiple outcome domains. J Am Acad Child Adolesc Psychiatry. 2014;53:835–47.e5 https://doi.org/10.1016/j.jaac.2014.05.013 .

Young Z, Moghaddam N, Tickle A. The Efficacy of Cognitive Behavioral Therapy for Adults With ADHD: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Atten Disord. 2020;24:875–88.

Xue J, Zhang Y, Huang Y, Tusconi M. A meta-analytic investigation of the impact of mindfulness-based interventions on ADHD symptoms. Med (United States). 2019;98:1–10.

Ramboll and the National Board of Social Services Denmark. Better help for young people and adults with ADHD and corresponding difficulties Final evaluation report. 2020. https://www.psychology-services.uk.com/danish-report-on-r-r2-adhd . Accessed 23 Apr 2020.

Young S, Myanthi AJ. Practitioner Review: Non-pharmacological treatments for ADHD: A lifespan approach. J Child Psychol Psychiatry Allied Discip. 2010;51:116–33.

De Ridder A, De Graeve D. Healthcare use, social burden and costs of children with and without ADHD in Flanders. Belgium. Clin Drug Investig. 2006;26:75–90.

Usami M. Functional consequences of attention-deficit hyperactivity disorder on children and their families. Psychiatry Clin Neurosci. 2016;70:303–17.

Shreeram S, He JP, Kalaydjian A, Brothers S, Merikangas KR. Prevalence of enuresis and its association with attention-deficit/ hyperactivity disorder among U.S. children: Results from a nationally representative study. J Am Acad Child Adolesc Psychiatry. 2009;48:35–41.

Ghanizadeh A, Mohammadi MR, Moini R. Comorbidity of Psychiatric Disorders and Parental Psychiatric Disorder of ADHD Children. J Atten Disord. 2008:149–55 https://doi.org/10.1177/1087054708314601 .

Young S, Smith J. Helping Children with ADHD. A CBT Guide for Practitioners, Parents and Teachers. Chichester: Wiley; 2017.

Young S. The STAR Detective Facilitator Manual: A Cognitive Behavioral Group Intervention to Develop Skilled Thinking and Reasoning for Children with Cognitive, Behavioral, Emotional and Social Problems. London: Jessica Kingsley; 2017.

Young S. Becoming a STAR Detective!: Your Detective’s Notebook for Finding Clues to How You Feel. London: Jessica Kingsley; 2017.

Atzori P, Usala T, Carucci S, Danjou F, Zuddas A. Predictive Factors for Persistent Use and Compliance of Immediate-Release Methylphenidate: A 36-Month Naturalistic Study. J Child Adolesc Psychopharmacol. 2009;19:673–81.

Blakemore S-J. Inventing ourselves: the secret life of the teenage brain: Doubleday; 2018.

Dawson AE, Wymbs BT, Evans SW, DuPaul GJ. Exploring how adolescents with ADHD use and interact with technology. J Adolesc. 2019;71:119–37 https://doi.org/10.1016/j.adolescence.2019.01.004 .

McManus S, Meltzer H, Brugha T, Bebbington P, Jenkins R. Adult Psychiatric Morbidity in England 2007: Results of a household survey. Leeds: The NHS Information Centre; 2009.

Treas J, Tai T. Gender Inequality in Housework Across 20 European Nations: Lessons from Gender Stratification Theories. Sex Roles. 2016;74:495–511 https://doi.org/10.1007/s11199-015-0575-9 .

Ferrant G, Pesando LM, Nowacka K. Unpaid Care Work: The missing link in the analysis of gender gaps in labour outcomes. OECD Development Centre. 2014. https://www.oecd.org/dev/development-gender/Unpaid_care_work.pdf . Accessed 15 May 2019.

Age UK. Breaking Point The Social Care Burden on Women. 2019. https://www.ageuk.org.uk/contentassets/c3dac0771e614672b363c5fe7e6f826e/breaking-point-age-uk.pdf . Accessed 15 May 2019.

Park JL, Hudec KL, Johnston C. Parental ADHD symptoms and parenting behaviors: A meta-analytic review. Clin Psychol Rev. 2017;56:25–39 https://doi.org/10.1016/j.cpr.2017.05.003 .

Young S, Gudjonsson G, Chitsabesan P, Colley B, Farrag E, Forrester A, et al. Identification and treatment of offenders with attention-deficit/hyperactivity disorder in the prison population: A practical approach based upon expert consensus. BMC Psychiatry. 2018;18:1–16.

Uchida M, Spencer TJ, Faraone SV, Biederman J. Adult Outcome of ADHD: An Overview of Results From the MGH Longitudinal Family Studies of Pediatrically and Psychiatrically Referred Youth With and Without ADHD of Both Sexes. J Atten Disord. 2018;22:523–34.

House of Lords Select Committee on the Equality Act. The Equality Act 2010: the impact on disabled people: London Station Off; 2016. p. 1–171.

Sedgwick JA. University students with attention deficit hyperactivity disorder (ADHD): A literature review. Ir J Psychol Med. 2018;35:221–35.

Veenman B, Luman M, Hoeksma J, Pieterse K, Oosterlaan J. A Randomized Effectiveness Trial of a Behavioral Teacher Program Targeting ADHD Symptoms. J Atten Disord. 2019;23:293–304.

LeFever GB, Villers MS, Morrow AL, Vaughn ES. Parental perceptions of adverse educational outcomes among children diagnosed and treated for ADHD: A call for improved school/provider collaboration. Psychol Sch. 2002;39:63–71.

Owens EB, Hinshaw SP. Adolescent Mediators of Unplanned Pregnancy among Women with and without Childhood ADHD. J Clin Child Adolesc Psychol. 2020;49:229–38 https://doi.org/10.1080/15374416.2018.1547970 .

Kuriyan AB, Pelham WE, Molina BSGG, Waschbusch DA, Gnagy EM, Sibley MH, et al. Young adult educational and vocational outcomes of children diagnosed with ADHD. J Abnorm Child Psychol. 2013;41:27–41 https://doi.org/10.1007/s10802-012-9658-z .

Polderman TJC, Boomsma DI, Bartels M, Verhulst FC, Huizink AC. A systematic review of prospective studies on attention problems and academic achievement: Review. Acta Psychiatr Scand. 2010;122:271–84.

de Zeeuw EL, van Beijsterveldt CEM, Ehli EA, de Geus EJC, Boomsma DI. Attention Deficit Hyperactivity Disorder Symptoms and Low Educational Achievement: Evidence Supporting A Causal Hypothesis. Behav Genet. 2017;47:278–89.

Moldavsky M, Groenewald C, Owen V, Sayal K. Teachers’ recognition of children with ADHD: Role of subtype and gender. Child Adolesc Ment Health. 2013;18:18–23.

Drigas AS, Ioannidou R-E, Kokkalia G, Lytras MD. ICTs, mobile learning and social media to enhance learning for attention difficulties. J Univers Comput Sci. 2014;20:1499–510.

Lasky AK, Weisner TS, Jensen PS, Hinshaw SP, Hechtman L, Arnold LE, et al. ADHD in context: Young adults’ reports of the impact of occupational environment on the manifestation of ADHD. Soc Sci Med. 2016;161:160–8.

Brook JS, Brook DW, Zhang C, Seltzer N, Finch SJ. Adolescent ADHD and Adult Physical and Mental Health, Work Performance, and Financial Stress. Pediatrics. 2013;131:5–13 https://doi.org/10.1542/peds.2012-1725 .

Adamou M, Arif M, Asherson P, Aw TC, Bolea B, Coghill D, et al. Occupational issues of adults with ADHD. BMC Psychiatry. 2013;13.

Garland AF, Hough RL, McCabe KM, Yeh M, Wood PA, Aarons GA. Prevalence of psychiatric disorders in youths across five sectors of care. J Am Acad Child Adolesc Psychiatry. 2001;40:409–18 https://doi.org/10.1097/00004583-200104000-00009 .

Harman JS, Childs GE, Kelleher KJ. Mental health care utilization and expenditures by children in foster care. Arch Pediatr Adolesc Med. 2000;154:1114–7 https://jamanetwork.com/journals/jamapediatrics/fullarticle/352217 .

Young S, González RA, Fridman M, Hodgkins P, Kim K, Gudjonsson GH. The economic consequences of attention-deficit hyperactivity disorder in the Scottish prison system. BMC Psychiatry. 2018;18:1–11.

Lichtenstein P, Halldner L, Zetterqvist J, Sjölander A, Serlachius E, Fazel S, et al. Medication for attention deficit-hyperactivity disorder and criminality. N Engl J Med. 2012;367:2006–14.

Ginsberg Y, Lindefors N. Methylphenidate treatment of adult male prison inmates with attention-deficit hyperactivity disorder: Randomised double-blind placebo-controlled trial with open-label extension. Br J Psychiatry. 2012;200:68–73.

Ginsberg Y, Hirvikoski T, Grann M, Lindefors N. Long-term functional outcome in adult prison inmates with ADHD receiving OROS-methylphenidate. Eur Arch Psychiatry Clin Neurosci. 2012;262:705–24.

Ginsberg Y, Långström N, Larsson H, Lichtenstein P. ADHD and criminality: Could treatment benefit prisoners with ADHD who are at higher risk of reoffending? Expert Rev Neurother. 2013;13:345–8.

Rösler M, Retz W, Yaqoobi K, Burg E, Retz-Junginger P. Attention deficit/hyperactivity disorder in female offenders: Prevalence, psychiatric comorbidity and psychosocial implications. Eur Arch Psychiatry Clin Neurosci. 2009;259:98–105.

Young S, Gudjonsson GH, Wells J, Asherson P, Theobald D, Oliver B, et al. Attention deficit hyperactivity disorder and critical incidents in a Scottish prison population. Pers Individ Dif. 2009;46:265–9 https://doi.org/10.1016/j.paid.2008.10.003 .

Download references

Acknowledgements

We are grateful to the assistance of Catherine Coles, Alex Nolan and Hannah Stynes who attended the consensus meeting and made notes during the breakout sessions.

The meeting was funded by the UK ADHD Partnership (UKAP), who has been in receipt of unrestricted educational donations from Takeda. Takeda had no influence or involvement in determining the topic and arrangements of the day, the consensus process and outcomes, or writing the final manuscript. Other than reimbursement of travel expenses to attend the meeting, none of the authors received any financial compensation for attending the meeting or writing the manuscript, aside from CS who received funds for medical writing assistance.

Author information

Authors and affiliations.

Psychology Services Limited, PO 1735, Croydon, London, CR9 7AE, UK

Susan Young

Department of Psychology, Reykjavik University, Reykjavik, Iceland

Susan Young, Bryndís Björk Ásgeirsdóttir & Gisli Gudjonsson

Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK

Nicoletta Adamo & Jane Sedgwick

Service for Complex Autism and Associated Neurodevelopmental Disorders, South London and Maudsley NHS Foundation Trust, Michael Rutter Centre, London, UK

Nicoletta Adamo

Oxford ADHD and Autism Centre, Oxford, UK

Polly Branney

ADHD Action, Harrogate, North Yorkshire, UK

Michelle Beckett

CLC Consultancy, Perth, UK

William Colley

Manor Hospital, Oxford, UK

Sally Cubbin

National Autism Unit, Bethlem Royal Hospital, South London and Maudsley NHS Foundation Trust, Beckenham, UK

Quinton Deeley

Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, London, UK

Quinton Deeley & Emma Woodhouse

South London & Maudsley NHS Foundation Trust, Maudsley Health, Abu Dhabi, UAE

Emad Farrag

Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK

Gisli Gudjonsson

Independent Consultant in Child and Adolescent Psychiatry, Private Practice, London, UK

Michael Rutter Centre, South London and Maudsley Hospital, London, UK

Jack Hollingdale

Koc University, Istanbul, Turkey

ADHD Foundation, Liverpool, UK

ADHD and Psychiatry Services Limited, Liverpool, UK

Peter Mason

Tavistock and Portman NHS Foundation Trust, London, UK

Eleni Paliokosta

St Thomas’ Hospital London, London, UK

Sri Perecherla

Faculty of Nursing, Midwifery & Palliative Care, King’s College London, London, UK

Jane Sedgwick

Cambridge Cognition, Cambridge, UK

Caroline Skirrow

School of Psychological Science, University of Bristol, Bristol, UK

Neuropsychiatry Team, National Specialist CAMHS, South London and Maudsley NHS Foundation Trust, London, UK

Kevin Tierney

Adult ADHD and AS Team & CYP ADHD and ASD Service in Northamptonshire, Northampton, UK

Kobus van Rensburg

Compass, London, UK

Emma Woodhouse

You can also search for this author in PubMed   Google Scholar

Contributions

SY was responsible for the planning and scientific input of this consensus statement. All authors (except NA and EF) attended the consensus meeting. CS completed the first draft of the manuscript. It was substantially revised by SY with further input from EF and BC. The second draft was circulated to all authors for comment and endorsement of the consensus. Following further amendments, the final draft was circulated once more and all authors have read and approved the final manuscript.

Corresponding author

Correspondence to Susan Young .

Ethics declarations

Ethics approval and consent to participate.

The current report reflects a review of the research literature on ADHD in girls and women, and a consensus agreement amongst all authors based on this evidence and their clinical experience. As a result, neither consent for participation, nor ethical approval for this work were required.

Consent for publication

Not applicable

Competing interests

In the last 5 years: SY has received honoraria for consultancy and educational talks years from Janssen, HB Pharma and/or Shire. She is author of the ADHD Child Evaluation (ACE) and ACE+ for adults; and lead author of R&R2 for ADHD Youths and Adults. PH has received honoraria for consultancy and educational talks in the last 5 years from Shire, Janssen and Flynn. He has acted as an expert witness for Lilly. PM has received honoraria for consultancy and educational talks from Shire and Flynn. KvR has received honoraria for educational talks from Shire, Lilly, Janssen, Medici and Flynn. In addition SY, PB, WC, PH, PM and EW are affiliated on a full-time basis with consultancy firms/private practices. CS is employed by Cambridge Cognition. JS has received speakers’ honoraria from Shire, is in receipt of an educational grant from the Royal College of Nursing (RCN) Foundation Trust for a contribution towards PhD tuition & conference fees/ costs and is an Executive Committee Member of the UK Adult ADHD Network ( UKAAN.org ). The remaining authors have no disclosures.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Young, S., Adamo, N., Ásgeirsdóttir, B.B. et al. Females with ADHD: An expert consensus statement taking a lifespan approach providing guidance for the identification and treatment of attention-deficit/ hyperactivity disorder in girls and women. BMC Psychiatry 20 , 404 (2020). https://doi.org/10.1186/s12888-020-02707-9

Download citation

Received : 27 January 2020

Accepted : 31 May 2020

Published : 12 August 2020

DOI : https://doi.org/10.1186/s12888-020-02707-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Attention-deficit/hyperactivity disorder (ADHD)
  • Identification
  • Interventions

BMC Psychiatry

ISSN: 1471-244X

adhd case study

adhd case study

Faculty and Disclosures

Disclosure of conflicts of interest, disclosure of unlabeled use.

adhd case study

Attention-deficit Hyperactivity Disorder (ADHD): Two Case Studies

  • Authors: Authors: Joseph Biederman, MD; Stephen V. Faraone, PhD
  • THIS ACTIVITY HAS EXPIRED FOR CREDIT

Target Audience and Goal Statement

This activity has been designed to meet the educational needs of pediatricians, family practitioners, child and adolescent psychiatrists, and general psychiatrists involved in the management of patients with ADHD.

Attention-deficit hyperactivity disorder (ADHD) is a chronic condition that affects 8% to 12% of school-aged children and contributes significantly to academic and social impairment. There is currently broad agreement on evidence-based best practices of ADHD identification and diagnosis, therapeutic approach, and monitoring. However, the increasing rate of diagnosis and treatment in the pediatric population has contributed to the significant public debate and misunderstanding of ADHD. Despite increased awareness, Attention-deficit hyperactivity disorder (ADHD) is a chronic condition that affects 8% to 12% of school-aged children and contributes significantly to academic and social impairment. There is currently broad agreement on evidence-based best practices of ADHD identification and diagnosis, therapeutic approach, and monitoring. However, the increasing rate of diagnosis and treatment in the pediatric population has contributed to the significant public debate and misunderstanding of ADHD. Despite increased awareness, ADHD remains underrecognized and may be undertreated by a factor of 10 to 1 in the US population. In order to educate the public and ensure optimal outcomes for ADHD patients, this continuing education activity has been developed to provide physicians and other healthcare providers with the most current information available on assessing and treating ADHD.

Upon completion of this activity, participants should be able to:

  • Discuss the incidence of ADHD in adolescents and adults.
  • Identify DSM-IV criteria used to make the diagnosis of ADHD in each age group.
  • List important comorbidities of ADHD and identify distinguishing features between ADHD and other psychiatric diagnoses with similar manifestations.
  • Describe a pharmacologic approach to ADHD treatment, including treatment goals and choice of medication.
  • Enumerate self-management skills to be recommended when coaching ADHD patients on how to get along at school, at work, and at home.

Disclosures

Accreditation statements, for physicians.

This activity has been planned and implemented in accordance with the Essential Areas and Policies of the Accreditation Council for Continuing Medical Education (ACCME). The Postgraduate Institute for Medicine is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians.

The Postgraduate Institute for Medicine designates this educational activity for a maximum of 1.0 Category 1 credit toward the AMA Physician's Recognition Award. Each physician should claim only those credits that he/she actually spent in the activity.

Contact This Provider

For questions regarding the content of this activity, contact the accredited provider for this CME/CE activity noted above. For technical assistance, contact [email protected]

Instructions for Participation and Credit

There are no fees for participating in or receiving credit for this online educational activity. For information on applicability and acceptance of continuing education credit for this activity, please consult your professional licensing board. This activity is designed to be completed within the time designated on the title page; physicians should claim only those credits that reflect the time actually spent in the activity. To successfully earn credit, participants must complete the activity online during the valid credit period that is noted on the title page. Follow these steps to earn CME/CE credit*:

  • Read the target audience, learning objectives, and author disclosures.
  • Study the educational content online or printed out.
  • Online, choose the best answer to each test question. To receive a certificate, you must receive a passing score as designated at the top of the test. In addition, you must complete the Activity Evaluation to provide feedback for future programming.

You may now view or print the certificate from your CME/CE Tracker. You may print the certificate but you cannot alter it. Credits will be tallied in your CME/CE Tracker and archived for 5 years; at any point within this time period you can print out the tally as well as the certificates by accessing "Edit Your Profile" at the top of your Medscape homepage. *The credit that you receive is based on your user profile.

Case 2: ADHD in an Adult

Case history.

A 42-year-old woman, mother of a son in his junior year of high school and a 20-year-old daughter, both living at home, comes seeking help because she feels her marriage is falling apart. This patient is the mother of the adolescent with ADHD in the previous case history. Her speech is rambling and a little impulsive. The physician manages to piece together the following history during her first visit, which was scheduled for 30 minutes but takes an hour because of her long, unfocused answers to the questions.

School had always been relatively hard for the patient, starting in grammar school. Though she had presented no behavior problems, teachers consistently complained of the patient's inattention and disorganization. With the help of summer school and tutors she managed to stay on course until she graduated from high school and even to get accepted to college. She was placed on probation after one semester at the university's business school, taking incompletes or "D's" and "F's" in each of her courses because she missed classes. She turned in assignments late, if at all; what she did hand in was sketchy and sloppy. Her advisor recommended that she switch her major from accounting to marketing, taking advantage of the patient's creative streak. With the help of tutoring and coaching in how to stay organized, the patient managed to earn her degree.

She was married for 6 months immediately after high school, but that marriage ended by mutual consent because, the patient says, "Neither of us had any idea what it meant to be in an adult relationship." The patient met her current husband, a graphic arts major, in a college advertising class. They were married in his senior year. It should have been her senior year too, but it took her an extra 1½ years to graduate. After they started dating they dreamed of developing their own business, combining her expertise in marketing with his in design. This was not to be. Not long after they started living together, her husband found that he could not count on his spouse to arrive at a meeting on time, remember to make an important phone call, or even to keep the checkbook in a consistent place. They decided to start a family together instead of a business. The husband worked in advertising while his wife stayed home with their 2 children.

As the children grew they had their own school problems and, later, social and legal troubles. (See previous case.) Their mother did her best to fulfill her role as stay-at-home caretaker, but it still fell on their father to pack their lunches, get them to the bus stop on time, and help them daily with homework. In spite of the patient's background in business, her husband took care of paying bills, balancing the checkbook, and preparing tax returns. The wife became a good cook. Her meals were quite creative but often served late because she had had to run out to the store, sometimes more than once, to purchase ingredients she had forgotten.

Once the children were in third and sixth grade, the patient found employment outside the home. Her husband took it upon himself to create a chore list for each family member. He was the only one to follow through consistently with his assigned tasks. Their home is no less messy than it was when the patient was at home full-time because even then, she was never organized enough to get ahead on the housework. Thanks to the patient, the home is decorated quite creatively. She rearranges the furniture and art work on the walls every few weeks because, she says, keeping things the same for too long makes her feel restless.

The patient's first job was in the marketing department of a local business. Within a few months she lost that position because of tardiness, absenteeism, unmet deadlines, and a general impression that she was not reliable or competent. She made few friends at work except for some smokers with whom she congregated regularly at the back door of the business.

She smokes 2 packs of cigarettes per day, a habit she has had since high school. She also drinks caffeinated coffee all day. The patient has recently cut down on her alcohol consumption after a near-miss on a second DUI and a confrontation with her husband over her escalating alcohol intake. She had tried other recreational drugs in college but did not continue using them after her marriage.

Losing that job as a marketer was the first of a succession of job losses. Subsequent reasons included the undependability shown at her first job, but she also impulsively quit when frustrated with working conditions and blurted out harsh criticism of the boss. Each new job brought lower pay and lower status than the previous one. The patient berates herself for her poor job performance, but though intelligent and educated enough, she can't seem to do any better. At the time of this interview she is working as the person on duty at 2 different laundromats for a 60+-hour work week. She likes how busy and active she is at this job; between servicing customers and machines she rarely sits down.

The home environment is messier and more chaotic than ever. It seems to her family that they are all perpetually being sent about the house in search of her glasses, keys, or wallet.

The patient has little energy for anything but her job. According to records received, her previous primary care doctor thought she might be depressed and tried a selective serotonin reuptake inhibitor, with little relief. The patient's answer to a direct question about whether she had taken the medication regularly is vague. It is not clear whether she did not trust the diagnosis of depression or could not remember to take her pills regularly, but the physician suspects that the patient did not have an adequate therapeutic trial of antidepressants. Progress notes in the previous doctor's record confirm the suspicion of noncompliance. That physician also tried clonidine, Vitamin B 6 , and various other measures without success to alleviate the severe PMS symptoms that had escalated over recent years. Still, she sleeps well and maintains a good appetite.

The patient describes herself as unpredictably irritable. She admits to picking fights with her husband and says she has completely lost interest in sex. Now, with concerns looming about both of their children compounded by the patient's being away from home so much of the time, her husband has threatened to leave. She feels like a failure in all realms: as a mother, a spouse, a homemaker, and a breadwinner.

Medscape Logo

“I Couldn’t Focus On Anything” : An ADHD Case Study

Dr. Sheri Jacobson

By: Practical Cures

by Andrea M. Darcy

Do you worry that you, or someone you love, has ADHD? Here I  share my personal experience of just what it’s really like to grow up with attention deficit hyperactivity disorder.

(Want to read a list of symptoms? Read our comprehensive Guide to ADHD ).

ADHD – A Case Study

“It’s like she lives in a bubble of her own making”, read the note one teacher sent home to my parents. But as usual, my habit of not being present was just attributed to shyness and intelligence. Like many kids with ADHD , I was exceedingly bright.

The new research on ADHD now recognises that many girls go undiagnosed because instead of hyperactivity, they are prone more to the major symptom of inattention. They are dreamy and always ‘clocking out’. That was me.

Although to be fair, I did have hyperactivity too. I’d get overexcited, or as my mother would say, ‘she’s on the ceiling again’. After I’d crash and need a nap. My mother felt it was chocolate and treats that caused i,t so I was not allowed any.

I had a lot of stressful experiences because of my ADHD that I now realise other kids probably didn’t. For example, I had to pull my first all-nighter aged only eight. We knew we had a science project to do all year. And I procrastinated and then did the entire thing in the 24 hours before it was due, crying from the stress. But I still won second place.

Surviving adolescence with ADHD

By adolescence my ADHD was in full force, but it was just attributed to ‘ being a teen ‘. High school was in Canad.a (My father, who I’ll get back to, was always moving us. I went to eight different schools in total.)

Do I have adult ADHD free quiz

I was inevitably late for my first class every day. I struggled to remember my schedule, was often losing things, and would get in trouble for chatting in class. Simply as I was too distracted to see that the teacher was talking again. Again, because I was smart and had good grades, teachers overlooked a lot of my behaviour.

ADHD case study

By: Richard Smith

Socially I can see my ADHD was a problem. I would join teams then drop out. And became known for changing my social groups ‘like she changes her clothes’, I overheard someone say. The comment stung.

I now see this was the ADHD symptom of impulsivity . It was the same issue that had me rip a portrait into pieces in the middle of art class when I couldn’t quite get the face right. I was incredibly embarrassed to see my teacher and fellow students staring at me, the pieces of my artwork on the floor.

Over focus, putting too much energy on the wrong thing, was also big issue. I would spend hours making the perfect cover for an assignment. Then have to do the assignment itself frantically at the last moment.

A ‘special exception’ is made

I got sent to the principal’s office for skipping a lot of classes. I explained that I was bored out of my mind. They could see something was different with me, I see that now. The said I was ‘too smart’ and needed an exception. I could go to class when I wanted as long as I maintained high grades. Now this makes me sad. I often think, what if they had of realised then I had ADHD? How would my life be different? My intelligence was a curse really, it meant I kept not getting help.

Can ADHD ruin your life? Put it this way. I forgot to choose my classes in time for my final year of high school, and the ones I needed to graduate were full. I was so upset I dropped out of school for a month and looked for a job. But I knew it was the wrong thing to do, so then frantically found another high school to take me. But I had to travel two hours a day to get there and back, and spend my last year at a school where I knew nobody.

University life with adult ADHD

University was a shock. I just couldn’t focus on anything, and I had no idea how to be organised and study. The teachers didn’t know me, so were far from forgiving with my poor timekeeping and tendency to talk loudly out of turn.

I had to maintain straight As to keep my scholarship and there was an art class I took as an elective. The teacher obviously didn’t like me, despite my art being better than most.  And gave me a B+ instead of an A, even though I scored high on all my assignments. It meant the rest of university I had to work two jobs to get by, which just made me even more of a scattered mess.

ADHD and dating

life with adult adhd

By: martinak15

In university I also started dating. This is one area where I think people need to talk about the damaging effects of ADHD more. I would rush into things before I knew someone then panic.

My tendency of talking in circles, or of wandering off mid-conversation, often had dates tell me they “couldn’t keep up with me”. Then there was the time I really liked someone and found out later he had no idea I was interested. I guess my distracted nature gave the entirely wrong sign.

Just like high school, I briefly dropped out of university, bored. Before begging my way back in at the last moment and finishing my degree. By the time I graduated, I was depressed.

I now realised there was something wrong with me, but just blamed myself for my inability to focus and be organised.

Finally getting the diagnosis of Adult ADHD

I began to drink and go out a lot, I suppose to bolster my falling self-esteem. It was at a party that I met a woman who spilled her soul to me, admitting she was seeing a psychiatrist for depression . I was fascinated. Could this help me? I’d never thought to try. She said she’d give me the number. I of course delayed calling for several weeks, but bumped into the woman again and felt pressured to go through with it.

And that was how I ended up sitting in a psychiatrist’s office across from a rather glamorous and aloof blonde doctor, expecting to be given antidepressants. Instead I was told I had ADHD and was offered a prescription for Ritalin . I walked out in a daze. I knew what ADHD was, but in my mind it equated to hyperactive children, not a 23 year-old like me. The way this woman diagnosed me in one hour flat left me feeling misunderstood and judged, too. I threw out the prescription, cancelled the next appointment, and didn’t talk about the experience to anyone.

Of course my life continued to be a mess. I kept messing up big opportunities by being impulsive. Like having a coveted big acting break, but instead hopping a plane and leaving the country when offered a last minute job teaching in Japan. My life was fun, but I was scattered, stressed, and lonely, and the depression kept returning.

Trying therapy when you have Adult ADHD

life with adult ADHD

By: Banalities

At 28, feeling really awful about my inability to stay in a relationship, I again took a therapy referral from a friend.

This psychotherapist specialised in CBT ( cognitive behavioural therapy ). A slight man with little John Lennon glasses and a pink Ralph Lauren shirt in a soulless office with imitation expressionist art, I was sure it wouldn’t work and wanted to run out screaming.

I told him I had been diagnosed as ADHD but was sure it was a mistake. He ran me through a series of questionnaires and confirmed I did have it. But he said he was optimistic CBT would help.

My friend pushed me to try four sessions before quitting, promising me four was a magic number somehow. And oddly, she was right. Something clicked on the fourth session. I walked out liking him better and feeling hopeful I could make changes in my life.

This was the therapist that taught me about mindfulness meditation . It turned out he’d gone to Berkeley back in the day, and he was a lot cooler than his bad outfits. Near the end of my four months working with him I even went to a one-week meditation retreat, excited by how much calmer and focussed the meditation made me.

I continued the mindfulness meditation, and kept using what I had learned from the CBT process about questioning my thoughts before taking action. It really helped with my impulsivity and I had a few good years after that.

What other forms of therapy did I try?

I also tried   psychodynamic psychotherapy . Friends had great results from it, but I would say that in some ways (and now I’ve read research to prove it) that was not the best choice for someone with ADHD. I started to overanalyse myself ,and my self-esteem , which people say therapy usually helps, got worse.

I do feel CBT is really a good choice for ADHD, as it helps reorganise the brain. Or nowadays I’d try a therapist who specialises in ADHD clients and see what they have to offer.

Life when you have Adult ADHD

I think that just accepting I had ADHD was the most helpful. It meant I could be more patient with myself, and focus on learning new ways of doing things that make living with ADHD easier . I am a huge fan, for example, of using a timer, as I have absolutely no sense of time and it helped me realise what can and can’t be done in an hour.

As for telling my family, I avoided it for years. I have an older sister who is very cynical and always making fun of my ideas about myself. To my surprise , when I did tell her about my diagnosis, she said she had thought so, and that it was hardly a surprise given our father. My father is a good example that ADHD often has a genetic component. He never sits down, never finishes a conversation. Alongside all those moves he put us through, he also burned his way through many jobs and is now on his fourth wife.

Did I try medication?

Yes. But not until an older adult. I was living in France at the time where the only option was was methlyphenidate. I tried both long release Concerta and just instant release Ritalin.

And it was awful, it did not work at all for me, no matter how I took it. It gave me bad headaches, severe insomnia, but what was the worst was that I was so dulled down I felt stupid. Yes, I’d sit oddly still for hours. But I’d get done in 4 hours what I could do in one hour unmedicated. So I stopped using any of it. I also then tried modafinil, it was the same thing. I felt spacey, stupid, slow, tired, and had brutal headaches.

Instead, now I make sure I keep up a regular routine of exercise, eat healthy, and take things like fish oils, which I feel help.

Would I wish to not have attention deficit disorder?

Of course being hard on oneself is another ADHD attribute, and when I remember that I try to shift my focus to see all I have achieved. I’ve travelled extensively, I run my own business, I was the first person I know to be a ‘digital nomad’, as I am always way ahead of the curve… I am doing ok.

And in some ways, I would not want to exchange the good sides of ADHD as I don’t know who I’d be without them. Like  the way I can think fast and under pressure, see multiple perspectives all at once, be incredibly creative, etc.

If you feel you might have ADHD, it’s best not to self diagnose. Talk to your GP or book an assessment with a psychiatrist who specialises in Adult ADHD .

Andrea M. Darcy

I found this article very interesting thank you!

I just wonder how you managed to get mindfulness to work for you with impulsivity? Whenever I have tried it I either get too bored or unmotivated to do it, or I forget to do it when it really matters!

Hi Lauren, there are several things to try here. One is a support system. Join a group of others who you have to check in with, or have a mediation buddy who you check in with, or use an app that shares results with other users. Sometimes just knowing there is an audience can make even the most distracted amongst us more likely to perform. A timer is pretty essential too. And then there is the simple idea that you make it a non negotiable. You decide you will have a mindfulness practise, come what may. When you judge it as boring, you recognise that thought, let it go, and stay where you are, meditating, until that timer goes off. When you don’t want to do it, you again recognise this is just a thought, and that you have the choice to do it anyway. Brushing your teeth is pretty boring too, but we’d guess you’ve made that a non negotiable… see meditating as that important. the point is to do it every day if possible, so that it isn’t a case of doing it when it matters/doesn’t matter but an ingrained habit. With time you’ll see palpable results, and then you’ll probably want to keep it up, but until then, do it anyway. If there are days that are bad days and you miss it, then you don’t judge yourself. You just start again the next day. Best, HT.

Your email address will not be published. Required fields are marked *

Currently you have JavaScript disabled. In order to post comments, please make sure JavaScript and Cookies are enabled, and reload the page. Click here for instructions on how to enable JavaScript in your browser.

Related Posts

A CASE STUDY

Observations of a student with ADHD over a 3-week time span. 

Student X is a 14 year-old male in a 9 th  Grade English class. He is average height and build. He has no physical disabilities, but suffers from a mental disorder – ADHD. He often makes careless mistakes in schoolwork. He does not pay attention to detail. He has trouble staying focused while reading long texts. He also has difficulty staying still during a lecture. He fidgets and shakes his legs uncontrollably when seemingly annoyed or anxious. He has trouble turning in homework on time and meeting deadlines in general. He frequently does not respond when spoken to directly and appears to be distracted even though he is performing no obvious task. He lets his mind wander and appears to daydream often. When he does respond and participate, he is usually off topic. Overall, he appears uninterested and aloof. One might say that the behavior is defiant – a consciously overt reluctance to participate in school. However, this student has been diagnosed by a physician as being ADHD. He has an involuntary learning disability which requires support, therapy, social skills training and/or medication.  

Ready to Make a Change?

Educating children with ADHD is no easy task. Know that you are not alone. Please enlist the help of our school to find the right plan and solution for your child.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Thieme Open Access

Logo of thiemesd

ADHD: Current Concepts and Treatments in Children and Adolescents

Renate drechsler.

1 Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland

Silvia Brem

2 Neuroscience Center Zurich, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland

Daniel Brandeis

3 Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany

4 Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland

Edna Grünblatt

Gregor berger, susanne walitza.

Attention deficit hyperactivity disorder (ADHD) is among the most frequent disorders within child and adolescent psychiatry, with a prevalence of over 5%. Nosological systems, such as the Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5) and the International Classification of Diseases, editions 10 and 11 (ICD-10/11) continue to define ADHD according to behavioral criteria, based on observation and on informant reports. Despite an overwhelming body of research on ADHD over the last 10 to 20 years, valid neurobiological markers or other objective criteria that may lead to unequivocal diagnostic classification are still lacking. On the contrary, the concept of ADHD seems to have become broader and more heterogeneous. Thus, the diagnosis and treatment of ADHD are still challenging for clinicians, necessitating increased reliance on their expertise and experience. The first part of this review presents an overview of the current definitions of the disorder (DSM-5, ICD-10/11). Furthermore, it discusses more controversial aspects of the construct of ADHD, including the dimensional versus categorical approach, alternative ADHD constructs, and aspects pertaining to epidemiology and prevalence. The second part focuses on comorbidities, on the difficulty of distinguishing between “primary” and “secondary” ADHD for purposes of differential diagnosis, and on clinical diagnostic procedures. In the third and most prominent part, an overview of current neurobiological concepts of ADHD is given, including neuropsychological and neurophysiological researches and summaries of current neuroimaging and genetic studies. Finally, treatment options are reviewed, including a discussion of multimodal, pharmacological, and nonpharmacological interventions and their evidence base.

Introduction

With a prevalence of over 5%, attention deficit hyperactivity disorder (ADHD) is one of the most frequent disorders within child and adolescent psychiatry. Despite an overwhelming body of research, approximately 20,000 publications have been referenced in PubMed during the past 10 years, assessment and treatment continue to present a challenge for clinicians. ADHD is characterized by the heterogeneity of presentations, which may take opposite forms, by frequent and variable comorbidities and an overlap with other disorders, and by the context-dependency of symptoms, which may or may not become apparent during clinical examination. While the neurobiological and genetic underpinnings of the disorder are beyond dispute, biomarkers or other objective criteria, which could lead to an automatic algorithm for the reliable identification of ADHD in an individual within clinical practice, are still lacking. In contrast to what one might expect after years of intense research, ADHD criteria defined by nosological systems, such as the Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5) and the International Classification of Diseases, editions 10 and 11 (ICD-10/11) have not become narrower and more specific. Rather, they have become broader, for example, encompassing wider age ranges, thus placing more emphasis on the specialist's expertise and experience. 1 2 3

Definitions and Phenomenology

Adhd according to the dsm-5 and icd-10/11.

ADHD is defined as a neurodevelopmental disorder. Its diagnostic classification is based on the observation of behavioral symptoms. ADHD according to the DSM-5 continues to be a diagnosis of exclusion and should not be diagnosed if the behavioral symptoms can be better explained by other mental disorders (e.g., psychotic disorder, mood or anxiety disorder, personality disorder, substance intoxication, or withdrawal). 1 However, comorbidity with other mental disorders is common.

In the DSM-5, the defining symptoms of ADHD are divided into symptoms of inattention (11 symptoms) and hyperactivity/impulsivity (9 symptoms). 1 The former differentiation between subtypes in the DSM-IV proved to be unstable and to depend on the situational context, on informants, or on maturation, and was therefore replaced by “presentations.” 4 Thus, the DSM-5 distinguishes between different presentations of ADHD: predominantly inattentive (6 or more out of 11 symptoms present), predominantly hyperactive/impulsive (6 or more out of 9 symptoms present), and combined presentation (both criteria fulfilled), as well as a partial remission category. Symptoms have to be present in two or more settings before the age of 12 years for at least 6 months and have to reduce or impair social, academic, or occupational functioning. In adolescents over 17 years and in adults, five symptoms per dimension need to be present for diagnosis. 1 In adults, the use of validated instruments like the Wender Utah rating scale is recommended. 5

In contrast, the ICD-10 classification distinguishes between hyperkinetic disorder of childhood (with at least six symptoms of inattention and six symptoms of hyperactivity/impulsivity, present before the age of 6 years) and hyperkinetic conduct disorder, a combination of ADHD symptoms and symptoms of oppositional defiant and conduct disorders (CD). 3 In the ICD-11 (online release from June 2018, printed release expected 2022), the latter category has been dropped, as has the precise age limit (“onset during the developmental period, typically early to mid-childhood”). Moreover, the ICD-11 distinguishes five ADHD subcategories, which match those of the DSM-5: ADHD combined presentation, ADHD predominantly inattentive presentation, ADHD predominantly hyperactive/impulsive presentation and two residual categories, ADHD other specified and ADHD nonspecified presentation. For diagnosis, behavioral symptoms need to be outside the limits of normal variation expected for the individual's age and level of intellectual functioning. 2

Overlapping Constructs: Sluggish Cognitive Tempo and Emotional Dysregulation

Sluggish cognitive tempo (SCT) is a clinical construct characterized by low energy, sleepiness, and absent-mindedness, and is estimated to occur in 39 to 59% of (adult) individuals with ADHD. 6 7 The question of whether SCT might constitute a feature of ADHD or a separate construct that overlaps with ADHD inattention symptoms is unresolved. 8 While current studies indicate that SCT might be distinct and independent from hyperactivity/impulsivity, as well as from inattention dimensions, it remains uncertain whether it should be considered as a separate disorder. 8 9 Twin studies have revealed a certain overlap between SCT and ADHD, especially with regard to inattention symptoms, but SCT seems to be more strongly related to nonshared environmental factors. 10

Emotion dysregulation is another associated feature that has been discussed as a possible core component of childhood ADHD, although it is not included in the DSM-5 criteria. Deficient emotion regulation is more typically part of the symptom definition of other psychopathological disorders, such as oppositional defiant disorder (ODD), CD, or disruptive mood dysregulation disorder (DSM-5; for children up to 8 years). 11 However, an estimated 50 to 75% of children with ADHD also present symptoms of emotion dysregulation, for example, anger, irritability, low tolerance for frustration, and outbursts, or sometimes express inappropriate positive emotions. The presence of these symptoms increases the risk for further comorbidities, such as ODD and also for anxiety disorders. 12 13 For adult ADHD, emotional irritability is a defining symptom according to the Wender Utah criteria, and has been confirmed as a primary ADHD symptom by several studies (e.g., Hirsch et al). 5 14 15

Whether emotion dysregulation is inherent to ADHD, applies to a subgroup with combined symptoms and a singular neurobiological pathway, or is comorbid with but independent of ADHD, is still a matter of debate (for a description of these three models; Shaw et al 13 ). Faraone et al 12 distinguished three ADHD prototypes with regard to deficient emotion regulation: ADHD prototype 1 with high-emotional impulsivity and deficient self-regulation, prototype 2 with low-emotional impulsivity and deficient self-regulation, and prototype 3 with high-emotional impulsivity and effective self-regulation. All three prototypes are characterized by an inappropriate intensity of emotional response. While prototypes 1 and 3 build up their responses very quickly, prototype 2 is slower to respond but experiences higher subjective emotional upheaval than is overtly shown in the behavior. Prototypes 1 and 2 both need more time to calm down compared with prototype 3 in which emotional self-regulation capacities are intact.

Dimensional versus Categorical Nature of ADHD

Recent research on subthreshold ADHD argues in favor of a dimensional rather than categorical understanding of the ADHD construct, as its core symptoms and comorbid features are dimensionally distributed in the population. 16 17 18 Subthreshold ADHD is common in the population, with an estimated prevalence of approximately 10%. 19 According to Biederman and colleagues, clinically referred children with subthreshold ADHD symptoms show a similar amount of functional deficits and comorbid symptoms to those with full ADHD, but tend to come from higher social-class families with fewer family conflicts, to have fewer perinatal complications, and to be older and female (for the latter two, a confound with DSM-IV criteria cannot be excluded). 20

Temperament and Personality Approaches to ADHD

Another approach which is in accordance with a dimensional concept is to analyze ADHD and categorize subtypes according to temperament/personality traits (for a review and the different concepts of temperament see Gomez and Corr 21 ). Temperament/personality traits are usually defined as neurobiologically based constitutional tendencies, which determine how the individual searches for or reacts to external stimulation and regulates emotion and activity. While temperament traits per se are not pathological, extreme variations or specific combinations of traits may lead to pathological behavior. This approach has been investigated in several studies by Martel and colleagues and Nigg, 22 23 24 who employed a temperament model comprising three empirically derived domains 25 26 : (1) negative affect, such as tendencies to react with anger, frustration, or fear; (2) positive affect or surgency which includes overall activity, expression of happiness, and interest in novelty; and (3) effortful control which is related to self-regulation and the control of action. The latter domain shows a strong overlap with the concept of executive function. 27 In a community sample, early temperamental traits, especially effortful control and activity level, were found to potentially predict later ADHD. 28 Karalunas et al 29 30 distinguished three temperament profiles in a sample of children with ADHD: one with normal emotional functioning; one with high surgency, characterized by high levels of positive approach-motivated behaviors and a high–activity level; and one with high negative (“irritable”) affect, with the latter showing the strongest, albeit only moderate stability over 2 years. Irritability was not reducible to comorbidity with ODD or CD and was interpreted as an ADHD subgroup characteristic with predictive validity for an unfavorable outcome. These ADHD temperament types were distinguished by resting-state and peripheral physiological characteristics as measured by functional magnetic resonance imaging (fMRI). 29

Epidemiology and Prevalence

While ADHD seems to be a phenomenon that is encountered worldwide, 31 prevalence rates and reported changes in prevalence are highly variable, depending on country and regions, method, and sample. 32 A meta-analysis by Polanczyk et al 32 yielded a worldwide prevalence rate of 5.8% in children and adolescents. 33 In an update published 6 years later, the authors did not find evidence for an increase in prevalence over a time span of 30 years. Other meta-analyses reported slightly higher (e.g., 7.2%) 34 or lower prevalence rates, which seems to be attributable to the different criteria adopted for defining ADHD. Prevalence rates in children and adolescents represent averaged values across the full age range, but peak prevalence may be much higher in certain age groups, for example, 13% in 9-year-old boys. 35 Universal ADHD prevalence in adults is estimated to lie at 2.8%, with higher rates in high-income (3.6%) than in low-income (1.4%) countries. 36 True prevalence rates (also called community prevalence, e.g., Sayal et al 37 ) should be based on population-based representative health surveys, that is, the actual base rate of ADHD in the population, in contrast to the administrative base rate, which is related to clinical data collection (Taylor 38 ). Recent reports on the increase in ADHD rates usually refer to administrative rates, drawn from health insurance companies, from the number of clinical referrals for ADHD, 39 clinical case identification estimates, or from the percentage of children taking stimulant medication (prescription data). Changes in these rates may be influenced by increased awareness, destigmatization, modifications in the defining criteria of ADHD, or altered medical practice. According to a recent U.S. health survey on children and adolescents (4–17 years), in which parents had to indicate whether their child had ever been diagnosed with ADHD, the percentage of diagnoses increased from 6.1% in 1997 to 10.2% in 2016. 40 A representative Danish survey based on health registry, data collected from 1995 to 2010 reported that ADHD incidence rates increased by a factor of approximately 12 (for individuals aged 4–65 years) during this period. Moreover, the gender ratio decreased from 7.5:1 to 3:1 at early school age and from 8.1:1 to 1.6:1 in adolescents in the same time frame, 41 42 probably indicating an improved awareness of ADHD symptoms in girls. In other countries, it is assumed that girls are still underdiagnosed. 38

Population register data show that the use of stimulants for ADHD has increased considerably worldwide. 43 In most countries, an increase in stimulant medication use has been observed in children since the 1990s (e.g., United Kingdom from 0.15% in 1992 to 5.1% in 2012/2013), 44 45 but in some European countries, stimulant prescription rates for children and adolescents have remained stable or decreased over the last 5 to 10 years (e.g., Germany). 35 In the United States, the prescription of methylphenidate peaked in 2012 and has since been slightly decreasing, while the use of amphetamines continues to rise. 46

Comorbidity, Differential Diagnosis, and Clinical Assessment

Comorbidity.

ADHD is characterized by frequent comorbidity and overlap with other neurodevelopmental and mental disorders of childhood and adolescence. The most frequent comorbidities are learning disorders (reading disorders: 15–50%, 4 dyscalculia: 5–30%, 47 autism spectrum disorder, which since the DSM-5 is no longer viewed as an exclusion criterion for ADHD diagnosis: 70–85%, 48 49 tic/Tourette's disorder and obsessive compulsive disorder: 20%, and 5%, 50 developmental coordination disorder: 30–50%, 51 depression and anxiety disorders: 0–45%, 52 53 and ODD and CD: 27–55% 54 ). ADHD increases the risk of substance misuse disorders 1.5-fold (2.4-fold for smoking) and problematic media use 9.3-fold in adolescence 55 56 and increases the risk of becoming obese 1.23-fold for adolescent girls. 57 58 59 It is also associated with different forms of dysregulated eating in children and adolescents. Enuresis occurs in approximately 17% of children with ADHD, 60 and sleep disorders in 25 to 70%. 61 Frequent neurological comorbidities of ADHD include migraine (about thrice more frequent in ADHD than in typically developing [TD] children) 62 63 64 and epilepsy (2.3 to thrice more frequent in ADHD than in TD children). 65 66 The risk of coexisting ADHD being seen as a comorbid condition and not the primary diagnosis is considerably enhanced in many childhood disorders of different origins. For example, the rate of comorbid ADHD is estimated at 15 to 40% 67 68 in children with reading disorders and at 26 to 41% 69 70 in children with mild intellectual dysfunction. While comorbidity in neurodevelopmental disorders may arise from a certain genetic overlap (see details under genetic associations), ADHD symptoms are also present in several disorders with well-known and circumscribed genetic defects, normally not related to ADHD (e.g., neurofibromatosis, Turner's syndrome, and Noonan's syndrome) 71 or disorders with nongenetic causes, such as traumatic brain injuries, pre-, peri- or postnatal stroke, or syndromes due to toxic agents, such as fetal alcohol syndrome. Comorbid ADHD is estimated in 20 to 50% of children with epilepsy, 72 73 in 43% of children with fetal alcohol syndrome, 74 and in 40% of children with neurofibromatosis I. 75 ADHD is three times more frequent in preterm-born children than in children born at term and four times more frequent in extremely preterm-born children. 76

Differential Diagnosis, Primary and Secondary ADHD

A range of medical and psychiatric conditions show symptoms that are also present in primary ADHD. The most important medical conditions which are known to “mimic” ADHD and need to be excluded during the diagnostic process are epilepsy (especially absence epilepsy and rolandic epilepsy), thyroid disorders, sleep disorder, drug interaction, anemia, and leukodystrophy. 77 78 The most important psychiatric conditions to be excluded are learning disorder, anxiety disorders, and affective disorders, while an adverse home environment also needs to be excluded.

However, the picture is complex, as many differential diagnoses may also occur as comorbidities. For instance, bipolar disorder, which is frequently diagnosed in children and adolescents in the United States but not in Europe, is considered as a differential diagnosis to ADHD, but ADHD has also been found to be a comorbidity of bipolar disorder in 21 to 98% of cases. 79 Similarly, absence epilepsy is a differential diagnosis of ADHD but is also considered to be a frequent comorbidity, occurring in 30 to 60% of children with absence epilepsy. 80 The prevalence of the ADHD phenotype in benign childhood epilepsy with centrotemporal spikes (rolandic epilepsy) lies at 64 to 65%, 81 and is possibly related to the occurrence of febrile convulsions. 82 The literature often does not draw a clear distinction between an ADHD phenotype, which includes all types of etiologies and causes, and a yet to be specified developmental ADHD “genotype.” Some authors use terms, such as “idiopathic” ADHD, 83 “primary,” or “genotypic” ADHD, 84 in contrast to ADHD of circumscribed origin other than developmental, the latter being referred to as ADHD “phenotype,” or “phenocopy,” 85 or “ADHD-like.” 86 “Secondary ADHD” usually refers to newly acquired ADHD symptoms arising after a known event or incident, for example, a head trauma or stroke. After early childhood stroke, the ADHD phenotype occurs in 13 to 20% of cases, and after pediatric traumatic brain injury, ADHD symptoms are observed in 15 to 20% of children. 87 Having ADHD considerably increases the risk of suffering a traumatic brain injury, 88 89 90 and most studies on secondary ADHD after traumatic brain injury control for or compare with premorbid ADHD (e.g., Ornstein et al 91 ). Whether and to what extent “phenotypic” and “genotypic” ADHD need to be distinguished on a phenomenological level is not clear. It is possible that shared neurobiological mechanisms will prevail and that genetic vulnerability and epigenetic factors may play a role in both types. For example, James et al 86 compared neurophysiological markers in two groups of adolescents with ADHD, one born very preterm and the other born at term. While the authors found very similar ADHD-specific markers in the two groups, some additional deficits only emerged in the preterm group, indicating more severe impairment. Other examples are rare genetic diseases with known genetic defects, which are often comorbid with ADHD. One may ask whether, for example, ADHD in Turner's syndrome should be considered as a rare genetic ADHD variant and count as genotypic ADHD, or whether it results from a different genetic etiology, with the status of an ADHD phenotype.

Clinical Diagnostic Procedure

Clinical assessment in children should mainly be based on a clinical interview with parents, including an exploration of the problems, the detailed developmental history of the child including medical or psychiatric antecedents, information on family functioning, peer relationships, and school history. According to the guidelines of the National Institute for Health and Care Excellence (NICE) in the United Kingdom, this may also include information on the mental health of the parents and the family's economic situation. The child's mental state should be assessed, possibly using a standardized semistructured clinical interview containing ADHD assessments (e.g., Kiddie Schedule for Affective Disorders and Schizophrenia Present and Lifetime version, DSM-5) 92 93 and by observer reports. The exploration should cover behavioral difficulties and strengths in several life contexts, for example, school, peer relationships, and leisure time. The use of informant rating scales, such as Conners' Rating Scales, 3rd edition, 94 or the Strengths and Difficulties Questionnaire 95 may be useful, but diagnosis should not be solely based on rating scales (NICE, AWFM ADHD). 96 97 A further interview should be conducted with the child or adolescent to gain a picture of the patient's perspective on current problems, needs, and goals, even though self-reports are considered less reliable for diagnosis. Information should also be obtained from the school, for example, by face-to-face or telephone contact with the teacher and, if possible, by direct school-based observation. A medical examination should be performed to exclude somatic causes for the behavioral symptoms and to gain an impression of the general physical condition of the patient. Current guidelines do not recommend including objective test procedures (intelligence and neuropsychological tests), neuroimaging, or neurophysiological measures in routine ADHD assessment but do suggest their use as additional tools when questions about cognitive functions, academic problems, coexisting abnormalities in electroencephalography (EEG), or unrecognized neurological conditions arise. After completion of the information gathering, the NICE guidelines recommend a period of “watchful waiting” for up to 10 weeks before delivering a formal diagnosis of ADHD. A younger age of the diagnosed child relative to his/her classmates has to be mentioned as one of the many pitfalls in the assessment of ADHD. It has been shown that the youngest children in a class have the highest probability of being diagnosed with ADHD and of being medicated with stimulants. 98

There is consensus that the diagnosis of ADHD requires a specialist, that is, a child psychiatrist, a pediatrician, or other appropriately qualified health care professionals with training and expertise in diagnosing ADHD. 97

Current Neurobiological and Neuropsychological Concepts

Neuropsychology, neuropsychological pathways and subgroups.

ADHD is related to multiple underlying neurobiological pathways and heterogeneous neuropsychological (NP) profiles. Twenty-five years ago, ADHD was characterized as a disorder of inhibitory self-control, 54 and an early dual pathway model distinguished between an inhibitory/executive function pathway and a motivational/delay aversion pathway (also called “cool” and “hot” executive function pathways in later publications), which are related to distinct neurobiological networks. 99 100 101 Still, the two systems may also interact. 102

Since then, other pathways have been added, such as time processing, 103 but a definitive number of possible pathways is difficult to define. For example, Coghill and colleagues 104 differentiated six cognitive factors in children with ADHD (working memory, inhibition, delay aversion, decision-making, timing, and response time variability) derived from seven subtests of the Cambridge neuropsychological test automated battery. Attempts to empirically classify patients into subgroups with selective performance profiles departing from comprehensive NP data collection were inconclusive. For example, using delay aversion, working memory, and response-time tasks, Lambek and colleagues 105 expected to differentiate corresponding performance profile subgroups in children with ADHD. However, their analysis resulted in subgroups differentiated by the severity of impairments, and not by selective profiles. Other empirical studies using latent profile or cluster analysis of NP tasks in large ADHD samples have differentiated three 106 107 or four 108 NP profile groups, which all included children with ADHD, as well as TD children, differing in severity but not in the type of profile. This might indicate that the identified NP deficit profiles were not ADHD-specific, but rather reflected characteristic distributions of NP performances, which are also present in the general population, with extreme values in children with ADHD. Some other empirical studies in the search for subgroups, however, identified ADHD-specific performance profiles (“poor cognitive control,” 109 “with attentional lapses and fast processing speed” 110 ), among other profiles being shared with TD controls. Obviously, divergent results regarding subgrouping may also be related to differing compilations of tested domains, consequently leading to a limited comparability of these studies.

Which Neuropsychological Functions are Impaired in ADHD and When?

A meta-analysis conducted in 2005 identified consistent executive function deficits with moderate effect sizes in children with ADHD in terms of response inhibition, vigilance, working memory, and planning. 67 Since then, a vast number of studies on NP deficits in children with ADHD compared with TD controls have been published. A recent meta-analysis included 34 meta-analyses on neurocognitive profiles in ADHD (all ages) published until 2016, referring to 12 neurocognitive domains. 111 The authors found that 96% of all standardized mean differences were positive in favor of the control group. Unweighted effect sizes ranged from 0.35 (set shifting) to 0.66 (reaction time variability). Weighted mean effect sizes above 0.50 were found for working memory (0.54), reaction time variability (0.53), response inhibition (0.52), intelligence/achievement (0.51), and planning/organization (0.51). Effects were larger in children and adolescents than in adults. The other domains comprised vigilance, set shifting, selective attention, reaction time, fluency, decision making, and memory.

Nearly every neuropsychological domain has been found to be significantly impaired in ADHD compared with TD controls, though effect sizes are often small. This includes, for example, altered perception (e.g., increased odor sensitivity 112 ; altered sensory profile 113 ; impaired yellow/blue color perception, e.g., Banaschewski et al, 114 for review, see Fuermaier et al 115 ), emotional tasks (e.g., facial affect discrimination), 116 social tasks (e.g., Marton et al 117 ), communication, 118 and memory. 119 Several of the described impairments may be related to deficient top-down cognitive control and strategic deficits, 120 121 122 but there is also evidence for basic processing deficits. 123

Neuropsychological Deficits as Mediators of Gene-Behavior Relations

A vast amount of research has been devoted to the search for neuropsychological endophenotypes (or intermediate phenotypes) for ADHD, that is, neurobiologically based impairments of NP performance characteristic of the disorder that may also be found in nonaffected close relatives. ADHD neuropsychological endophenotypes are assumed to mediate genetic risk from common genetic variants. 124 So far, deficits in working memory, reaction-time variability, inhibition, time processing, response preparation, arousal regulation, and others have been identified as probable endophenotypes for ADHD. 124 125 126 127 Genetic studies indicate an association of an ADHD-specific polygenetic general risk score (i.e., the total number of genetic variants that may be associated with ADHD, mostly related to dopaminergic transmission) with working memory deficits and arousal/alertness, 124 or with a lower intelligence quotient (IQ) and working memory deficits, 128 respectively. More specifically, a link of ADHD-specific variants of DAT1 genes with inattention and hyperactivity symptoms seems to be mediated by inhibitory control deficits. 129

Individual Cognitive Profiles and the Relevance of Cognitive Testing for the Clinical Assessment

Heterogeneity is found with regard to profiles, as well as with regard to the severity of cognitive impairment in individuals with ADHD, as measured by standardized tests. ADHD does not necessarily come with impaired neuropsychological test performance: about one-third of children with ADHD will not present any clinically relevant impairment, while another one-third shows unstable or partial clinical impairment, and about another one-third performs below average in NP tests. The classic concept of NP impairment, which assumes relative stability over time, possibly does not apply to NP deficits observed in ADHD, or only to a lesser extent. For the larger part, the manifestation of performance deficits may depend on contextual factors, 130 such as reward, or specifically its timing, amount, and nature, or on energetic factors, 131 for example, the rate of stimulus presentation or the activation provided by the task.

Many studies have shown that behavioral ratings of ADHD symptoms or questionnaires on executive function deficits are not, or at best weakly, correlated with NP test performance, even when both target the same NP domain. 132 133 In consequence, questionnaires on executive functioning are not an appropriate replacement for neuropsychological testing. Likewise, ADHD symptom rating scales do not predict results of objective attention or executive function tests and vice versa. Although mild intellectual disability and low IQ are more typically associated with the disorder, ADHD can be encountered across the entire IQ spectrum, including highly gifted children. 134 Therefore, an intelligence test should be part of the diagnostic procedure, but is not mandatory according to ADHD guidelines. In some children, intellectual difficulties and not ADHD may be the underlying cause for ADHD-like behaviors, while in other children with ADHD, academic underachievement despite a high IQ may be present.

It has been argued that symptoms defining ADHD may be understood as dimensional markers of several disorders belonging to an ADHD spectrum and, in consequence, the diagnosis of these behavioral symptoms should be the starting point for a more in-depth diagnosis rather than the endpoint. 135 This should include the cognitive performance profile. The ADHD behavioral phenotype predicts neither NP impairment nor intellectual achievement in the individual case, and objective testing is the only way to obtain an accurate picture of the child's cognitive performance under standardized conditions. Its goal is not ADHD classification, but rather to obtain the best possible understanding of the relation between cognitive functioning and behavioral symptoms for a given patient, to establish an individually tailored treatment plan.

Neurophysiology

Neurophysiological methods like EEG, magnetoencephalography, and event-related potentials (ERPs) as task-locked EEG averages capture brain functions in ADHD at high (ms) temporal resolution. The approach covers both fast and slow neural processes and oscillations, and clarifies the type and timing of brain activity altered in ADHD at rest and in tasks. It reveals neural precursors, as well as correlates, and consequences of ADHD behavior. 136 Neurophysiological and particularly EEG measures also have a long and controversial history as potential biomarkers of ADHD. Current evidence clarifies how multiple pathways and deficits are involved in ADHD at the group level, but recent attempts toward individual clinical translation have also revealed considerable heterogeneity, which does not yet support a clinical application for diagnostic uses or treatment personalization, as explained below.

Resting Electroencephalography

The EEG is dominated by oscillations in frequency bands ranging from slow δ (<4 Hz) and θ (4–7 Hz) via α (8–12 Hz) to faster β (13–30 Hz) and γ (30–100 Hz) band activity. The spectral profile reflects maturation and arousal, with slow frequencies dominating during early childhood and slow-wave sleep. Source models can link scalp topography to brain sources and distributed networks.

Initial studies suggested a robust link between ADHD diagnosis and resting EEG markers of reduced attention, hypoarousal, or immaturity, such as increased θ and an increased θ/β ratio (TBR). However, more recent studies, 137 138 some with large samples, 139 140 failed to replicate a consistent TBR increase in ADHD. Instead, the results indicated heterogeneous θ and β power deviations in ADHD not explained by ADHD subtype and psychiatric comorbidity. 141 A cluster analysis of EEG in children with ADHD also revealed considerable heterogeneity regarding θ excess and β attenuation in ADHD. While several clusters with EEG patterns linked to underarousal and immaturity could be identified, only three of the five EEG clusters (60% of the cases with ADHD) had increased θ. 139 Several recent θ and TBR studies that no longer found TBR association with ADHD diagnosis still replicated the reliable age effects, 137 138 142 confirming the high quality of these studies. Increasing sleepiness in adolescents, 143 or shorter EEG recordings, may have reduced the sensitivity to time effects and state regulation deficits in ADHD, 136 144 potentially contributing to these replication failures. Also, conceptualizing TBR as a marker of inattention or maturational lag may be too simple, since θ activity can also reflect concentration, cognitive effort, and activation. 145 146

During sleep, stage profiles reveal no consistent deviations in ADHD, but the slow-wave sleep topography is altered. In particular, frontal slow waves are reduced, leading to a more posterior topography as observed also in younger children. 147 This delayed frontalization can be interpreted as a maturational delay in ADHD, in line with a cluster of resting EEG, changes in task related ERPs during response inhibition, 148 and structural magnetic resonance imaging (MRI) findings. 149

Task Related Event-Related Potentials

Task-related processing measures, particularly ERPs, have critically advanced our understanding of ADHD through their high-time resolution, which can separate intact and compromised brain functions. ERPs have revealed impairments during preparation, attention, inhibition, action control, as well as error, and reward processing, with partly distinct networks but often present during different phases of the same task. In youth and adults with ADHD, the attentional and inhibitory P3 components and the preparatory contingent negative variation (CNV) component are most consistently affected, but state regulation and error or reward processing are also compromised. 136 150 Activity during preparation, attention, or inhibition is typically weaker and more variable but not delayed. This often occurs in task phases without visible behavior and precedes the compromised performance. Familial and genetic factors also modulate these markers of attention and control. Some impairment is also observed in nonaffected siblings or in parents without ADHD, 151 152 and genetic correlates often implicate the dopamine system. 125 Some ERP changes, like the attenuated CNV during preparation, remain stable throughout maturation, and are also markers of persistent ADHD, while other markers, such as the inhibition related P3, remain attenuated despite clinical remission. 148 153

Overall, the ERP results confirm attentional, cognitive, and motivational, rather than sensory or motor impairments in ADHD, in line with current psychological and neurobiological models. However, different ERP studies hardly used the same tests and measures, so valid statements regarding classification accuracy and effect size are particularly difficult, 154 and there is an urgent need for meta-analyses regarding the different ERPs.

Clinical Translation

Despite published failures to replicate robust TBR based classification of ADHD, a TBR-based EEG test was recently approved by the U.S. Food and Drug Administration to assist ADHD diagnosis. 155 Although not promoted as a stand-alone test, children with suspected ADHD, and increased TBR were claimed to likely meet full diagnostic criteria for ADHD; while children with suspected ADHD but no TBR increase should undergo further testing, as they were likely to have other disorders better explaining ADHD symptoms (see also DSM-5 exclusionary criterion E).

This multistage diagnostic approach could possibly identify a homogeneous neurophysiological subgroup, but it omits critical elements of careful, guideline-based ADHD diagnostics. Reliability and predictive value of the TBR remain untested, and the increasing evidence for poor validity of TBR renders it unsuitable for stand-alone ADHD diagnosis. Accordingly, the use of TBR as a diagnostic aid was broadly criticized. 156 157

In sum, the recent literature suggests that neither TBR nor other single EEG or ERP markers are sufficient to diagnose ADHD and are not recommended for clinical routine use, in line with the increasing evidence for heterogeneity in ADHD.

Combining measures across time, frequency, and tasks or states into multivariate patterns may better characterize ADHD. The potential of such approaches is evident in improved classification using machine-learning algorithms based on combinations of EEG measures 142 or EEG and ERP measures. 138 158 However, claims of high-classification accuracies up to 95% (e.g., Mueller et al 158 ) require further independent replication and validation with larger samples, and plausible mapping to neural systems and mechanisms. Modern pattern classification is particularly sensitive to uncontrolled sample characteristics and needs validation through independent large samples. 159

Focusing on EEG-based prediction rather than diagnosis may hold more promise for clinical translation, and may utilize the EEG heterogeneity in clinical ADHD samples. For example, early studies on predicting stimulant response suggested that children with altered wave activity, in particular increased TBR, θ or α slowing, respond well to stimulant medication. However, in recent prospective work with a large sample, TBR was not predictive, and α slowing allowed only limited prediction in a male adolescent subgroup. 160

Predicting response to intense nonpharmacological treatment is of particular interest given the high costs and time requirements. Promising findings have been reported for one neurofeedback study, where α EEG activity and stronger CNV activity together predicted nearly 30% of the treatment response. 161 Still, the lack of independent validation currently allows no clinical application.

In conclusion, neurophysiological measures have clarified a rich set of distinct impairments but also preserved functions which can also serve as markers of persistence or risk. These markers may also contribute in the classification of psychiatric disorders based on neuromarkers (research domain criteria approach). As potential predictors of treatment outcome they may support precision medicine, and proof-of-concept studies also highlight the potential of multivariate profiling. The findings also demonstrate the challenge with this approach, including notable replication failures, and generalizability of most findings remains to be tested. Neurophysiological markers are not ready to serve as tools or aids to reliably diagnose ADHD, or to personalize ADHD treatment in individual patients.

Neuroimaging

Modern brain imaging techniques have critically contributed to elucidating the etiology of ADHD. While MRI provides detailed insights into the brain microstructure, such as for example gray matter volume, density, cortical thickness, or white matter integrity, fMRI allows insights into brain functions through activation and connectivity measures with high–spatial resolution.

Delayed Maturation and Persistent Alterations in the Brain Microstructure in ADHD

The brain undergoes pronounced developmental alterations in childhood and adolescence. Gray matter volume and cortical thickness show nonlinear inverted U -shaped trajectories of maturation with a prepubertal increase followed by a subsequent decrease until adulthood while white matter volume progressively increases throughout adolescence and early adulthood in a rather linear way. 162 163 164 165 Large variations of the maturational curves in different brain regions and subregions suggest that phylogenetically older cortical areas mature earlier than the newer cortical regions. Moreover, brain areas associated with more basic motor or sensory functions mature earlier than areas associated with more complex functions including cognitive control or attention. 163 164 Altered maturation of the cortex for ADHD has been reported for multiple areas and cortical dimensions, 166 167 mainly in the form of delayed developmental trajectories in ADHD but recently also as persistent reductions, particularly in the frontal cortex. 168 Such findings speak for delayed maturation in specific areas rather than a global developmental delay of cortical maturation in ADHD. Microstructural alterations in ADHD have been associated with a decreased intracranial volume 169 and total brain size reduction of around 3 to 5%. 100 168 170 In accordance, increasing ADHD symptoms in the general population correlated negatively with the total brain size. 171 A meta-analysis (Frodl et al) and a recent cross-sectional mega- and meta-analysis (Hoogman et al) indicate that such reductions in brain volume may be due to decreased gray matter volumes in several subcortical structures, such as the accumbens, amygdala, caudate, hippocampus, and putamen but also cortical areas (prefrontal, the parietotemporal cortex) and the cerebellum. 170 172 173 174 175 176 177 Effects sizes of subcortical alterations were highest in children with ADHD and the subcortical structures showed a delayed maturation. 169 Moreover, higher levels of hyperactivity/impulsivity in children were associated with a slower rate of cortical thinning in prefrontal and cingulate regions. 167 178 Differences in brain microstructure have also been reported in a meta-analysis for white matter integrity as measured with diffusion tensor imaging in tracts subserving the frontostriatal-cerebellar circuits. 179 To summarize, diverse neuroanatomical alterations in total brain volume and multiple cortical and subcortical dimensions characterize ADHD. These alterations are most pronounced in childhood and suggest a delayed maturation of specific cortical and subcortical areas along with some persistent reductions in frontal areas in a subgroup of ADHD patients with enduring symptoms into adulthood.

Alterations in the Brain Function of Specific Networks in ADHD

Specific functional networks, mainly those involved in inhibition, attention processes, cognitive control, reward processing, working memory, or during rest have been intensively studied in ADHD using fMRI in the past. Alterations have been reported in the corresponding brain networks and the main findings are summarized below.

Atypical Resting State Connectivity in Children with ADHD

Resting state examines spontaneous, low frequency fluctuations in the fMRI signal during rest, that is , in absence of any explicit task. 180 Resting state networks describe multiple brain regions for which the fMRI signal is correlated (functionally connected) at rest, but the same networks may coactivate also during task-based fMRI. 181 One important resting state network, the so-called default mode network (DMN), comprises brain areas that show higher activation during wakeful rest and deactivations with increasing attentional demands. 182 183 While the DMN usually shows decreasing activation with increasing attentional demands, the cognitive control network shows an opposite pattern and increases its activation. This inverse correlation of DMN and the cognitive control networks is diminished or absent in children and adults with ADHD and may explain impaired sustained attention through attentional lapses that are mediated by the DMN. 181 184 185 186 In addition, a more diffuse pattern of resting state networks connectivity and a delayed functional network development in children with ADHD have been reported. 187 Finally, atypical connectivity in cognitive and limbic cortico-striato-thalamo-cortical loops of patients with ADHD suggest that the neural substrates may either reside in impaired cognitive network and/or affective, motivational systems. 181

Altered Processing of Attention and Inhibition in Fronto-basal Ganglia Circuits in ADHD

Meta-analyses summarizing the findings of functional activation studies report most consistent alterations in brain activation patterns as hypoactivation of the frontoparietal network for executive functions and the ventral attention system for attentional processes in children with ADHD. 188 189 190 More specifically, motor or interference inhibition tasks yielded consistent decreases in a (right lateralized) fronto-basal ganglia network comprising supplementary motor area, anterior cingulate gyrus, left putamen, and right caudate in children with ADHD. 189 190 For tasks targeting attentional processes, decreased activation in a mainly right lateralized dorsolateral fronto-basal ganglia-thalamoparietal network characterized children with ADHD. Depending on the task, hyperactivation can cooccur in partly or distinct cerebellar, cortical, and subcortical regions. 188 189 190

Altered Reward Processing and Motivation

Emotion regulation and motivation is mediated by extended orbitomedial and ventromedial frontolimbic networks in the brain. 191 Abnormal sensitivity to reward seems to be an important factor in the etiology of ADHD as suggested by several models of ADHD, 192 193 194 mainly due to a hypofunctioning dopaminergic system. 195 In accordance, impairments in specific signals that indicate violations of expectations, the so called reward prediction errors (RPE), were shown in the medial prefrontal cortex of adolescents with ADHD during a learning task. 196 RPE signals are known to be encoded by the dopaminergic system of the brain, and deficient learning and decision making in ADHD may thus be a consequence of impaired RPE processing. 196 Abnormal activation has also been reported for the ventral striatum during reward anticipation and in other cortical and subcortical structures of the reward circuitry. 197

Normalization of Atypical Activation and Brain Structural Measures after Treatment

Stimulant medication and neurofeedback studies have pointed to a certain normalization of dysfunctional activation patterns in critical dorsolateral frontostriatal and orbitofrontostriatal regions along with improvements in ADHD symptoms. 198 199 200 201 Also, brain microstructure, especially the right caudate, has shown some gradual normalization with long-term stimulant treatment. 176 190

To conclude, a wide range of neuroimaging studies reveal relatively consistent functional deficits in ADHD during executive functions, including inhibitory control, working memory, reward processes, and attention regulation but also during rest. Some of these alterations are more persistent, others are specific to children and may thus represent a developmental delay. Specific treatments showed trends toward a normalization of alterations in brain microstructure and functional networks.

Genetic Associations with ADHD and ADHD Related Traits

From family studies, as well as twin studies, the heritability for ADHD has been estimated to be between 75 upto 90%. 202 Moreover, the heritability was found to be similar in males and females and for inattentive and hyperactive-impulsive components of ADHD. 202 Interestingly, a strong genetic component was also found when the extreme and subthreshold continuous ADHD trait symptoms were assessed in the Swedish twins. 19 Even over the lifespan, adult ADHD was found to demonstrate high heritability that was not affected by shared environmental effects. 203 Recently, structural and functional brain connectivity assessed in families affected by ADHD has been shown to have heritable components associated with ADHD. 204 Similarly, the heritability of ERPs elicited in a Go/No-Go-task measuring response inhibition known to be altered in ADHD, was found to be significantly heritable. 205

In several studies, ADHD-related traits have also shown significant heritability. For example, in two independent, population based studies, significant single nucleotide polymorphism heritability estimates were found for attention-deficit hyperactivity symptoms, externalizing problems, and total problems. 206 In another study, investigating the two opposite ends of ADHD symptoms, low-extreme ADHD traits were significantly associated with shared environmental factors without significant heritability. 207 While on the other hand, high-extreme ADHD traits showed significant heritability without shared environmental influences. 207 A crossdisorder study including 25 brain disorders from genome wide association studies (GWAS) of 265,218 patients and 784,643 controls, including their relationship to 17 phenotypes from 1,191,588 individuals, could demonstrate significant shared heritability. 208 In particular, ADHD shared common risk variants with bipolar disorder, major depressive disorder, schizophrenia, and with migraine. 208 Indeed, in general, population-based twin studies suggest that genetic factors are associated with related-population traits for several psychiatric disorders including ADHD. 209 This suggests that many psychiatric disorders are likely to be a continuous rather than a categorical phenotype.

Though ADHD was found to be highly heritable, the underlying genetic risk factors are still not fully revealed. The current consensus suggests, as in many other psychiatric disorders, a multifactorial polygenic nature of the common disorder. Both common genetic variants studied by hypothesis-driven candidate gene association or by the hypothesis-free GWAS could only reveal the tip of the iceberg. Through the candidate gene approach, only very few findings could show replicable significant association with ADHD, as reported by meta-analysis studies for the dopaminergic, noradrenergic, and serotonergic genes. 210 211 Several GWAS have been conducted followed by meta-analysis, which again failed reaching genome-wide significant results. 212 213 214 215 216 217 218 219 220 221 222 223 224 However, recently, the first genome-wide significance has been reached in a GWAS meta-analysis consisting of over 20,000 ADHD patients and 35,000 controls. 225 Twelve independent loci were found to significantly associate with ADHD, including genes involved in neurodevelopmental processes, such as FOX2 and DUSP6 . 225 But even in these findings the effect sizes are rather small to be used for diagnostic tools. Therefore, polygenic risk score approaches have emerged as a possible tool to predict ADHD. 202 Yet this approach needs further investigation now that genome-wide significance has been reached by Demontis et al. 225 However, at this point, it is not yet possible to exclude that rare SNPs of strong effect may also be responsible (similar to breast cancer) for a small proportion of ADHD cases due to the heterogeneity of symptomatology, illness course, as well as biological marker distribution, as outlined above.

Multimodal Treatment of ADHD

A variety of national and international guidelines on the assessment and management of ADHD have been published over the last 10 years, not only for clinicians but also for patients and caregivers. 96 97 226 227 228 All guidelines recommend a multimodal treatment approach in which psychoeducation forms a cornerstone of the treatment and should be offered to all of those receiving an ADHD diagnosis, as well as to their families and caregivers.

According to the NICE Guidelines, the first step is always a planning process for the multimodal treatment with respect to the psychological, behavioral, and occupational or educational needs of the child and his/her family. 97 This planning phase could be organized as a “round table” with the child, parents, and other caregivers. The following aspects should be taken into account: the severity of ADHD symptoms and impairment, the relative impact of other neurodevelopmental or mental health conditions and how these affect or may affect everyday life (including sleep). In addition, resilience and protective factors, as well as the goals of the child and family, should be considered in the intervention process. The participation of child and parents in the planning and treatment process is more centrally outlined in recent guidelines and is emphasized in detail for the different treatment steps (e.g., NICE and S3 Guidelines). 96 97 The participation process is not just a one-time dialogue but should rather continue throughout all steps of the treatment process. Benefits and harms of nonpharmacological and pharmacological treatments should be discussed carefully and on the basis of the latest evidence. Preferences and concerns, and the importance of adherence to treatment, should be discussed and taken into account within the treatment process. Patients and their families or caregivers should be reassured, as appropriate that they can revisit decisions about treatments.

Multimodal treatment approaches also advocate a systematic adaptive procedure that combines different treatment modules according to the needs and situation of the patient and family. This may, for instance, include a first stage in which parent counseling is initiated, a second-stage encompassing, for example, individual behavioral therapy for the child, while the parents participate in a parent training program in parallel, followed by a third stage in which stimulant medication is started, etc. 229 230 Environment-centered interventions aim at the counseling or training of parents or the instruction of teachers at school or preschool. Parent training programs may be administered individually or in groups and have shown positive effects on parenting skills, ADHD behavior, and comorbid conduct problems. 231 232 233 Family therapy for ADHD focuses on the ADHD family, with the ADHD patient being a part of the family system with dysfunctional interactional patterns. 234 School-based interventions may target (1) the conditions in the classroom, for example, by minimizing distractions; (2) the instruction of the teacher, for example, by suggesting more appropriate teaching methods or by promoting peer tutoring; or (3) the student, for example, by improving self-management and social skills, or by helping to cope with stigma. 235 236 237

Pharmacological Approaches

Starting medication.

All medication for ADHD should only be initiated by a health care professional with training and expertise in diagnosing and managing ADHD. The expert should be familiar with the pharmacokinetic profiles and bioavailability of all the short- and long-acting preparations available for ADHD. The following parameters should be considered before first medication: medical history of the child but possibly also of the parents, current medication, height and weight, baseline pulse and blood pressure, a cardiovascular assessment, and an electrocardiogram if the treatment may affect the QT interval. A cardiology expert opinion should be sought before starting medication for ADHD if there is a history of congenital heart disease, previous cardiac surgery, or a history of sudden death in a first-degree relative under the age of 40 years, or if the blood pressure is consistently above the 95th centile for age and height for children and young people.

Age-Specific Needs

Treatment recommendations are often based on the specific needs of children, youth, or adults. 97 226 According to the NICE guidelines 97 and also pharmacological recommendations (e.g., Walitza and colleagues 238 239 ), a distinction should also be made between children under 5 years of age or preschool children, and school children. For the younger children (under 5 years of age), parent or career training programs and parent group training programs are always first-line treatments. Medication for children under 5 years with ADHD should only be given following a second specialist opinion from an ADHD service with expertise in managing ADHD in young children (ideally from a tertiary service). For children over 5 years of age, education and information about the causes and impact of ADHD and advice on parenting strategies should be offered, as well as liaison with school, college, or university if consent to do so is provided. 97 Children aged 5 years and over and young people should only receive medication if the ADHD symptoms are still causing a persistent significant impairment in at least one life domain after environmental modifications have been implemented and evaluated.

Selection of Pharmacotherapy

In Europe, methylphenidate either as short- or long-acting preparation is the first-line medication for ADHD across the life span. Second-line medications are lisdexamfetamine, atomoxetine, and guanfacine. A switch to lisdexamfetamine is only recommended if children have first undergone at least a 6-week trial of methylphenidate at an adequate dose and have not derived sufficient benefit in terms of reduced ADHD symptoms and associated impairment, or if patients experience adverse side effects. 238 The Canadian Guidelines (2018) recommend an individual treatment approach, which can start with different options, and if medication is to be used, long-acting formulations of psychostimulants or atomoxetine are always the first choice. 226 Comorbid disorders may necessitate adjustments to the treatment plan or alternative treatments.

According to the NICE guidelines, atomoxetine and guanfacine should only be offered if patients cannot tolerate methylphenidate or lisdexamfetamine or if their symptoms have not responded to separate 6-week trials of methylphenidate and lisdexamfetamine, having considered alternative preparations and adequate doses. 97

Evidence for ADHD Medications

In the first “gold standard” study comparing the different treatment approaches for ADHD alone and in combination (National Institute of Mental Health Collaborative Multimodal Treatment Study of Children with ADHD [MTA study]), the effects of both pharmacological therapy (methylphenidate and intensive counseling) and of multimodal therapy (methylphenidate and intensive behavioral therapy) were significantly more effective after 14 months than behavioral therapy alone or than the “standard” therapy (treatment as usual in the community) of the control group. The multimodal therapy was not significantly superior to pharmacological therapy alone, but did result in significant improvements in ADHD symptoms at a lower dosage of methylphenidate. 240 241 242 Since the MTA study, numerous studies have investigated methylphenidate, amphetamine, and nonstimulants like atomoxetine or α 2 -adrenoceptor agonists, such as clonidine and guanfacine, regarding different aspects of effectiveness and tolerability.

The psychostimulants methylphenidate and amphetamine are the most effective agents for the treatment of core ADHD symptoms, with a favorable efficacy and adverse event profile. 243 244 245 Compared with methylphenidate and amphetamine, which both show immediate symptom reduction, the full effects of atomoxetine and guanfacine on reducing ADHD symptoms usually only unfold after some weeks of administration. Atomoxetine and guanfacine are not controlled substances, and are licensed in various European countries and in the United States for treatment of ADHD in children above the age of 6 years. Both have been shown to be effective in decreasing ADHD core symptoms with an effect size of around 0.7, which is somewhat lower than the effect size for methylphenidate, depending on the underlying studies (e.g., Sallee et al 246 ).

Management Strategies and Duration of Pharmacological Treatment

Following an adequate dosage of medication ( Table 1 ) and treatment response, medication for ADHD should be titrated to an optimized dosage with regard to the clinical efficacy, safety, and side effects, which should be continued for as long as it remains clinically necessary and effective. This should be reviewed at least annually, also with a planned “medication break” to decide whether there is a continuing need for care. 238 239 However, there is little available empirical evidence to guide clinicians on questions, such as the optimum duration of treatment and when it is appropriate to consider drug discontinuation. As ADHD can persist into adulthood, decisions on treatment discontinuation need to be taken on a case-by-case basis. 226

Generic name or trade nameDosage (mg/kg body weight)Total daily dosages (mg)Number of doses per day
Methylphenidate immediate release0.3– max. 1.05–401–3
Ritalin MedikinetMax.: 60
Methylphenidate sustained releaseall preparations: 0.3–1.0
 Concerta18–54 mg1
 Medikinet Retard 10–40 1
 Ritalin LA 10–40 1
Amphetamine Liquid0.1–0.52.5–201–2 (3)
max. 40
 Lisdexamphetamine30–701
Atomoxetine0.5–0.8; max.1.2If less than 70 kg:1–2
Strattera18–60
if more than 70 kg: 40–max. 100
Guanfacine extended release0.05–0.121–41
Intuniv

Abbreviations: ADHD, attention deficit hyperactivity disorder; max. maximum.

Adapted from (1) Walitza S, Romanos M, Greenhill LL, Banaschewski T. Attention-Deficit/Hyperactivity Disorders. In: Gerlach M, Warnke A, Greenhill LL, eds. Psychiatric Drugs in Children and Adolescents. Wien: Springer; 2014:369–381 238 and (2) Walitza S, Gerlach M, Romanos M, Renner T. Psychostimulanzien und andere Arzneistoffe, die zur Behandlung der Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung (ADHS) angewendet werden. In: Gerlach M, Mehler-Wex C, Walitza S, Warnke A, Wewetzer C, eds. Neuro-/Psychopharmaka im Kindes- und Jugendalter: Grundlagen und Therapie. Berlin, Heidelberg: Springer Berlin Heidelberg; 2016:289–331. 239

Among the most frequent side effects of psychostimulant therapy ( Table 2 ) are reduced appetite and sleep disturbances. 247 Appetite reduction following treatment initiation with an ADHD drug often attenuates with time. Reduced appetite at mealtimes can be avoided by taking the medication after meals rather than before. Should a clinically significant lack of appetite persist, dosage reduction (by one-fourth or half tablet of methylphenidate), discontinuation (rarely necessary), or switching to a different formulation or medication should be considered.

Generic nameAdverse drug reaction
Methylphenidate (different methylphenidate formulations)decreased appetite, insomnia or sleep disturbance, snoring, non-breathing or gasping while sleeping, sleepwalking, various sleep positions, enuresis, talking to sleep, number of hours of sleep, number of nocturnal movements, sleep quality, stomach upset, dizziness, headache, irritability, nausea, vomiting, tachycardia, increased blood pressure, moodiness, weight loss (higher dose), psychotic disorder, arrhythmias
Amphetamine (different formulations)appetite suppression, weight loss, insomnia, stomach aches, headaches, irritability, dizziness, possible growth inhibition, exacerbation of psychosis, and tics, and possible increase in blood pressure and pulse
Atomoxetineheadache, nausea, abdominal pain, decreased appetite, moodiness and somnolence
Guanfacinesomnolence, sedation, headache, upper abdominal pain, and fatigue

Adapted from (1) Walitza S, Romanos M, Greenhill LL, Banaschewski T. Attention-Deficit/Hyperactivity Disorders. In: Gerlach M, Warnke A, Greenhill LL, eds. Psychiatric Drugs in Children and Adolescents. Wien: Springer; 2014:369–381 238 ; (2) Walitza S, Gerlach M, Romanos M, Renner T. Psychostimulanzien und andere Arzneistoffe, die zur Behandlung der Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung (ADHS) angewendet werden. In: Gerlach M, Mehler-Wex C, Walitza S, Warnke A, Wewetzer C, eds. Neuro-/Psychopharmaka im Kindes- und Jugendalter: Grundlagen und Therapie. Berlin, Heidelberg: Springer Berlin Heidelberg; 2016:289–331 239 ; (3) Huang YS, Tsai MH. Long-term outcomes with medications for attention-deficit hyperactivity disorder: current status of knowledge. CNS Drugs 2011;25:539–554; (4) Storebo OJ, Pedersen N, Ramstad E et al. Methylphenidate for attention deficit hyperactivity disorder (ADHD) in children and adolescents - assessment of adverse events in non-randomized studies. Cochrane Database Syst Rev 2018;5:CD012069284; and (5) Wigal T, Greenhill L, Chuang S et al. Safety and tolerability of methylphenidate in preschool children with ADHD. J Am Acad Child Adolesc Psychiatry 2006;45:1294–1303.

Nonpharmacological Treatments

Cognitive behavioral therapy.

Cognitive behavioral therapy (CBT) is a form of behavioral intervention which aims at reducing ADHD behaviors or associated problems by enhancing positive behaviors and creating situations in which desired behaviors may occur. In the case of preschool and young school children, CBT focuses on parents and educators, who are instructed and trained to act according to CBT principles, while older children and adolescents may be trained directly to use more appropriate behavioral strategies. 248 CBT and its more specific forms (e.g., social skills training, training of planning and organizational skills, and self-management techniques) have positive effects on behavior, parenting skills, child–parent relationships, and certain daily living skills, 232 249 although effects on ADHD core symptoms are inconsistent and relatively low when only blinded assessments are considered. 250 A recent meta-analysis suggested that the combined treatment of medication with CBT is more efficacious than stimulant medication alone (with an estimated standardized mean difference of 0.5). 251

Neuropsychological Treatments

In cognitive training interventions, either PC-supported or in a manualized format, cognitive exercises that tap into cognitive domains, such as working memory or inhibitory control, are performed in a repetitive manner and with increasing difficulty. The evidence base for this type of intervention is poor according to recent studies (e.g., Bikic et al 252 ) and metastudies (e.g., Cortese et al 253 ). While some “near-transfer” improvements in neuropsychological tests tapping into the trained domain are probable, the evidence for “far transfer” to academic achievements or to the ADHD symptom level is weak. Most studies, however, used the same kind of cognitive training with all participants, irrespective of their actual individual cognitive difficulties. Moreover, they did not adhere to theoretically based training principles, which recommend domain-specific training for the functional improvement of a selective neuropsychological deficit. Possibly, future approaches that combine repetitive exercise and top-down strategy application may provide larger benefits for children with ADHD.

In neurofeedback training (NF), EEG activity measured by one or more electrodes applied to the head is transformed into a visual or acoustic signal and fed back online, for example, by a stimulus moving up and down. By steering the stimulus on the screen, the participant may gain control over his/her EEG activity. Many different training protocols have been applied to ADHD. Those which have received the best evaluation are the NF training of the θ/β frequency bands ratio (the goal is generally to decrease θ and to increase β frequencies) and the training of slow cortical potentials (learning to intentionally increase and decrease cortical excitability over short periods of time). However, “normalizing” an ADHD-specific deviant EEG pattern can no longer qualify as a meaningful goal, as no characteristic ADHD pattern seems to exist (Loo et al, 254 see neurophysiology section), although gaining control over one's brain activity and over attentional states continues to be a valid treatment goal. According to parent ratings, clinical improvements after NF are stronger and longer-lasting compared with other behavioral treatment methods, but teacher ratings usually fail to yield significant effects. 255 Recent research has focused on the specificity of treatment effects, defined as the association between the learned regulation of EEG activity and the behavioral outcome. 256 To date, there is no convincing evidence that the learned control over brain activity is responsible for the observed behavioral improvements. Instead, nonspecific treatment effects, such as improved self-efficacy, positive reinforcement, and learning to sit still, seem to contribute in large part to the positive clinical outcome.

Methodologically more sophisticated NF approaches, such as tomographic NF, 257 fMRI-NF, 258 or near-infrared spectroscopy feedback (feedback of hemoglobin oxygenation) 259 are still in the experimental stage.

Noninvasive Brain Stimulation

Repetitive transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) represent other potential means to modulate cortical activity. Therefore, these approaches may also be promising in terms of improving clinical and cognitive ADHD symptoms such as inattention and impulsiveness. 258 260 261 262 Based on a meta-analysis, Westwood et al 263 suggested that left and/or right prefrontal stimulation may improve performance in attention, inhibition and/or working memory tasks. However, these approaches are not yet recommended by therapy guidelines.

Alternative Nonpharmacological Treatment Methods

Mindfulness training, physical activity, and yoga seem to have positive effects on ADHD behavior, but for the time being, the scientific evidence is weak and these treatments are seen at best as complementary to other interventions. 264 265 266 267 268 Digital home treatment programs or support apps are currently being developed for ADHD patients or their parents 269 270 ; their usefulness or clinical validity still needs to be tested. Children and adolescents with ADHD often show a great affinity with digital media, which may improve compliance, but one has to take into account that the rate of problematic internet use and gaming is enhanced in youth with ADHD (estimated at 37% in ADHD vs. 12% in TD). 271 Free fatty acid supplementation has been described to bring about small but significant reductions in ADHD symptoms even with probably blinded assessments (standardized mean difference = 0.16). 250

Long-Term Outcome

Follow-up studies have reported divergent results, with some reporting high rates of persistence until adulthood (up to 79%), 153 and others showing much higher rates of remission from childhood to adolescence (e.g., 45–55% of syndromal remissions). 272 273 274 Recent population-based studies from Brazil, the United Kingdom, and New Zealand have claimed that a large portion of de novo ADHD cases emerge at adult age, 275 276 277 but these results can probably be explained by methodological artifacts and missed subthreshold cases. 76 278 279 However, meta-analytic findings by Bonvicini et al 280 indicate that in part, different genes and polymorphisms seem to contribute to childhood ADHD and adulthood ADHD, lending some genetic plausibility to findings of a late manifestation of the disorder. According to the MTA study, the contribution of interventions administered during childhood to outcome in adulthood is negligible, but controlled intervention was limited to a relatively short period of time (14 months). 281 Neurobiologically, the course of ADHD may be explained by different models. 274 According to the first model, remission at adult age may be reduced to the normalization of brain functions through maturation. A second model explains remission through the recruitment of compensatory brain functions. The third model claims that brain function anomalies show life-long persistence, even though behavioral dysfunction may have remitted. 274 Possibly, all of these models, and probably additional ones too (see e.g., Doehnert et al 148 ), apply to different subgroups of patients or functions and may account for the divergent results in the literature.

Conflict of Interest D.B. reports having served as an unpaid scientific advisor for an EU-funded neurofeedback trial unrelated to the present work.

S.W. reports grants from Gertrud Thalmann Fonds of the UPK Basel, Collaborative Project, grants from Ebnet Foundation, grants from Mensia Technologies SA & EU H2020 SME Instrument, grants from University Medical Center Utrecht & Stanley Medical Research Institute, Collaborative Project, grants from Swiss National Foundation, Investigator Initiated Clinical Trial, other from Thieme Neuropychopharmakologie des Kindes und Jugendalters, outside the submitted work; and S.W. has received in the last 5 years royalities from Thieme Hogrefe, Kohlhammer, Springer, Beltz. S.W. has received lecture honoraria from Opopharma in the last 5 years. Her work was supported in the last 5 years by the Swiss National Science Foundation (SNF), diff. EU FP7s, HSM Hochspezialisierte Medizin of the Kanton Zurich, Switzerland, Bfarm Germany, ZInEP, Hartmann Müller Stiftung, Olga Mayenfisch, Gertrud Thalmann Fonds. Outside professional activities and interests are declared under the link of the University of Zurich www.uzh.ch/prof/ssl-dir/interessenbindungen/client/web/ .

  • Alzheimer's disease & dementia
  • Arthritis & Rheumatism
  • Attention deficit disorders
  • Autism spectrum disorders
  • Biomedical technology
  • Diseases, Conditions, Syndromes
  • Endocrinology & Metabolism
  • Gastroenterology
  • Gerontology & Geriatrics
  • Health informatics
  • Inflammatory disorders
  • Medical economics
  • Medical research
  • Medications
  • Neuroscience
  • Obstetrics & gynaecology
  • Oncology & Cancer
  • Ophthalmology
  • Overweight & Obesity
  • Parkinson's & Movement disorders
  • Psychology & Psychiatry
  • Radiology & Imaging
  • Sleep disorders
  • Sports medicine & Kinesiology
  • Vaccination
  • Breast cancer
  • Cardiovascular disease
  • Chronic obstructive pulmonary disease
  • Colon cancer
  • Coronary artery disease
  • Heart attack
  • Heart disease
  • High blood pressure
  • Kidney disease
  • Lung cancer
  • Multiple sclerosis
  • Myocardial infarction
  • Ovarian cancer
  • Post traumatic stress disorder
  • Rheumatoid arthritis
  • Schizophrenia
  • Skin cancer
  • Type 2 diabetes
  • Full List »

share this!

August 13, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

ADHD and DNA: International study sheds light on genetics

by Crista Marchesseault, Yale University

ADHD and DNA: International study sheds light on genetics

Rare genetic changes that are spontaneous—and not inherited from parents—may contribute to the underpinnings of attention-deficit/hyperactivity disorder (ADHD), according to a new study from Yale School of Medicine.

While common genetic changes have been found to have an important role in the onset of ADHD through prior research on deoxyribonucleic acid —commonly known as DNA, a molecule in the body containing genetic information that is typically inherited—researchers from the Yale Child Study Center (YCSC) and Yale Department of Psychiatry demonstrate that rare de novo (spontaneous) genetic changes in the DNA code can contribute to the genetic underpinnings of this common childhood-onset disorder.

Led by clinicians who inform their clinical practice through scientific research—and vice versa—the study also identified a risk gene for ADHD that has previously been identified as a risk gene for autism spectrum disorder. Additionally, study data indicate that there are an estimated one thousand genes underlying risk for ADHD that have not yet been identified.

These findings provide new insight into and understanding of the biology of ADHD, while also demonstrating the potential of DNA sequencing in larger cohorts to uncover additional risk genes. This, in turn, has implications for the development of more effective treatments and interventions for this common neurodevelopmental condition.

YCSC Assistant Professor Emily Olfson was the lead author of this collaborative study, published in July in the journal Nature Communications . Olfson also serves as a practicing child psychiatrist in the YCSC Specialty Clinic for Tic Disorders, Obsessive-Compulsive Disorder (OCD), and ADHD.

"Dr. Olfson is an early-career physician-scientist who led the analyses and writing of this groundbreaking project, which was published in a high-impact journal—a notable achievement," said Thomas Fernandez, a co-author of the study who serves as a practicing psychiatrist in addition to his role of vice chair for research at the YCSC.

Given Olfson's ongoing clinical practice, Fernandez added, "this work was a true 'bedside-to-bench' undertaking."

Study analyses were conducted on de-identified genetic data from an international sample of 152 parent–child trios, each comprised of a child meeting criteria for an ADHD diagnosis and both biological parents. Data came from four sites: the University of São Paulo School of Medicine, the Center for Addiction and Mental Health in Toronto, Florida International University, and the Genizon biobank from Génome Québec.

This international collaboration , including the integration of case-control data from a large independent dataset, significantly enhanced the study and offered an important contribution to understanding the complexities of ADHD and other neurodevelopmental conditions, the authors noted.

"Our journey began with a fundamental question about the genetic underpinnings of ADHD," explained the study authors in a blog post about the paper. "While genome-wide association studies have identified common genetic variants associated with ADHD, these only account for a small portion of the disorder's heritability. We were particularly interested in exploring the role of rare genetic variation in ADHD risk."

About the findings, the authors added, "We realized their potential impact extends beyond just ADHD. Our study adds to the growing evidence of shared genetic risk factors across various neurodevelopmental and psychiatric disorders. This suggests that these conditions, while clinically distinct, may have overlapping biological underpinnings."

Explore further

Feedback to editors

adhd case study

3D body scanner with AI predicts metabolic syndrome risk

5 hours ago

adhd case study

Sick days: Assessing the economic costs of long COVID

6 hours ago

adhd case study

New way to extend 'shelf life' of blood stem cells can improve gene therapy

adhd case study

Novel test helps identify patients at high risk of esophageal cancers

7 hours ago

adhd case study

Mouse study finds probiotics during pregnancy help moms and babies

adhd case study

New study uncovers how brain cells form precise circuits before experience is able to shape wiring

adhd case study

The brain creates parallel copies for a single memory, new study reveals

adhd case study

New research discovers differences in oxygen physiology in people with Down syndrome

adhd case study

Nasal spray flu vaccine candidate shows promise when administered alongside high dose annual shot

8 hours ago

adhd case study

Researchers confirm genetic link between Alzheimer's and heart disease

Related stories.

adhd case study

Could ADHD be diagnosed genetically?

Dec 21, 2023

adhd case study

High genetic risk of attention deficit hyperactivity disorder suggests possible health consequences

Apr 19, 2024

adhd case study

In utero stimulant exposure not tied to later neurodevelopmental issues

Feb 1, 2024

adhd case study

PTSD in pregnant women may affect the risk of ADHD in the child

Mar 19, 2024

adhd case study

ADHD: A risk factor for serious mental health issues, research finds

Sep 5, 2023

adhd case study

Early vocabulary size is genetically linked to ADHD, literacy, and cognition

Mar 1, 2024

Recommended for you

adhd case study

First successful treatment of pediatric high-risk refractory neuroblastoma with PARP inhibition

12 hours ago

adhd case study

Study unveils impact of cardiovascular risk factors on genetic predisposition to heart disease

adhd case study

Study suggests way to improve treatment of hereditary breast cancer

9 hours ago

adhd case study

New research poised to transform approach to diagnosing and treating acute leukemia in children

Aug 14, 2024

adhd case study

New TNIP1 mutation discovery offers fresh hope for disease that can cause blindness

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Medical Xpress in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

UQ Skills grad wins Queensland Training Award

Lizzie and mum Angela pose for a photo

UQ Skills  Certificate II in Animal Care graduate Lizzie Scott is headed to the state finals after winning a Queensland Training Award  in the Darling Downs South West Region.

Lizzie, who took out the Equity Student of the Year award, attended the ceremony with her mother Angela.

“The award meant so much to me as I’d never had an opportunity to be recognised for the time and effort put into my education,” Lizzie said.

“It’s much more difficult given my various conditions – so it feels like a once-in-a-lifetime opportunity to achieve something like this.”

Diagnosed with global development delay at a young age, followed by intellectual disabilities, autism spectrum disorder, ADHD, anxiety, and frequent hospital admissions due to episodes of functional neurological disorder (FND), Lizzie faced significant challenges in her educational journey.

In Lizzie’s case, FND manifests in the form of blacking out, violent jerking of her body and limbs, problems with speech and sight, and occasionally difficulty walking.

Despite these challenges, Lizzie's determination and passion for animal care never wavered, resulting in a win that her mother Angela couldn’t be prouder of.

“I am so proud of Lizzie’s perseverance and so thankful of all the support that UQ Skills has offered her,” Angela said.

“It is very rare to see people with disability celebrated, so this award made me very emotional.

“We celebrated with a bit of a dance to the band and a McDonalds breakfast the next morning before heading home to the congratulations of the rest of the family.”

The completion of the Certificate II in Animal Care at UQ Skills has provided Lizzie with options she and her mother might not have thought possible.

She now aspires to undertake further study and work in a veterinary clinic, ideally with large animals.

Li

  • Overcoming health hurdles to realise study dreams

Craig posing for a photo with trophy

Revolutionary farriery trainer takes out Trainer of the Year Award

IMAGES

  1. case study child with adhd

    adhd case study

  2. (PDF) Attention Deficit Hyperactivity Disorder and mild learning

    adhd case study

  3. ADHD Case Study

    adhd case study

  4. adhd child case study slideshare

    adhd case study

  5. case study child with adhd

    adhd case study

  6. a case study of adhd

    adhd case study

COMMENTS

  1. A Case Study in Attention-Deficit/Hyperactivity Disorder: An Innovative Neurofeedback-Based Approach

    The use of neurofeedback in interventions for ADHD began in 1973, although the first study with positive results was published in 1976 . Since then, various studies have reported benefits from using neurofeedback in infants, with improvements in behavior, attention, and impulsivity control (e.g., [18,19,20,21,22]).

  2. PDF Case Study 1

    Case Study 1 - JackC. se Study 1 - Jack Jack is a 7 year old male Grade 1 student who lives in Toron. o with his parents. He is the only child to two parents, both of whom have completed post. graduate education. There is an extended family history of Attention Deficit/Hyperactivity Disorder (ADHD), mental health concerns as well as.

  3. Patient Case #1: 19-Year-Old Male With ADHD

    A video presentation of a case study of a college student with ADHD symptoms and academic problems. The psychiatrist discusses the diagnosis, treatment options, and comorbidities of ADHD in adults.

  4. CASE STUDY Jen (attention-deficit/hyperactivity disorder)

    Case Study Details. Jen is a 29 year-old woman who presents to your clinic in distress. In the interview she fidgets and has a hard time sitting still. She opens up by telling you she is about to be fired from her job. In addition, she tearfully tells you that she is in a major fight with her husband of 1 year because he is ready to have ...

  5. Case Report: Treatment of a Comorbid Attention Deficit Hyperactivity

    Most of these studies were performed in child and adolescent populations, and as far as we know, only one was conducted in an adult population . Some of the case reports described obsessive-compulsive symptoms as a side effect of MPH treatment in patients with ADHD (12-14, 29-32).

  6. The lived experiences of adults with attention-deficit/hyperactivity

    Studies reporting original peer-reviewed qualitative data on the lived experience of adults with ADHD, including mixed-methods studies, were eligible for inclusion. "Adult" was defined as being 18 years of age or older; studies that included adolescent and young adult participants were only included if results were reported separately by age.

  7. Attention Deficit Hyperactivity Disorder (ADHD): A Case Study and

    The male to female ratio of ADHD is 4:1. This chapter on ADHD provides a wide perspective on understanding, diagnosis and treatment for ADHD. It relies on a neurodevelopmental perspective of ADHD. Signs and symptoms of ADHD are described through the DSM-V criteria. A...

  8. Attention-deficit Hyperactivity Disorder (ADHD): Two Case Studies

    Despite increased awareness, Attention-deficit hyperactivity disorder (ADHD) is a chronic condition that affects 8% to 12% of school-aged children and contributes significantly to academic and social impairment. There is currently broad agreement on evidence-based best practices of ADHD identification and diagnosis, therapeutic approach, and ...

  9. An ADHD diagnosis in adulthood comes with challenges and benefits

    In a 2020 study, researchers compared 444 adults with diagnosed ADHD with 1,055 adults who exhibited symptoms but had no formal diagnosis. After matching for age and gender, those with a diagnosis reported a higher quality of life, which included metrics for work productivity, self-esteem, and functional performance ( Pawaskar, M., et al ...

  10. Attention deficit/hyperactivity disorder in adults: A case study

    Clinical case presentation. LB is a 31-year-old divorced woman who presented with complaints of racing thoughts, irritability, worrying, nervousness, labile sleep due to racing thoughts, and inability to remain focused on tasks. ... Impaired early information processing in adult ADHD: A high-density ERP study. BMC Psychiatry, 20 (1) (2020), 10. ...

  11. Cognitive-Behavioral Therapy for Adult ADHD: A Case Study of Multi

    Second, we discuss a case study to exemplify how clinicians can measure and track EF symptoms in a clinic setting using a multi-method approach. Self-report and collateral-report questionnaire data provided initial support for adaptation of Cognitive-Behavioral Therapy for Adult ADHD: Targeting Executive Dysfunction to an individual format.

  12. Attention deficit/hyperactivity disorder in adults: A case study

    ADHD can result in profound impairments in cognitive and social functioning. For example, impaired short-term memory was higher in college students with ADHD (Dudukovic, Gottshall, Cavanaugh, & Moody, 2014); adults with ADHD are more likely to procrastinate in ... Attention deficit/hyperactivity disorder in adults: A case study ...

  13. Females with ADHD: An expert consensus statement taking a lifespan

    In a case study, a woman with ADHD showed positive response to treatment adjustment around the menstrual cycle, which included augmentation with an antidepressant (fluoxetine) during the immediate pre-menstrual period to reduce problems with moodiness, irritability and inattention normally well controlled through stimulant medication alone .

  14. ADHD: Reviewing the Causes and Evaluating Solutions

    A study on ADHD children reported significantly decreased white matter volume, as well as decreased volume in the cortex and caudate nucleus, although it did not reach statistical significance. ... the precise nature of the physiological changes underlying the clinical manifestations of ADHD in each case could be slightly different, affecting ...

  15. PDF Case Study: Interventions for an ADHD Student Nicholas Daniel Hartlep

    Case Study: Interventions 3 Case Study: Interventions for an ADHD Student This case-study is based on one of my 2nd-grade students. Pseudonyms have been used to maintain anonymity. On Saturday, January 26, 2008 I called Mr. and Mrs. Petrenko's residence via telephone. I spoke to Mrs. Petrenko and outlined the study by reading to her

  16. Attention-deficit Hyperactivity Disorder (ADHD): Two Case Studies

    Despite increased awareness, Attention-deficit hyperactivity disorder (ADHD) is a chronic condition that affects 8% to 12% of school-aged children and contributes significantly to academic and social impairment. There is currently broad agreement on evidence-based best practices of ADHD identification and diagnosis, therapeutic approach, and ...

  17. Adult Attention Deficit-Hyperactivity Disorder

    ADHD in Childhood and Adulthood. According to the Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-5), 1 attention deficit-hyperactivity disorder (ADHD) is characterized ...

  18. "I Couldn't Focus On Anything" : An ADHD Case Study

    A woman shares how she struggled with ADHD symptoms from childhood to adulthood, and how she finally got diagnosed and treated. Read about her challenges, coping strategies, and tips for others with ADHD.

  19. PDF Attention deficit hyperactivity disorder : a case study

    This thesis presented a case study of a nine year old boy with Attention Deficit Hyperactivity Disorder (hereafter ADHD). ADHD is the current diagnostic label for children presenting with problems in attention, impulse control, and overactivity. These primary characteristics, and the related problems of ADHD

  20. Attention deficit/hyperactivity disorder in adults: A case study

    In adult ADHD, the symptoms may be comorbid or mimic other conditions making diagnosis and treatment difficult. Adults with ADHD require an in-depth assessment for proper diagnosis and treatment. The presentation and treatment of adults with ADHD can be complex and often requires interdisciplinary care.

  21. A CASE STUDY

    A CASE STUDY. Observations of a student with ADHD over a 3-week time span. ... He has no physical disabilities, but suffers from a mental disorder - ADHD. He often makes careless mistakes in schoolwork. He does not pay attention to detail. He has trouble staying focused while reading long texts. He also has difficulty staying still during a ...

  22. Case 25-2024: A 12-Year-Old Boy with Autism and Decreased Vision

    The patient had autism and attention deficit-hyperactivity disorder (ADHD). He had developmental delays in speech, language, cognition, and fine motor skills. ... a case-control study. J Pediatr ...

  23. RN Hesi Case Study

    Study with Quizlet and memorize flashcards containing terms like Which information is important for the ED nurse to obtain about Jason's accidents? A. Explanation of previous accidents. B. Where was Jason at the time of the accidents? C. Precipitating events leading up to the accidents. D. Who was present at the time of the accident? E. If there is a family history of suicide., How should the ...

  24. ADHD: Current Concepts and Treatments in Children and Adolescents

    ADHD increases the risk of substance misuse disorders 1.5-fold (2.4-fold for smoking) and problematic media use 9.3-fold in adolescence 55 56 and increases the risk of becoming obese 1.23-fold for adolescent girls. 57 58 59 It is also associated with different forms of dysregulated eating in children and adolescents.

  25. ADHD and DNA: International study sheds light on genetics

    De novo mutation rates in ADHD versus control subjects. Credit: Nature Communications (2024). DOI: 10.1038/s41467-024-50247-7

  26. UQ Skills grad wins Queensland Training Award

    Lizzie and mum Angela at the QTA awards ceremony. UQ Skills Certificate II in Animal Care graduate Lizzie Scott is headed to the state finals after winning a Queensland Training Award in the Darling Downs South West Region.. Lizzie, who took out the Equity Student of the Year award, attended the ceremony with her mother Angela.

  27. New clue into the curious case of our aging immune system

    New clue into the curious case of our aging immune system Date: August 14, 2024 Source: Walter and Eliza Hall Institute Summary: A new study could help solve a long-standing mystery into why a key ...