JMP | Statistical Discovery.™ From SAS.

Statistics Knowledge Portal

A free online introduction to statistics

Design of experiments

What is design of experiments.

Design of experiments (DOE) is a systematic, efficient method that enables scientists and engineers to study the relationship between multiple input variables (aka factors) and key output variables (aka responses). It is a structured approach for collecting data and making discoveries.

When to use DOE?

  • To determine whether a factor, or a collection of factors, has an effect on the response.
  • To determine whether factors interact in their effect on the response.
  • To model the behavior of the response as a function of the factors.
  • To optimize the response.

Ronald Fisher first introduced four enduring principles of DOE in 1926: the factorial principle, randomization, replication and blocking. Generating and analyzing these designs relied primarily on hand calculation in the past; until recently practitioners started using computer-generated designs for a more effective and efficient DOE.

Why use DOE?

DOE is useful:

  • In driving knowledge of cause and effect between factors.
  • To experiment with all factors at the same time.
  • To run trials that span the potential experimental region for our factors.
  • In enabling us to understand the combined effect of the factors.

To illustrate the importance of DOE, let’s look at what will happen if DOE does NOT exist.

Experiments are likely to be carried out via trial and error or one-factor-at-a-time (OFAT) method.

Trial-and-error method

Test different settings of two factors and see what the resulting yield is.

Say we want to determine the optimal temperature and time settings that will maximize yield through experiments.

How the experiment looks like using trial-and-error method:

1. Conduct a trial at starting values for the two variables and record the yield:

trial-starting-value

2. Adjust one or both values based on our results:

adjust-values

3. Repeat Step 2 until we think we've found the best set of values:

best-set-of-values

As you can tell, the  cons of trial-and-error  are:

  • Inefficient, unstructured and ad hoc (worst if carried out without subject matter knowledge).
  • Unlikely to find the optimum set of conditions across two or more factors.

One factor at a time (OFAT) method

Change the value of the one factor, then measure the response, repeat the process with another factor.

In the same experiment of searching optimal temperature and time to maximize yield, this is how the experiment looks using an OFAT method:

1. Start with temperature: Find the temperature resulting in the highest yield, between 50 and 120 degrees.

    1a. Run a total of eight trials. Each trial increases temperature by 10 degrees (i.e., 50, 60, 70 ... all the way to 120 degrees).

    1b. With time fixed at 20 hours as a controlled variable.

    1c. Measure yield for each batch.

design of experiment

2. Run the second experiment by varying time, to find the optimal value of time (between 4 and 24 hours).

    2a. Run a total of six trials. Each trial increases temperature by 4 hours (i.e., 4, 8, 12… up to 24 hours).

    2b. With temperature fixed at 90 degrees as a controlled variable.

    2c. Measure yield for each batch.

design of experiment

3. After a total of 14 trials, we’ve identified the max yield (86.7%) happens when:

  • Temperature is at 90 degrees; Time is at 12 hours.

design of experiment

As you can already tell, OFAT is a more structured approach compared to trial and error.

But there’s one major problem with OFAT : What if the optimal temperature and time settings look more like this?

what-if-optimal-settings

We would have missed out acquiring the optimal temperature and time settings based on our previous OFAT experiments.

Therefore,  OFAT’s con  is:

  • We’re unlikely to find the optimum set of conditions across two or more factors.

How our trial and error and OFAT experiments look:

design of experiment

Notice that none of them has trials conducted at a low temperature and time AND near optimum conditions.

What went wrong in the experiments?

  • We didn't simultaneously change the settings of both factors.
  • We didn't conduct trials throughout the potential experimental region.

design of experiment

The result was a lack of understanding on the combined effect of the two variables on the response. The two factors did interact in their effect on the response!

A more effective and efficient approach to experimentation is to use statistically designed experiments (DOE).

Apply Full Factorial DOE on the same example

1. Experiment with two factors, each factor with two values. 

design of experiment

These four trials form the corners of the design space:

design of experiment

2. Run all possible combinations of factor levels, in random order to average out effects of lurking variables .

3. (Optional) Replicate entire design by running each treatment twice to find out experimental error :

replicated-factorial-experiment

4. Analyzing the results enable us to build a statistical model that estimates the individual effects (Temperature & Time), and also their interaction.

two-factor-interaction

It enables us to visualize and explore the interaction between the factors. An illustration of what their interaction looks like at temperature = 120; time = 4:

design of experiment

You can visualize, explore your model and find the most desirable settings for your factors using the JMP Prediction Profiler .

Summary: DOE vs. OFAT/Trial-and-Error

  • DOE requires fewer trials.
  • DOE is more effective in finding the best settings to maximize yield.
  • DOE enables us to derive a statistical model to predict results as a function of the two factors and their combined effect.
  • Product Design
  • Industrial Design
  • Product Design and Development

Design of experiments application, concepts, examples: State of the art

  • December 2017
  • Periodicals of Engineering and Natural Sciences (PEN) 5(3):421-439
  • 5(3):421-439

Benjamin Durakovic at International University of Sarajevo

  • International University of Sarajevo

Abstract and Figures

. Factor effect estimate and sum of squares

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

Carlo giovanni Ferro

  • Mohammad Luqman Hakim Mustapha

Salwa Mahmood

  • Helmy Mustafa El Bakri
  • Norazlianie Sazali

Chethan K N

  • Thanachai Namlimhemnatee

Padmaraj N H

  • BBA-GEN SUBJECTS
  • Damai Ria Setyawati
  • Khairunnisa Azzahra
  • Etik Mardliyati
  • Lion Of Judah

Vinay Sharma

  • Ishwar Bhiradi
  • Naveen Jain
  • MATER CHEM PHYS
  • Vibhu Singh

Qasim Murtaza

  • COMPUT METHOD APPL M
  • Stamatios Stamatelopoulos

Shahroz Khan

  • Panagiotis Kaklis

Benjamin Durakovic

  • AUTOMAT CONSTR

Arno Schlueter

  • TRENDS FOOD SCI TECH
  • Mei Yin Low
  • Weibiao Zhou
  • MAT SCI ENG C-BIO S

Filipa Paulo

  • COMPUT CHEM ENG
  • Sushant S. Garud

Iftekhar A Karimi

  • DESALINATION

Vahab Okati

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up
  • Privacy Policy

Research Method

Home » Experimental Design – Types, Methods, Guide

Experimental Design – Types, Methods, Guide

Table of Contents

Experimental Research Design

Experimental Design

Experimental design is a process of planning and conducting scientific experiments to investigate a hypothesis or research question. It involves carefully designing an experiment that can test the hypothesis, and controlling for other variables that may influence the results.

Experimental design typically includes identifying the variables that will be manipulated or measured, defining the sample or population to be studied, selecting an appropriate method of sampling, choosing a method for data collection and analysis, and determining the appropriate statistical tests to use.

Types of Experimental Design

Here are the different types of experimental design:

Completely Randomized Design

In this design, participants are randomly assigned to one of two or more groups, and each group is exposed to a different treatment or condition.

Randomized Block Design

This design involves dividing participants into blocks based on a specific characteristic, such as age or gender, and then randomly assigning participants within each block to one of two or more treatment groups.

Factorial Design

In a factorial design, participants are randomly assigned to one of several groups, each of which receives a different combination of two or more independent variables.

Repeated Measures Design

In this design, each participant is exposed to all of the different treatments or conditions, either in a random order or in a predetermined order.

Crossover Design

This design involves randomly assigning participants to one of two or more treatment groups, with each group receiving one treatment during the first phase of the study and then switching to a different treatment during the second phase.

Split-plot Design

In this design, the researcher manipulates one or more variables at different levels and uses a randomized block design to control for other variables.

Nested Design

This design involves grouping participants within larger units, such as schools or households, and then randomly assigning these units to different treatment groups.

Laboratory Experiment

Laboratory experiments are conducted under controlled conditions, which allows for greater precision and accuracy. However, because laboratory conditions are not always representative of real-world conditions, the results of these experiments may not be generalizable to the population at large.

Field Experiment

Field experiments are conducted in naturalistic settings and allow for more realistic observations. However, because field experiments are not as controlled as laboratory experiments, they may be subject to more sources of error.

Experimental Design Methods

Experimental design methods refer to the techniques and procedures used to design and conduct experiments in scientific research. Here are some common experimental design methods:

Randomization

This involves randomly assigning participants to different groups or treatments to ensure that any observed differences between groups are due to the treatment and not to other factors.

Control Group

The use of a control group is an important experimental design method that involves having a group of participants that do not receive the treatment or intervention being studied. The control group is used as a baseline to compare the effects of the treatment group.

Blinding involves keeping participants, researchers, or both unaware of which treatment group participants are in, in order to reduce the risk of bias in the results.

Counterbalancing

This involves systematically varying the order in which participants receive treatments or interventions in order to control for order effects.

Replication

Replication involves conducting the same experiment with different samples or under different conditions to increase the reliability and validity of the results.

This experimental design method involves manipulating multiple independent variables simultaneously to investigate their combined effects on the dependent variable.

This involves dividing participants into subgroups or blocks based on specific characteristics, such as age or gender, in order to reduce the risk of confounding variables.

Data Collection Method

Experimental design data collection methods are techniques and procedures used to collect data in experimental research. Here are some common experimental design data collection methods:

Direct Observation

This method involves observing and recording the behavior or phenomenon of interest in real time. It may involve the use of structured or unstructured observation, and may be conducted in a laboratory or naturalistic setting.

Self-report Measures

Self-report measures involve asking participants to report their thoughts, feelings, or behaviors using questionnaires, surveys, or interviews. These measures may be administered in person or online.

Behavioral Measures

Behavioral measures involve measuring participants’ behavior directly, such as through reaction time tasks or performance tests. These measures may be administered using specialized equipment or software.

Physiological Measures

Physiological measures involve measuring participants’ physiological responses, such as heart rate, blood pressure, or brain activity, using specialized equipment. These measures may be invasive or non-invasive, and may be administered in a laboratory or clinical setting.

Archival Data

Archival data involves using existing records or data, such as medical records, administrative records, or historical documents, as a source of information. These data may be collected from public or private sources.

Computerized Measures

Computerized measures involve using software or computer programs to collect data on participants’ behavior or responses. These measures may include reaction time tasks, cognitive tests, or other types of computer-based assessments.

Video Recording

Video recording involves recording participants’ behavior or interactions using cameras or other recording equipment. This method can be used to capture detailed information about participants’ behavior or to analyze social interactions.

Data Analysis Method

Experimental design data analysis methods refer to the statistical techniques and procedures used to analyze data collected in experimental research. Here are some common experimental design data analysis methods:

Descriptive Statistics

Descriptive statistics are used to summarize and describe the data collected in the study. This includes measures such as mean, median, mode, range, and standard deviation.

Inferential Statistics

Inferential statistics are used to make inferences or generalizations about a larger population based on the data collected in the study. This includes hypothesis testing and estimation.

Analysis of Variance (ANOVA)

ANOVA is a statistical technique used to compare means across two or more groups in order to determine whether there are significant differences between the groups. There are several types of ANOVA, including one-way ANOVA, two-way ANOVA, and repeated measures ANOVA.

Regression Analysis

Regression analysis is used to model the relationship between two or more variables in order to determine the strength and direction of the relationship. There are several types of regression analysis, including linear regression, logistic regression, and multiple regression.

Factor Analysis

Factor analysis is used to identify underlying factors or dimensions in a set of variables. This can be used to reduce the complexity of the data and identify patterns in the data.

Structural Equation Modeling (SEM)

SEM is a statistical technique used to model complex relationships between variables. It can be used to test complex theories and models of causality.

Cluster Analysis

Cluster analysis is used to group similar cases or observations together based on similarities or differences in their characteristics.

Time Series Analysis

Time series analysis is used to analyze data collected over time in order to identify trends, patterns, or changes in the data.

Multilevel Modeling

Multilevel modeling is used to analyze data that is nested within multiple levels, such as students nested within schools or employees nested within companies.

Applications of Experimental Design 

Experimental design is a versatile research methodology that can be applied in many fields. Here are some applications of experimental design:

  • Medical Research: Experimental design is commonly used to test new treatments or medications for various medical conditions. This includes clinical trials to evaluate the safety and effectiveness of new drugs or medical devices.
  • Agriculture : Experimental design is used to test new crop varieties, fertilizers, and other agricultural practices. This includes randomized field trials to evaluate the effects of different treatments on crop yield, quality, and pest resistance.
  • Environmental science: Experimental design is used to study the effects of environmental factors, such as pollution or climate change, on ecosystems and wildlife. This includes controlled experiments to study the effects of pollutants on plant growth or animal behavior.
  • Psychology : Experimental design is used to study human behavior and cognitive processes. This includes experiments to test the effects of different interventions, such as therapy or medication, on mental health outcomes.
  • Engineering : Experimental design is used to test new materials, designs, and manufacturing processes in engineering applications. This includes laboratory experiments to test the strength and durability of new materials, or field experiments to test the performance of new technologies.
  • Education : Experimental design is used to evaluate the effectiveness of teaching methods, educational interventions, and programs. This includes randomized controlled trials to compare different teaching methods or evaluate the impact of educational programs on student outcomes.
  • Marketing : Experimental design is used to test the effectiveness of marketing campaigns, pricing strategies, and product designs. This includes experiments to test the impact of different marketing messages or pricing schemes on consumer behavior.

Examples of Experimental Design 

Here are some examples of experimental design in different fields:

  • Example in Medical research : A study that investigates the effectiveness of a new drug treatment for a particular condition. Patients are randomly assigned to either a treatment group or a control group, with the treatment group receiving the new drug and the control group receiving a placebo. The outcomes, such as improvement in symptoms or side effects, are measured and compared between the two groups.
  • Example in Education research: A study that examines the impact of a new teaching method on student learning outcomes. Students are randomly assigned to either a group that receives the new teaching method or a group that receives the traditional teaching method. Student achievement is measured before and after the intervention, and the results are compared between the two groups.
  • Example in Environmental science: A study that tests the effectiveness of a new method for reducing pollution in a river. Two sections of the river are selected, with one section treated with the new method and the other section left untreated. The water quality is measured before and after the intervention, and the results are compared between the two sections.
  • Example in Marketing research: A study that investigates the impact of a new advertising campaign on consumer behavior. Participants are randomly assigned to either a group that is exposed to the new campaign or a group that is not. Their behavior, such as purchasing or product awareness, is measured and compared between the two groups.
  • Example in Social psychology: A study that examines the effect of a new social intervention on reducing prejudice towards a marginalized group. Participants are randomly assigned to either a group that receives the intervention or a control group that does not. Their attitudes and behavior towards the marginalized group are measured before and after the intervention, and the results are compared between the two groups.

When to use Experimental Research Design 

Experimental research design should be used when a researcher wants to establish a cause-and-effect relationship between variables. It is particularly useful when studying the impact of an intervention or treatment on a particular outcome.

Here are some situations where experimental research design may be appropriate:

  • When studying the effects of a new drug or medical treatment: Experimental research design is commonly used in medical research to test the effectiveness and safety of new drugs or medical treatments. By randomly assigning patients to treatment and control groups, researchers can determine whether the treatment is effective in improving health outcomes.
  • When evaluating the effectiveness of an educational intervention: An experimental research design can be used to evaluate the impact of a new teaching method or educational program on student learning outcomes. By randomly assigning students to treatment and control groups, researchers can determine whether the intervention is effective in improving academic performance.
  • When testing the effectiveness of a marketing campaign: An experimental research design can be used to test the effectiveness of different marketing messages or strategies. By randomly assigning participants to treatment and control groups, researchers can determine whether the marketing campaign is effective in changing consumer behavior.
  • When studying the effects of an environmental intervention: Experimental research design can be used to study the impact of environmental interventions, such as pollution reduction programs or conservation efforts. By randomly assigning locations or areas to treatment and control groups, researchers can determine whether the intervention is effective in improving environmental outcomes.
  • When testing the effects of a new technology: An experimental research design can be used to test the effectiveness and safety of new technologies or engineering designs. By randomly assigning participants or locations to treatment and control groups, researchers can determine whether the new technology is effective in achieving its intended purpose.

How to Conduct Experimental Research

Here are the steps to conduct Experimental Research:

  • Identify a Research Question : Start by identifying a research question that you want to answer through the experiment. The question should be clear, specific, and testable.
  • Develop a Hypothesis: Based on your research question, develop a hypothesis that predicts the relationship between the independent and dependent variables. The hypothesis should be clear and testable.
  • Design the Experiment : Determine the type of experimental design you will use, such as a between-subjects design or a within-subjects design. Also, decide on the experimental conditions, such as the number of independent variables, the levels of the independent variable, and the dependent variable to be measured.
  • Select Participants: Select the participants who will take part in the experiment. They should be representative of the population you are interested in studying.
  • Randomly Assign Participants to Groups: If you are using a between-subjects design, randomly assign participants to groups to control for individual differences.
  • Conduct the Experiment : Conduct the experiment by manipulating the independent variable(s) and measuring the dependent variable(s) across the different conditions.
  • Analyze the Data: Analyze the data using appropriate statistical methods to determine if there is a significant effect of the independent variable(s) on the dependent variable(s).
  • Draw Conclusions: Based on the data analysis, draw conclusions about the relationship between the independent and dependent variables. If the results support the hypothesis, then it is accepted. If the results do not support the hypothesis, then it is rejected.
  • Communicate the Results: Finally, communicate the results of the experiment through a research report or presentation. Include the purpose of the study, the methods used, the results obtained, and the conclusions drawn.

Purpose of Experimental Design 

The purpose of experimental design is to control and manipulate one or more independent variables to determine their effect on a dependent variable. Experimental design allows researchers to systematically investigate causal relationships between variables, and to establish cause-and-effect relationships between the independent and dependent variables. Through experimental design, researchers can test hypotheses and make inferences about the population from which the sample was drawn.

Experimental design provides a structured approach to designing and conducting experiments, ensuring that the results are reliable and valid. By carefully controlling for extraneous variables that may affect the outcome of the study, experimental design allows researchers to isolate the effect of the independent variable(s) on the dependent variable(s), and to minimize the influence of other factors that may confound the results.

Experimental design also allows researchers to generalize their findings to the larger population from which the sample was drawn. By randomly selecting participants and using statistical techniques to analyze the data, researchers can make inferences about the larger population with a high degree of confidence.

Overall, the purpose of experimental design is to provide a rigorous, systematic, and scientific method for testing hypotheses and establishing cause-and-effect relationships between variables. Experimental design is a powerful tool for advancing scientific knowledge and informing evidence-based practice in various fields, including psychology, biology, medicine, engineering, and social sciences.

Advantages of Experimental Design 

Experimental design offers several advantages in research. Here are some of the main advantages:

  • Control over extraneous variables: Experimental design allows researchers to control for extraneous variables that may affect the outcome of the study. By manipulating the independent variable and holding all other variables constant, researchers can isolate the effect of the independent variable on the dependent variable.
  • Establishing causality: Experimental design allows researchers to establish causality by manipulating the independent variable and observing its effect on the dependent variable. This allows researchers to determine whether changes in the independent variable cause changes in the dependent variable.
  • Replication : Experimental design allows researchers to replicate their experiments to ensure that the findings are consistent and reliable. Replication is important for establishing the validity and generalizability of the findings.
  • Random assignment: Experimental design often involves randomly assigning participants to conditions. This helps to ensure that individual differences between participants are evenly distributed across conditions, which increases the internal validity of the study.
  • Precision : Experimental design allows researchers to measure variables with precision, which can increase the accuracy and reliability of the data.
  • Generalizability : If the study is well-designed, experimental design can increase the generalizability of the findings. By controlling for extraneous variables and using random assignment, researchers can increase the likelihood that the findings will apply to other populations and contexts.

Limitations of Experimental Design

Experimental design has some limitations that researchers should be aware of. Here are some of the main limitations:

  • Artificiality : Experimental design often involves creating artificial situations that may not reflect real-world situations. This can limit the external validity of the findings, or the extent to which the findings can be generalized to real-world settings.
  • Ethical concerns: Some experimental designs may raise ethical concerns, particularly if they involve manipulating variables that could cause harm to participants or if they involve deception.
  • Participant bias : Participants in experimental studies may modify their behavior in response to the experiment, which can lead to participant bias.
  • Limited generalizability: The conditions of the experiment may not reflect the complexities of real-world situations. As a result, the findings may not be applicable to all populations and contexts.
  • Cost and time : Experimental design can be expensive and time-consuming, particularly if the experiment requires specialized equipment or if the sample size is large.
  • Researcher bias : Researchers may unintentionally bias the results of the experiment if they have expectations or preferences for certain outcomes.
  • Lack of feasibility : Experimental design may not be feasible in some cases, particularly if the research question involves variables that cannot be manipulated or controlled.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Survey Research

Survey Research – Types, Methods, Examples

Case Study Research

Case Study – Methods, Examples and Guide

Descriptive Research Design

Descriptive Research Design – Types, Methods and...

Triangulation

Triangulation in Research – Types, Methods and...

Qualitative Research Methods

Qualitative Research Methods

Basic Research

Basic Research – Types, Methods and Examples

design of experiment

Maximizing Efficiency and Accuracy with Design of Experiments

Updated: April 21, 2024 by Ken Feldman

design of experiment

Design of experiments (DOE) can be defined as a set of statistical tools that deal with the planning, executing, analyzing, and interpretation of controlled tests to determine which factors will impact and drive the outcomes of your process. 

This article will explore two of the common approaches to DOE as well as the benefits of using DOE and offer some best practices for a successful experiment. 

Overview: What is DOE? 

Two of the most common approaches to DOE are a full factorial DOE and a fractional factorial DOE . Let’s start with a discussion of what a full factorial DOE is all about.

The purpose of the full factorial DOE is to determine at what settings of your process inputs will you optimize the values of your process outcomes. As an example, if your output is the fill level of a bottle of carbonated drink, and your primary process variables are machine speed, fill speed, and carbonation level, then what combination of those factors will give you the desired consistent fill level of the bottle?

With three variables, machine speed, fill speed, and carbonation level, how many different unique combinations would you have to test to explore all the possibilities? Which combination of machine speed, fill speed, and carbonation level will give you the most consistent fill? The experimentation using all possible factor combinations is called a full factorial design. These combinations are called Runs .  

We can calculate the total number of runs using the formula # Runs=2^k, where k is the number of variables and 2 is the number of levels, such as (High/Low) or (100 ml per minute/200 ml per minute). 

But, what if you aren’t able to run the entire set of combinations of a full factorial? What if you have monetary or time constraints, or too many variables? This is when you might choose to run a fractional factorial , also referred to as a screening DOE , which uses only a fraction of the total runs. That fraction can be one-half, one-quarter, one-eighth, and so forth depending on the number of factors or variables. 

While there is a formula to calculate the number of runs, suffice it to say you can just calculate your full factorial runs and divide by the fraction that you and your Black Belt or Master Black Belt determine is best for your experiment.

3 benefits of DOE 

Doing a designed experiment as opposed to using a trial-and-error approach has a number of benefits.  

1. Identify the main effects of your factors

A main effect is the impact of a specific variable on your output. In other words, how much does machine speed alone impact your output? Or fill speed?

2. Identifying interactions

Interactions occur if the impact of one factor on your response is dependent upon the setting of another factor. For example if you ran at a fill speed of 100 ml per minute, what machine speed should you run at to optimize your fill level? Likewise, what machine speed should you run at if your fill speed was 200 ml per minute? 

A full factorial design provides information about all the possible interactions. Fractional factorial designs will provide limited interaction information because you did not test all the possible combinations. 

3. You can determine optimal settings for your variables 

After analyzing all of your main effects and interactions, you will be able to determine what your settings should be for your factors or variables. 

Why is DOE important to understand? 

When discussing the proper settings for your process variables, people often rely on what they have always done, on what Old Joe taught them years ago, or even where they feel the best setting should be. DOE provides a more scientific approach. 

Distinguish between significant and insignificant factors

Your process variables have different impacts on your output. Some are statistically important, and some are just noise. You need to understand which is which.

The existence of interactions

Unfortunately, most process outcomes are a function of interactions rather than pure main effects. You will need to understand the implications of that when operating your processes. 

Statistical significance 

DOE statistical outputs will indicate whether your main effects and interactions are statistically significant or not. You will need to understand that so you focus on those variables that have real impact on your process.

An industry example of DOE 

A unique application of DOE in marketing is called conjoint analysis. A web-based company wanted to design its website to increase traffic and online sales. Doing a traditional DOE was not practical, so leadership decided to use conjoint analysis to help them design the optimal web page.

The marketing and IT team members identified the following variables that seemed to impact their users’ online experience: 

  • loading speed of the site
  • font of the text
  • color scheme
  • primary graphic motion
  • primary graphic size 
  • menu orientation

They enlisted the company’s Master Black Belt to help them do the experiment using a two-level approach.

In a conjoint analysis DOE, you would create mockups of the various combinations of variables. A sample of customers were selected and shown the different mockups. After viewing them, the customer then ranked the different mockups from most preferred to least preferred. The ranking provided the numerical value of that combination. To keep matters simple, they went with a quarter fraction design, or 16 different mockups. Otherwise, you’re asking customers to try and differentiate their preference and rank way too many options.

Once they gathered all the data and analyzed it, they concluded that menu orientation and loading speed were the most significant factors. This allowed them to do what they wanted with font, primary graphic, and color scheme since they were not significant.

3 best practices when thinking about DOE 

Experiments take planning and proper execution, otherwise the results may be meaningless. Here are a few hints for making sure you properly run your DOE. 

1. Carefully identify your variables

Use existing data and data analysis to try and identify the most logical factors for your experiment. Regression analysis is often a good source of selecting potentially significant factors. 

2. Prevent contamination of your experiment

During your experiment, you will have your experimental factors as well as other environmental factors around you that you aren’t interested in testing. You will need to control those to reduce the noise and contamination that might occur (which would reduce the value of your DOE).

3. Use screening experiments to reduce cost and time

Unless you’ve done some prior screening of your potential factors, you might want to start your DOE with a screening or fractional factorial design. This will provide information as to potentially significant factors without consuming your whole budget. Once you’ve identified the best potential factors, you can do a full factorial with the reduced number of factors.

Frequently Asked Questions (FAQ) about DOE

What does “main effects” refer to.

The main effects of a DOE are the individual factors that have a statistically significant effect on your output. In the common two-level DOE, an effect is measured by subtracting the response value for running at the high level from the response value for running at the low level. The difference is the effect of that factor.

How many runs do I need for a full factorial DOE?

The formula for calculating the number of runs of a full factorial DOE is # Runs=X^K where X is the number of levels or settings, and K is the number of variables for factors.

Are interactions in DOE important? 

Yes. Sometimes your DOE factors do not behave the same way when you look at them together as opposed to looking at the factor impact individually. In the world of pharmaceuticals, you hear a lot about drug interactions. You can safely take an antihistamine for your allergies. You can also safely take an antibiotic for your infection. But taking them both at the same time can cause an interaction effect that can be deadly.

In summary, DOE is the way to go

A design of experiments (DOE) is a set of statistical tools for planning, executing, analyzing, and interpreting experimental tests to determine the impact of your process factors on the outcomes of your process. 

The technique allows you to simultaneously control and manipulate multiple input factors to determine their effect on a desired output or response. By simultaneously testing multiple inputs, your DOE can identify significant interactions you might miss if you were only testing one factor at a time. 

You can either use full factorial designs with all possible factor combinations, or fractional factorial designs using smaller subsets of the combinations.

About the Author

' src=

Ken Feldman

It's the last day for these savings

Design of Experiments: Definition, How It Works, & Examples

In the world of research, development, and innovation, making informed decisions based on reliable data is crucial. This is where the Design of Experiments (DoE) methodology steps in. DoE provides a structured framework for designing experiments that efficiently identify the factors influencing a process, product, or system.

DoE provides a strong tool to help you accomplish your objectives, whether you work in software development, manufacturing, pharmaceuticals, or any other industry that needs optimization.

This article by SkillTrans will analyze for you a better understanding of DoE through many different contents, including:

What is Design Of Experiments

Design Of Experiments Examples

Design Of Experiments Software

What Is Doe In Problem Solving

And What Is Doe In Testing

First of all, let's learn the definition of DoE.

What is Design of Experiments?

What is Design of Experiments?

According to Wikipedia , DoE is defined as follows: 

“The design of experiments (DOE or DOX), also known as experiment design or experimental design, is the design of any task that aims to describe and explain the variation of information under conditions that are hypothesized to reflect the variation. The term is generally associated with experiments in which the design introduces conditions that directly affect the variation, but may also refer to the design of quasi-experiments, in which natural conditions that influence the variation are selected for observation.”

To put it more simply, Design of Experiments (DoE) is a powerful statistical methodology that revolutionizes the way we conduct experiments and gain insights. At its core, DoE is a systematic and efficient approach to experimentation, allowing researchers, engineers, and scientists to study the relationship between multiple input variables (factors) and key output variables (responses).

Why DoE is Superior to Traditional Testing

Traditional testing methods often rely on a "one-factor-at-a-time" (OFAT) approach, where only one factor is changed while holding others constant. 

This method has several limitations:

Time-Consuming: Testing each factor individually can be incredibly slow, especially when dealing with numerous variables.

Misses Interactions: OFAT fails to capture how factors might interact with each other, leading to incomplete or even misleading results.

Inefficient: It often requires a large number of experiments to gain a comprehensive understanding of a system.

How DoE Works

DoE takes a different approach by carefully planning experiments where multiple factors are varied simultaneously according to a predetermined design. This allows for the investigation of both the individual effects of each factor (main effects) and the combined effects of multiple factors (interaction effects) . 

By doing so, DoE provides a more holistic and accurate picture of the system being studied.

Statistical Power of DoE

DoE uses statistical analysis to interpret experiment outcomes. DoE can quantify the impact of the major factors influencing the response, identify the best settings or conditions, and identify the components that influence the response by using a variety of statistical models.

Benefits of DoE

Reduced Costs: DoE often requires fewer experimental runs than OFAT, saving time and resources.

Improved Understanding: DoE provides a deeper understanding of complex systems by uncovering interactions between factors.

Robust Solutions: DoE helps identify solutions that are more robust to variations in factors, leading to greater reliability.

Faster Optimization: By simultaneously exploring a wider range of conditions, DoE can accelerate the optimization process.

Applications for DoE can be found in many different areas, such as software development, marketing, manufacturing, medicines, and agriculture. It is a priceless tool for innovation and advancement in a variety of sectors due to its capacity to quickly and effectively address complicated difficulties.

We will learn more about the areas where DoE is commonly used in the next section.

Design of Experiments Examples

Design of Experiments Examples

DoE has a proven track record of solving complex problems and driving innovation across a wide range of sectors. Here are some examples:

Design of Experiments Examples in Manufacturing

DoE is used to optimize manufacturing processes like casting, molding, machining, and assembly . It helps identify optimal settings for temperature, pressure, cycle time, and other variables, leading to improved quality, reduced scrap, and lower costs.

Design of Experiments Examples in Pharmaceuticals

DoE plays a crucial role in drug development, helping to determine optimal dosages, identify the most effective combinations of ingredients, and optimize manufacturing processes for quality and consistency.

Design of Experiments Examples in Agriculture

DoE is widely used in agriculture to optimize crop yields, improve soil fertility, and develop more sustainable farming practices. It helps researchers understand the complex interactions between environmental factors, plant genetics, and farming techniques.

Design of Experiments Examples in Software Development

DoE is applied in software testing to optimize test coverage, prioritize test cases, and identify software vulnerabilities. It also helps developers understand how different code changes impact performance and reliability.

Design of Experiments Examples in Marketing

DoE is utilized in marketing to optimize pricing strategies, advertising campaigns, and product launches. It helps marketers understand how different factors influence consumer behavior, allowing them to tailor their strategies for maximum impact.

These examples are just a glimpse into the vast potential of DoE. To better understand DoE's contribution to different fields, let's take a look at DoE in more detail.

Design of Experiments Software

While the principles of DoE are rooted in statistics and experimental design, the emergence of sophisticated software tools has democratized the methodology, making it accessible to a wider audience. These tools simplify the entire DoE workflow , from initial planning to final analysis, empowering users to design, execute, and interpret experiments with confidence.

Key Features and Benefits of DoE Software

Experiment design.

DoE software helps users choose the best experimental design depending on their objectives, considerations, and available resources. It facilitates the creation of effective experimental plans, randomization of runs, and design matrices.

Statistical Modeling

The statistical models that explain the connection between variables and responses are automatically created by the software. Response surface models, analysis of variance ( ANOVA ), and linear regression are among the models it can fit.

Data Analysis

DoE software offers strong analytical capabilities for data analysis , such as effect estimation, model diagnostics, and hypothesis testing. It assists users in locating important variables, estimating their influence, and choosing the best configurations.

Optimization

Optimization algorithms are a common feature of DoE software packages, which assist users in determining the combination of factor values that maximizes or minimizes a desired result.

Visualization

To assist users in efficiently interpreting and communicating their findings, DoE software provides a variety of visualization tools, including Pareto charts , interaction plots, and response surface plots.

Popular DoE Software Options

Here are a few well-known DoE software you might want to look into:

JMP

JMP is a feature-rich statistical software package with strong DoE capabilities that was developed by SAS. It provides a large selection of designs, sophisticated statistical modeling capabilities, and an intuitive user interface.

A well-liked statistics program with plenty of DoE tools and an intuitive user interface is Minitab . It provides a wide range of designs, simple analysis tools, and lucid visualizations.

Design-Expert

Specialized DoE software called Design-Expert concentrates on response surface methodology (RSM). It offers an easy-to-use interface for creating, evaluating, and refining complicated interaction experiments.

Stat-Ease 360

Stat-Ease 360 , a more comprehensive version of Design-Expert, interfaces with Python to enable custom scripting and sophisticated analysis.

Other Options

There are numerous other DoE software options available, each with its own strengths and target audience. Some examples include Cornerstone, MODDE, and Unscrambler .

The intricacy of the trials, financial limitations, features that are wanted, and the user's degree of statistical competence all influence the choice of DoE software. In order to provide consumers the opportunity to test out the features and functioning before deciding to buy, many software companies offer free trials.

DoE in Problem Solving

DoE in Problem Solving

Identifying effective solutions and determining the underlying causes of complex problems can be challenging due to the presence of various interacting components. Design of Experiments (DoE) provides a methodical, data-driven approach to resolving these issues and making wise choices. 

Here's a closer look at the DoE problem-solving process :

Define the Problem with Metrics

The first step in using metrics and Design of Experiments to effectively address a problem is to precisely define the pertinent, quantifiable problem. For example, state the challenge as "reduce defect rate by 20% within six months" rather than aiming for something as abstract as "improve product quality." 

For the purpose of problem-solving, clearly define your aims and objectives and what you want to accomplish through experimenting. 

Furthermore, ascertain which important parties will be impacted by the issue and its resolution, and make sure that their requirements and viewpoints are taken into account at every stage of the process.

Identify Factors with Potential Impact

Start by thinking and making a list of every potential input variable that can have an impact on the result or response variable in order to uncover elements that could have an impact. These variables may include uncontrollable ones like raw material variability or ambient circumstances, as well as controllable ones like temperature, pressure, or ingredient proportions. 

After you have a complete list, rank the elements according to how they might affect the answer. You can determine the relative relevance of each item by utilizing previous information, professional judgment, or preliminary evidence. 

Furthermore, take into account how different elements interact with one another, as some may have an effect that is different from each of them alone.

Design the Experiment with Statistical Rigor

The first step in creating an experiment with statistical rigor is choosing an acceptable experimental design that takes into account the number of variables, the desired level of detail, and the resources that are available. Response surface designs, factorial designs, and fractional factorial designs are examples of common designs. 

Subsequently, ascertain the necessary number of experimental runs to attain statistically significant outcomes, taking into account variables like the intended confidence level, response variability, and the target effect size. 

In order to reduce the influence of uncontrollable circumstances and maximize the reliability and objectivity of the results, finally arrange the experimental runs in a random sequence.

Analyze the Results with Statistical Tools

In order to use statistical tools to analyze the outcomes, first gather data from the experiments and analyze it with applicable procedures like regression analysis, analysis of variance (ANOVA), or other pertinent statistical approaches. 

Determine which statistically significant variables actually affect the response. Calculate the ideal settings for each significant element by quantifying its effect size. 

To ensure a thorough grasp of how various variables affect the result, evaluate the interactions between components and ascertain their impact on the response.

Implement Solutions with Data-Driven Confidence

Start by creating workable solutions based on the findings of your study in order to execute solutions with confidence that is informed by evidence. These fixes could include updating designs, introducing new tactics, altering formulas, and adjusting process settings. 

To make sure the solutions are effective, validate them with more trials or pilot studies. After the solutions are put into place, keep an eye on them and evaluate their effects over time. Use the information gathered to make any necessary additional improvements or modifications.

DoE in Testing

DoE in Testing

The field of testing has seen a revolution in the evaluation and optimization of products and processes thanks to the Design of Experiments (DoE) approach. It offers a methodical and effective way to look into the various ways that variable inputs affect a system's quality, dependability, and performance across a broad spectrum of circumstances.

Why DoE is Essential for Testing

Traditional testing methods often involve changing one factor at a time, which can be time-consuming and may miss critical interactions between factors. DoE, on the other hand, allows testers to simultaneously manipulate multiple factors according to a carefully designed plan. 

This enables them to:

Identify Optimal Settings

DoE helps determine the combination of factor settings that yield the best possible results, whether it's maximizing a desired output (e.g., yield, efficiency) or minimizing an undesirable one (e.g., defects, variability).

Reduce Variability

DoE can assist in identifying methods to lessen or regulate system performance variability by understanding the various elements that contribute to this variability and how to achieve more consistent and predictable results.

Enhance Robustness

DoE can identify solutions that are robust to variations in factors, ensuring that the product or process performs well even under different operating conditions or with varying inputs.

Accelerate Testing

DoE can save time and money by strategically choosing experimental runs and evaluating the collected data, which can lower the number of experiments needed to produce trustworthy results.

Gain Deeper Insights

DoE provides a deeper knowledge of the behavior of the system by revealing intricate interconnections between components, going beyond just identifying key ones.

Examples of DoE in Testing

Here are a few examples of DoE in testing that you might find useful:

Software Testing

DoE is used to optimize software performance , identify bugs and vulnerabilities, and ensure compatibility across different platforms and configurations. For example, a software company might use DoE to test the impact of different hardware configurations, network conditions, and user behaviors on the performance of their application.

Product Testing

DoE is employed to evaluate the performance and reliability of products under various conditions, such as temperature, humidity, vibration, and stress. This helps manufacturers identify design weaknesses, improve product robustness, and ensure compliance with quality standards. For instance, an electronics company might use DoE to test the durability of their smartphones under extreme temperatures and humidity levels.

Process Testing

DoE is applied to optimize manufacturing processes, improve yield, reduce defects, and enhance overall efficiency. For example, a chemical company might use DoE to optimize the reaction conditions for a chemical synthesis process, such as temperature, pressure, and reactant concentrations.

Medical Device Testing

DoE is used to assess the effectiveness and safety of medical devices across a variety of patient groups, usage scenarios, and environmental settings. This ensures that medical gadgets function consistently well in real-world circumstances and satisfy regulatory standards.

A flexible approach, Design of Experiments enables organizations to solve complicated challenges, obtain deeper insights, and make data-driven decisions. You can reach a new level of productivity and creativity in your industry by adopting DoE and making use of the appropriate software solutions.

In search of DoE Courses? From introductory to advanced courses in Design of Experiments , SkillTrans has a lot to offer. Look through our collection to select the ideal training to advance your knowledge!

img

Meet Hoang Duyen, an experienced SEO Specialist with a proven track record in driving organic growth and boosting online visibility. She has honed her skills in keyword research, on-page optimization, and technical SEO. Her expertise lies in crafting data-driven strategies that not only improve search engine rankings but also deliver tangible results for businesses.

Recent Blogs

img

28 Aug, 2024

img

27 Aug, 2024

img

23 Aug, 2024

img

22 Aug, 2024

  • Development (28)
  • IT & Software (16)
  • Data Science (13)
  • Soft Skills (14)
  • Business (18)
  • Marketing (8)
  • Design (11)
  • Software testing
  • Deep Learning

Comment Reply

Your experience on this website will be improved by allowing Cookies.

Experimental Design: Types, Examples & Methods

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Experimental design refers to how participants are allocated to different groups in an experiment. Types of design include repeated measures, independent groups, and matched pairs designs.

Probably the most common way to design an experiment in psychology is to divide the participants into two groups, the experimental group and the control group, and then introduce a change to the experimental group, not the control group.

The researcher must decide how he/she will allocate their sample to the different experimental groups.  For example, if there are 10 participants, will all 10 participants participate in both groups (e.g., repeated measures), or will the participants be split in half and take part in only one group each?

Three types of experimental designs are commonly used:

1. Independent Measures

Independent measures design, also known as between-groups , is an experimental design where different participants are used in each condition of the independent variable.  This means that each condition of the experiment includes a different group of participants.

This should be done by random allocation, ensuring that each participant has an equal chance of being assigned to one group.

Independent measures involve using two separate groups of participants, one in each condition. For example:

Independent Measures Design 2

  • Con : More people are needed than with the repeated measures design (i.e., more time-consuming).
  • Pro : Avoids order effects (such as practice or fatigue) as people participate in one condition only.  If a person is involved in several conditions, they may become bored, tired, and fed up by the time they come to the second condition or become wise to the requirements of the experiment!
  • Con : Differences between participants in the groups may affect results, for example, variations in age, gender, or social background.  These differences are known as participant variables (i.e., a type of extraneous variable ).
  • Control : After the participants have been recruited, they should be randomly assigned to their groups. This should ensure the groups are similar, on average (reducing participant variables).

2. Repeated Measures Design

Repeated Measures design is an experimental design where the same participants participate in each independent variable condition.  This means that each experiment condition includes the same group of participants.

Repeated Measures design is also known as within-groups or within-subjects design .

  • Pro : As the same participants are used in each condition, participant variables (i.e., individual differences) are reduced.
  • Con : There may be order effects. Order effects refer to the order of the conditions affecting the participants’ behavior.  Performance in the second condition may be better because the participants know what to do (i.e., practice effect).  Or their performance might be worse in the second condition because they are tired (i.e., fatigue effect). This limitation can be controlled using counterbalancing.
  • Pro : Fewer people are needed as they participate in all conditions (i.e., saves time).
  • Control : To combat order effects, the researcher counter-balances the order of the conditions for the participants.  Alternating the order in which participants perform in different conditions of an experiment.

Counterbalancing

Suppose we used a repeated measures design in which all of the participants first learned words in “loud noise” and then learned them in “no noise.”

We expect the participants to learn better in “no noise” because of order effects, such as practice. However, a researcher can control for order effects using counterbalancing.

The sample would be split into two groups: experimental (A) and control (B).  For example, group 1 does ‘A’ then ‘B,’ and group 2 does ‘B’ then ‘A.’ This is to eliminate order effects.

Although order effects occur for each participant, they balance each other out in the results because they occur equally in both groups.

counter balancing

3. Matched Pairs Design

A matched pairs design is an experimental design where pairs of participants are matched in terms of key variables, such as age or socioeconomic status. One member of each pair is then placed into the experimental group and the other member into the control group .

One member of each matched pair must be randomly assigned to the experimental group and the other to the control group.

matched pairs design

  • Con : If one participant drops out, you lose 2 PPs’ data.
  • Pro : Reduces participant variables because the researcher has tried to pair up the participants so that each condition has people with similar abilities and characteristics.
  • Con : Very time-consuming trying to find closely matched pairs.
  • Pro : It avoids order effects, so counterbalancing is not necessary.
  • Con : Impossible to match people exactly unless they are identical twins!
  • Control : Members of each pair should be randomly assigned to conditions. However, this does not solve all these problems.

Experimental design refers to how participants are allocated to an experiment’s different conditions (or IV levels). There are three types:

1. Independent measures / between-groups : Different participants are used in each condition of the independent variable.

2. Repeated measures /within groups : The same participants take part in each condition of the independent variable.

3. Matched pairs : Each condition uses different participants, but they are matched in terms of important characteristics, e.g., gender, age, intelligence, etc.

Learning Check

Read about each of the experiments below. For each experiment, identify (1) which experimental design was used; and (2) why the researcher might have used that design.

1 . To compare the effectiveness of two different types of therapy for depression, depressed patients were assigned to receive either cognitive therapy or behavior therapy for a 12-week period.

The researchers attempted to ensure that the patients in the two groups had similar severity of depressed symptoms by administering a standardized test of depression to each participant, then pairing them according to the severity of their symptoms.

2 . To assess the difference in reading comprehension between 7 and 9-year-olds, a researcher recruited each group from a local primary school. They were given the same passage of text to read and then asked a series of questions to assess their understanding.

3 . To assess the effectiveness of two different ways of teaching reading, a group of 5-year-olds was recruited from a primary school. Their level of reading ability was assessed, and then they were taught using scheme one for 20 weeks.

At the end of this period, their reading was reassessed, and a reading improvement score was calculated. They were then taught using scheme two for a further 20 weeks, and another reading improvement score for this period was calculated. The reading improvement scores for each child were then compared.

4 . To assess the effect of the organization on recall, a researcher randomly assigned student volunteers to two conditions.

Condition one attempted to recall a list of words that were organized into meaningful categories; condition two attempted to recall the same words, randomly grouped on the page.

Experiment Terminology

Ecological validity.

The degree to which an investigation represents real-life experiences.

Experimenter effects

These are the ways that the experimenter can accidentally influence the participant through their appearance or behavior.

Demand characteristics

The clues in an experiment lead the participants to think they know what the researcher is looking for (e.g., the experimenter’s body language).

Independent variable (IV)

The variable the experimenter manipulates (i.e., changes) is assumed to have a direct effect on the dependent variable.

Dependent variable (DV)

Variable the experimenter measures. This is the outcome (i.e., the result) of a study.

Extraneous variables (EV)

All variables which are not independent variables but could affect the results (DV) of the experiment. Extraneous variables should be controlled where possible.

Confounding variables

Variable(s) that have affected the results (DV), apart from the IV. A confounding variable could be an extraneous variable that has not been controlled.

Random Allocation

Randomly allocating participants to independent variable conditions means that all participants should have an equal chance of taking part in each condition.

The principle of random allocation is to avoid bias in how the experiment is carried out and limit the effects of participant variables.

Order effects

Changes in participants’ performance due to their repeating the same or similar test more than once. Examples of order effects include:

(i) practice effect: an improvement in performance on a task due to repetition, for example, because of familiarity with the task;

(ii) fatigue effect: a decrease in performance of a task due to repetition, for example, because of boredom or tiredness.

Print Friendly, PDF & Email

19+ Experimental Design Examples (Methods + Types)

practical psychology logo

Ever wondered how scientists discover new medicines, psychologists learn about behavior, or even how marketers figure out what kind of ads you like? Well, they all have something in common: they use a special plan or recipe called an "experimental design."

Imagine you're baking cookies. You can't just throw random amounts of flour, sugar, and chocolate chips into a bowl and hope for the best. You follow a recipe, right? Scientists and researchers do something similar. They follow a "recipe" called an experimental design to make sure their experiments are set up in a way that the answers they find are meaningful and reliable.

Experimental design is the roadmap researchers use to answer questions. It's a set of rules and steps that researchers follow to collect information, or "data," in a way that is fair, accurate, and makes sense.

experimental design test tubes

Long ago, people didn't have detailed game plans for experiments. They often just tried things out and saw what happened. But over time, people got smarter about this. They started creating structured plans—what we now call experimental designs—to get clearer, more trustworthy answers to their questions.

In this article, we'll take you on a journey through the world of experimental designs. We'll talk about the different types, or "flavors," of experimental designs, where they're used, and even give you a peek into how they came to be.

What Is Experimental Design?

Alright, before we dive into the different types of experimental designs, let's get crystal clear on what experimental design actually is.

Imagine you're a detective trying to solve a mystery. You need clues, right? Well, in the world of research, experimental design is like the roadmap that helps you find those clues. It's like the game plan in sports or the blueprint when you're building a house. Just like you wouldn't start building without a good blueprint, researchers won't start their studies without a strong experimental design.

So, why do we need experimental design? Think about baking a cake. If you toss ingredients into a bowl without measuring, you'll end up with a mess instead of a tasty dessert.

Similarly, in research, if you don't have a solid plan, you might get confusing or incorrect results. A good experimental design helps you ask the right questions ( think critically ), decide what to measure ( come up with an idea ), and figure out how to measure it (test it). It also helps you consider things that might mess up your results, like outside influences you hadn't thought of.

For example, let's say you want to find out if listening to music helps people focus better. Your experimental design would help you decide things like: Who are you going to test? What kind of music will you use? How will you measure focus? And, importantly, how will you make sure that it's really the music affecting focus and not something else, like the time of day or whether someone had a good breakfast?

In short, experimental design is the master plan that guides researchers through the process of collecting data, so they can answer questions in the most reliable way possible. It's like the GPS for the journey of discovery!

History of Experimental Design

Around 350 BCE, people like Aristotle were trying to figure out how the world works, but they mostly just thought really hard about things. They didn't test their ideas much. So while they were super smart, their methods weren't always the best for finding out the truth.

Fast forward to the Renaissance (14th to 17th centuries), a time of big changes and lots of curiosity. People like Galileo started to experiment by actually doing tests, like rolling balls down inclined planes to study motion. Galileo's work was cool because he combined thinking with doing. He'd have an idea, test it, look at the results, and then think some more. This approach was a lot more reliable than just sitting around and thinking.

Now, let's zoom ahead to the 18th and 19th centuries. This is when people like Francis Galton, an English polymath, started to get really systematic about experimentation. Galton was obsessed with measuring things. Seriously, he even tried to measure how good-looking people were ! His work helped create the foundations for a more organized approach to experiments.

Next stop: the early 20th century. Enter Ronald A. Fisher , a brilliant British statistician. Fisher was a game-changer. He came up with ideas that are like the bread and butter of modern experimental design.

Fisher invented the concept of the " control group "—that's a group of people or things that don't get the treatment you're testing, so you can compare them to those who do. He also stressed the importance of " randomization ," which means assigning people or things to different groups by chance, like drawing names out of a hat. This makes sure the experiment is fair and the results are trustworthy.

Around the same time, American psychologists like John B. Watson and B.F. Skinner were developing " behaviorism ." They focused on studying things that they could directly observe and measure, like actions and reactions.

Skinner even built boxes—called Skinner Boxes —to test how animals like pigeons and rats learn. Their work helped shape how psychologists design experiments today. Watson performed a very controversial experiment called The Little Albert experiment that helped describe behaviour through conditioning—in other words, how people learn to behave the way they do.

In the later part of the 20th century and into our time, computers have totally shaken things up. Researchers now use super powerful software to help design their experiments and crunch the numbers.

With computers, they can simulate complex experiments before they even start, which helps them predict what might happen. This is especially helpful in fields like medicine, where getting things right can be a matter of life and death.

Also, did you know that experimental designs aren't just for scientists in labs? They're used by people in all sorts of jobs, like marketing, education, and even video game design! Yes, someone probably ran an experiment to figure out what makes a game super fun to play.

So there you have it—a quick tour through the history of experimental design, from Aristotle's deep thoughts to Fisher's groundbreaking ideas, and all the way to today's computer-powered research. These designs are the recipes that help people from all walks of life find answers to their big questions.

Key Terms in Experimental Design

Before we dig into the different types of experimental designs, let's get comfy with some key terms. Understanding these terms will make it easier for us to explore the various types of experimental designs that researchers use to answer their big questions.

Independent Variable : This is what you change or control in your experiment to see what effect it has. Think of it as the "cause" in a cause-and-effect relationship. For example, if you're studying whether different types of music help people focus, the kind of music is the independent variable.

Dependent Variable : This is what you're measuring to see the effect of your independent variable. In our music and focus experiment, how well people focus is the dependent variable—it's what "depends" on the kind of music played.

Control Group : This is a group of people who don't get the special treatment or change you're testing. They help you see what happens when the independent variable is not applied. If you're testing whether a new medicine works, the control group would take a fake pill, called a placebo , instead of the real medicine.

Experimental Group : This is the group that gets the special treatment or change you're interested in. Going back to our medicine example, this group would get the actual medicine to see if it has any effect.

Randomization : This is like shaking things up in a fair way. You randomly put people into the control or experimental group so that each group is a good mix of different kinds of people. This helps make the results more reliable.

Sample : This is the group of people you're studying. They're a "sample" of a larger group that you're interested in. For instance, if you want to know how teenagers feel about a new video game, you might study a sample of 100 teenagers.

Bias : This is anything that might tilt your experiment one way or another without you realizing it. Like if you're testing a new kind of dog food and you only test it on poodles, that could create a bias because maybe poodles just really like that food and other breeds don't.

Data : This is the information you collect during the experiment. It's like the treasure you find on your journey of discovery!

Replication : This means doing the experiment more than once to make sure your findings hold up. It's like double-checking your answers on a test.

Hypothesis : This is your educated guess about what will happen in the experiment. It's like predicting the end of a movie based on the first half.

Steps of Experimental Design

Alright, let's say you're all fired up and ready to run your own experiment. Cool! But where do you start? Well, designing an experiment is a bit like planning a road trip. There are some key steps you've got to take to make sure you reach your destination. Let's break it down:

  • Ask a Question : Before you hit the road, you've got to know where you're going. Same with experiments. You start with a question you want to answer, like "Does eating breakfast really make you do better in school?"
  • Do Some Homework : Before you pack your bags, you look up the best places to visit, right? In science, this means reading up on what other people have already discovered about your topic.
  • Form a Hypothesis : This is your educated guess about what you think will happen. It's like saying, "I bet this route will get us there faster."
  • Plan the Details : Now you decide what kind of car you're driving (your experimental design), who's coming with you (your sample), and what snacks to bring (your variables).
  • Randomization : Remember, this is like shuffling a deck of cards. You want to mix up who goes into your control and experimental groups to make sure it's a fair test.
  • Run the Experiment : Finally, the rubber hits the road! You carry out your plan, making sure to collect your data carefully.
  • Analyze the Data : Once the trip's over, you look at your photos and decide which ones are keepers. In science, this means looking at your data to see what it tells you.
  • Draw Conclusions : Based on your data, did you find an answer to your question? This is like saying, "Yep, that route was faster," or "Nope, we hit a ton of traffic."
  • Share Your Findings : After a great trip, you want to tell everyone about it, right? Scientists do the same by publishing their results so others can learn from them.
  • Do It Again? : Sometimes one road trip just isn't enough. In the same way, scientists often repeat their experiments to make sure their findings are solid.

So there you have it! Those are the basic steps you need to follow when you're designing an experiment. Each step helps make sure that you're setting up a fair and reliable way to find answers to your big questions.

Let's get into examples of experimental designs.

1) True Experimental Design

notepad

In the world of experiments, the True Experimental Design is like the superstar quarterback everyone talks about. Born out of the early 20th-century work of statisticians like Ronald A. Fisher, this design is all about control, precision, and reliability.

Researchers carefully pick an independent variable to manipulate (remember, that's the thing they're changing on purpose) and measure the dependent variable (the effect they're studying). Then comes the magic trick—randomization. By randomly putting participants into either the control or experimental group, scientists make sure their experiment is as fair as possible.

No sneaky biases here!

True Experimental Design Pros

The pros of True Experimental Design are like the perks of a VIP ticket at a concert: you get the best and most trustworthy results. Because everything is controlled and randomized, you can feel pretty confident that the results aren't just a fluke.

True Experimental Design Cons

However, there's a catch. Sometimes, it's really tough to set up these experiments in a real-world situation. Imagine trying to control every single detail of your day, from the food you eat to the air you breathe. Not so easy, right?

True Experimental Design Uses

The fields that get the most out of True Experimental Designs are those that need super reliable results, like medical research.

When scientists were developing COVID-19 vaccines, they used this design to run clinical trials. They had control groups that received a placebo (a harmless substance with no effect) and experimental groups that got the actual vaccine. Then they measured how many people in each group got sick. By comparing the two, they could say, "Yep, this vaccine works!"

So next time you read about a groundbreaking discovery in medicine or technology, chances are a True Experimental Design was the VIP behind the scenes, making sure everything was on point. It's been the go-to for rigorous scientific inquiry for nearly a century, and it's not stepping off the stage anytime soon.

2) Quasi-Experimental Design

So, let's talk about the Quasi-Experimental Design. Think of this one as the cool cousin of True Experimental Design. It wants to be just like its famous relative, but it's a bit more laid-back and flexible. You'll find quasi-experimental designs when it's tricky to set up a full-blown True Experimental Design with all the bells and whistles.

Quasi-experiments still play with an independent variable, just like their stricter cousins. The big difference? They don't use randomization. It's like wanting to divide a bag of jelly beans equally between your friends, but you can't quite do it perfectly.

In real life, it's often not possible or ethical to randomly assign people to different groups, especially when dealing with sensitive topics like education or social issues. And that's where quasi-experiments come in.

Quasi-Experimental Design Pros

Even though they lack full randomization, quasi-experimental designs are like the Swiss Army knives of research: versatile and practical. They're especially popular in fields like education, sociology, and public policy.

For instance, when researchers wanted to figure out if the Head Start program , aimed at giving young kids a "head start" in school, was effective, they used a quasi-experimental design. They couldn't randomly assign kids to go or not go to preschool, but they could compare kids who did with kids who didn't.

Quasi-Experimental Design Cons

Of course, quasi-experiments come with their own bag of pros and cons. On the plus side, they're easier to set up and often cheaper than true experiments. But the flip side is that they're not as rock-solid in their conclusions. Because the groups aren't randomly assigned, there's always that little voice saying, "Hey, are we missing something here?"

Quasi-Experimental Design Uses

Quasi-Experimental Design gained traction in the mid-20th century. Researchers were grappling with real-world problems that didn't fit neatly into a laboratory setting. Plus, as society became more aware of ethical considerations, the need for flexible designs increased. So, the quasi-experimental approach was like a breath of fresh air for scientists wanting to study complex issues without a laundry list of restrictions.

In short, if True Experimental Design is the superstar quarterback, Quasi-Experimental Design is the versatile player who can adapt and still make significant contributions to the game.

3) Pre-Experimental Design

Now, let's talk about the Pre-Experimental Design. Imagine it as the beginner's skateboard you get before you try out for all the cool tricks. It has wheels, it rolls, but it's not built for the professional skatepark.

Similarly, pre-experimental designs give researchers a starting point. They let you dip your toes in the water of scientific research without diving in head-first.

So, what's the deal with pre-experimental designs?

Pre-Experimental Designs are the basic, no-frills versions of experiments. Researchers still mess around with an independent variable and measure a dependent variable, but they skip over the whole randomization thing and often don't even have a control group.

It's like baking a cake but forgetting the frosting and sprinkles; you'll get some results, but they might not be as complete or reliable as you'd like.

Pre-Experimental Design Pros

Why use such a simple setup? Because sometimes, you just need to get the ball rolling. Pre-experimental designs are great for quick-and-dirty research when you're short on time or resources. They give you a rough idea of what's happening, which you can use to plan more detailed studies later.

A good example of this is early studies on the effects of screen time on kids. Researchers couldn't control every aspect of a child's life, but they could easily ask parents to track how much time their kids spent in front of screens and then look for trends in behavior or school performance.

Pre-Experimental Design Cons

But here's the catch: pre-experimental designs are like that first draft of an essay. It helps you get your ideas down, but you wouldn't want to turn it in for a grade. Because these designs lack the rigorous structure of true or quasi-experimental setups, they can't give you rock-solid conclusions. They're more like clues or signposts pointing you in a certain direction.

Pre-Experimental Design Uses

This type of design became popular in the early stages of various scientific fields. Researchers used them to scratch the surface of a topic, generate some initial data, and then decide if it's worth exploring further. In other words, pre-experimental designs were the stepping stones that led to more complex, thorough investigations.

So, while Pre-Experimental Design may not be the star player on the team, it's like the practice squad that helps everyone get better. It's the starting point that can lead to bigger and better things.

4) Factorial Design

Now, buckle up, because we're moving into the world of Factorial Design, the multi-tasker of the experimental universe.

Imagine juggling not just one, but multiple balls in the air—that's what researchers do in a factorial design.

In Factorial Design, researchers are not satisfied with just studying one independent variable. Nope, they want to study two or more at the same time to see how they interact.

It's like cooking with several spices to see how they blend together to create unique flavors.

Factorial Design became the talk of the town with the rise of computers. Why? Because this design produces a lot of data, and computers are the number crunchers that help make sense of it all. So, thanks to our silicon friends, researchers can study complicated questions like, "How do diet AND exercise together affect weight loss?" instead of looking at just one of those factors.

Factorial Design Pros

This design's main selling point is its ability to explore interactions between variables. For instance, maybe a new study drug works really well for young people but not so great for older adults. A factorial design could reveal that age is a crucial factor, something you might miss if you only studied the drug's effectiveness in general. It's like being a detective who looks for clues not just in one room but throughout the entire house.

Factorial Design Cons

However, factorial designs have their own bag of challenges. First off, they can be pretty complicated to set up and run. Imagine coordinating a four-way intersection with lots of cars coming from all directions—you've got to make sure everything runs smoothly, or you'll end up with a traffic jam. Similarly, researchers need to carefully plan how they'll measure and analyze all the different variables.

Factorial Design Uses

Factorial designs are widely used in psychology to untangle the web of factors that influence human behavior. They're also popular in fields like marketing, where companies want to understand how different aspects like price, packaging, and advertising influence a product's success.

And speaking of success, the factorial design has been a hit since statisticians like Ronald A. Fisher (yep, him again!) expanded on it in the early-to-mid 20th century. It offered a more nuanced way of understanding the world, proving that sometimes, to get the full picture, you've got to juggle more than one ball at a time.

So, if True Experimental Design is the quarterback and Quasi-Experimental Design is the versatile player, Factorial Design is the strategist who sees the entire game board and makes moves accordingly.

5) Longitudinal Design

pill bottle

Alright, let's take a step into the world of Longitudinal Design. Picture it as the grand storyteller, the kind who doesn't just tell you about a single event but spins an epic tale that stretches over years or even decades. This design isn't about quick snapshots; it's about capturing the whole movie of someone's life or a long-running process.

You know how you might take a photo every year on your birthday to see how you've changed? Longitudinal Design is kind of like that, but for scientific research.

With Longitudinal Design, instead of measuring something just once, researchers come back again and again, sometimes over many years, to see how things are going. This helps them understand not just what's happening, but why it's happening and how it changes over time.

This design really started to shine in the latter half of the 20th century, when researchers began to realize that some questions can't be answered in a hurry. Think about studies that look at how kids grow up, or research on how a certain medicine affects you over a long period. These aren't things you can rush.

The famous Framingham Heart Study , started in 1948, is a prime example. It's been studying heart health in a small town in Massachusetts for decades, and the findings have shaped what we know about heart disease.

Longitudinal Design Pros

So, what's to love about Longitudinal Design? First off, it's the go-to for studying change over time, whether that's how people age or how a forest recovers from a fire.

Longitudinal Design Cons

But it's not all sunshine and rainbows. Longitudinal studies take a lot of patience and resources. Plus, keeping track of participants over many years can be like herding cats—difficult and full of surprises.

Longitudinal Design Uses

Despite these challenges, longitudinal studies have been key in fields like psychology, sociology, and medicine. They provide the kind of deep, long-term insights that other designs just can't match.

So, if the True Experimental Design is the superstar quarterback, and the Quasi-Experimental Design is the flexible athlete, then the Factorial Design is the strategist, and the Longitudinal Design is the wise elder who has seen it all and has stories to tell.

6) Cross-Sectional Design

Now, let's flip the script and talk about Cross-Sectional Design, the polar opposite of the Longitudinal Design. If Longitudinal is the grand storyteller, think of Cross-Sectional as the snapshot photographer. It captures a single moment in time, like a selfie that you take to remember a fun day. Researchers using this design collect all their data at one point, providing a kind of "snapshot" of whatever they're studying.

In a Cross-Sectional Design, researchers look at multiple groups all at the same time to see how they're different or similar.

This design rose to popularity in the mid-20th century, mainly because it's so quick and efficient. Imagine wanting to know how people of different ages feel about a new video game. Instead of waiting for years to see how opinions change, you could just ask people of all ages what they think right now. That's Cross-Sectional Design for you—fast and straightforward.

You'll find this type of research everywhere from marketing studies to healthcare. For instance, you might have heard about surveys asking people what they think about a new product or political issue. Those are usually cross-sectional studies, aimed at getting a quick read on public opinion.

Cross-Sectional Design Pros

So, what's the big deal with Cross-Sectional Design? Well, it's the go-to when you need answers fast and don't have the time or resources for a more complicated setup.

Cross-Sectional Design Cons

Remember, speed comes with trade-offs. While you get your results quickly, those results are stuck in time. They can't tell you how things change or why they're changing, just what's happening right now.

Cross-Sectional Design Uses

Also, because they're so quick and simple, cross-sectional studies often serve as the first step in research. They give scientists an idea of what's going on so they can decide if it's worth digging deeper. In that way, they're a bit like a movie trailer, giving you a taste of the action to see if you're interested in seeing the whole film.

So, in our lineup of experimental designs, if True Experimental Design is the superstar quarterback and Longitudinal Design is the wise elder, then Cross-Sectional Design is like the speedy running back—fast, agile, but not designed for long, drawn-out plays.

7) Correlational Design

Next on our roster is the Correlational Design, the keen observer of the experimental world. Imagine this design as the person at a party who loves people-watching. They don't interfere or get involved; they just observe and take mental notes about what's going on.

In a correlational study, researchers don't change or control anything; they simply observe and measure how two variables relate to each other.

The correlational design has roots in the early days of psychology and sociology. Pioneers like Sir Francis Galton used it to study how qualities like intelligence or height could be related within families.

This design is all about asking, "Hey, when this thing happens, does that other thing usually happen too?" For example, researchers might study whether students who have more study time get better grades or whether people who exercise more have lower stress levels.

One of the most famous correlational studies you might have heard of is the link between smoking and lung cancer. Back in the mid-20th century, researchers started noticing that people who smoked a lot also seemed to get lung cancer more often. They couldn't say smoking caused cancer—that would require a true experiment—but the strong correlation was a red flag that led to more research and eventually, health warnings.

Correlational Design Pros

This design is great at proving that two (or more) things can be related. Correlational designs can help prove that more detailed research is needed on a topic. They can help us see patterns or possible causes for things that we otherwise might not have realized.

Correlational Design Cons

But here's where you need to be careful: correlational designs can be tricky. Just because two things are related doesn't mean one causes the other. That's like saying, "Every time I wear my lucky socks, my team wins." Well, it's a fun thought, but those socks aren't really controlling the game.

Correlational Design Uses

Despite this limitation, correlational designs are popular in psychology, economics, and epidemiology, to name a few fields. They're often the first step in exploring a possible relationship between variables. Once a strong correlation is found, researchers may decide to conduct more rigorous experimental studies to examine cause and effect.

So, if the True Experimental Design is the superstar quarterback and the Longitudinal Design is the wise elder, the Factorial Design is the strategist, and the Cross-Sectional Design is the speedster, then the Correlational Design is the clever scout, identifying interesting patterns but leaving the heavy lifting of proving cause and effect to the other types of designs.

8) Meta-Analysis

Last but not least, let's talk about Meta-Analysis, the librarian of experimental designs.

If other designs are all about creating new research, Meta-Analysis is about gathering up everyone else's research, sorting it, and figuring out what it all means when you put it together.

Imagine a jigsaw puzzle where each piece is a different study. Meta-Analysis is the process of fitting all those pieces together to see the big picture.

The concept of Meta-Analysis started to take shape in the late 20th century, when computers became powerful enough to handle massive amounts of data. It was like someone handed researchers a super-powered magnifying glass, letting them examine multiple studies at the same time to find common trends or results.

You might have heard of the Cochrane Reviews in healthcare . These are big collections of meta-analyses that help doctors and policymakers figure out what treatments work best based on all the research that's been done.

For example, if ten different studies show that a certain medicine helps lower blood pressure, a meta-analysis would pull all that information together to give a more accurate answer.

Meta-Analysis Pros

The beauty of Meta-Analysis is that it can provide really strong evidence. Instead of relying on one study, you're looking at the whole landscape of research on a topic.

Meta-Analysis Cons

However, it does have some downsides. For one, Meta-Analysis is only as good as the studies it includes. If those studies are flawed, the meta-analysis will be too. It's like baking a cake: if you use bad ingredients, it doesn't matter how good your recipe is—the cake won't turn out well.

Meta-Analysis Uses

Despite these challenges, meta-analyses are highly respected and widely used in many fields like medicine, psychology, and education. They help us make sense of a world that's bursting with information by showing us the big picture drawn from many smaller snapshots.

So, in our all-star lineup, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, the Factorial Design is the strategist, the Cross-Sectional Design is the speedster, and the Correlational Design is the scout, then the Meta-Analysis is like the coach, using insights from everyone else's plays to come up with the best game plan.

9) Non-Experimental Design

Now, let's talk about a player who's a bit of an outsider on this team of experimental designs—the Non-Experimental Design. Think of this design as the commentator or the journalist who covers the game but doesn't actually play.

In a Non-Experimental Design, researchers are like reporters gathering facts, but they don't interfere or change anything. They're simply there to describe and analyze.

Non-Experimental Design Pros

So, what's the deal with Non-Experimental Design? Its strength is in description and exploration. It's really good for studying things as they are in the real world, without changing any conditions.

Non-Experimental Design Cons

Because a non-experimental design doesn't manipulate variables, it can't prove cause and effect. It's like a weather reporter: they can tell you it's raining, but they can't tell you why it's raining.

The downside? Since researchers aren't controlling variables, it's hard to rule out other explanations for what they observe. It's like hearing one side of a story—you get an idea of what happened, but it might not be the complete picture.

Non-Experimental Design Uses

Non-Experimental Design has always been a part of research, especially in fields like anthropology, sociology, and some areas of psychology.

For instance, if you've ever heard of studies that describe how people behave in different cultures or what teens like to do in their free time, that's often Non-Experimental Design at work. These studies aim to capture the essence of a situation, like painting a portrait instead of taking a snapshot.

One well-known example you might have heard about is the Kinsey Reports from the 1940s and 1950s, which described sexual behavior in men and women. Researchers interviewed thousands of people but didn't manipulate any variables like you would in a true experiment. They simply collected data to create a comprehensive picture of the subject matter.

So, in our metaphorical team of research designs, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, and Meta-Analysis is the coach, then Non-Experimental Design is the sports journalist—always present, capturing the game, but not part of the action itself.

10) Repeated Measures Design

white rat

Time to meet the Repeated Measures Design, the time traveler of our research team. If this design were a player in a sports game, it would be the one who keeps revisiting past plays to figure out how to improve the next one.

Repeated Measures Design is all about studying the same people or subjects multiple times to see how they change or react under different conditions.

The idea behind Repeated Measures Design isn't new; it's been around since the early days of psychology and medicine. You could say it's a cousin to the Longitudinal Design, but instead of looking at how things naturally change over time, it focuses on how the same group reacts to different things.

Imagine a study looking at how a new energy drink affects people's running speed. Instead of comparing one group that drank the energy drink to another group that didn't, a Repeated Measures Design would have the same group of people run multiple times—once with the energy drink, and once without. This way, you're really zeroing in on the effect of that energy drink, making the results more reliable.

Repeated Measures Design Pros

The strong point of Repeated Measures Design is that it's super focused. Because it uses the same subjects, you don't have to worry about differences between groups messing up your results.

Repeated Measures Design Cons

But the downside? Well, people can get tired or bored if they're tested too many times, which might affect how they respond.

Repeated Measures Design Uses

A famous example of this design is the "Little Albert" experiment, conducted by John B. Watson and Rosalie Rayner in 1920. In this study, a young boy was exposed to a white rat and other stimuli several times to see how his emotional responses changed. Though the ethical standards of this experiment are often criticized today, it was groundbreaking in understanding conditioned emotional responses.

In our metaphorical lineup of research designs, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, and Non-Experimental Design is the journalist, then Repeated Measures Design is the time traveler—always looping back to fine-tune the game plan.

11) Crossover Design

Next up is Crossover Design, the switch-hitter of the research world. If you're familiar with baseball, you'll know a switch-hitter is someone who can bat both right-handed and left-handed.

In a similar way, Crossover Design allows subjects to experience multiple conditions, flipping them around so that everyone gets a turn in each role.

This design is like the utility player on our team—versatile, flexible, and really good at adapting.

The Crossover Design has its roots in medical research and has been popular since the mid-20th century. It's often used in clinical trials to test the effectiveness of different treatments.

Crossover Design Pros

The neat thing about this design is that it allows each participant to serve as their own control group. Imagine you're testing two new kinds of headache medicine. Instead of giving one type to one group and another type to a different group, you'd give both kinds to the same people but at different times.

Crossover Design Cons

What's the big deal with Crossover Design? Its major strength is in reducing the "noise" that comes from individual differences. Since each person experiences all conditions, it's easier to see real effects. However, there's a catch. This design assumes that there's no lasting effect from the first condition when you switch to the second one. That might not always be true. If the first treatment has a long-lasting effect, it could mess up the results when you switch to the second treatment.

Crossover Design Uses

A well-known example of Crossover Design is in studies that look at the effects of different types of diets—like low-carb vs. low-fat diets. Researchers might have participants follow a low-carb diet for a few weeks, then switch them to a low-fat diet. By doing this, they can more accurately measure how each diet affects the same group of people.

In our team of experimental designs, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, and Repeated Measures Design is the time traveler, then Crossover Design is the versatile utility player—always ready to adapt and play multiple roles to get the most accurate results.

12) Cluster Randomized Design

Meet the Cluster Randomized Design, the team captain of group-focused research. In our imaginary lineup of experimental designs, if other designs focus on individual players, then Cluster Randomized Design is looking at how the entire team functions.

This approach is especially common in educational and community-based research, and it's been gaining traction since the late 20th century.

Here's how Cluster Randomized Design works: Instead of assigning individual people to different conditions, researchers assign entire groups, or "clusters." These could be schools, neighborhoods, or even entire towns. This helps you see how the new method works in a real-world setting.

Imagine you want to see if a new anti-bullying program really works. Instead of selecting individual students, you'd introduce the program to a whole school or maybe even several schools, and then compare the results to schools without the program.

Cluster Randomized Design Pros

Why use Cluster Randomized Design? Well, sometimes it's just not practical to assign conditions at the individual level. For example, you can't really have half a school following a new reading program while the other half sticks with the old one; that would be way too confusing! Cluster Randomization helps get around this problem by treating each "cluster" as its own mini-experiment.

Cluster Randomized Design Cons

There's a downside, too. Because entire groups are assigned to each condition, there's a risk that the groups might be different in some important way that the researchers didn't account for. That's like having one sports team that's full of veterans playing against a team of rookies; the match wouldn't be fair.

Cluster Randomized Design Uses

A famous example is the research conducted to test the effectiveness of different public health interventions, like vaccination programs. Researchers might roll out a vaccination program in one community but not in another, then compare the rates of disease in both.

In our metaphorical research team, if True Experimental Design is the quarterback, Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, Repeated Measures Design is the time traveler, and Crossover Design is the utility player, then Cluster Randomized Design is the team captain—always looking out for the group as a whole.

13) Mixed-Methods Design

Say hello to Mixed-Methods Design, the all-rounder or the "Renaissance player" of our research team.

Mixed-Methods Design uses a blend of both qualitative and quantitative methods to get a more complete picture, just like a Renaissance person who's good at lots of different things. It's like being good at both offense and defense in a sport; you've got all your bases covered!

Mixed-Methods Design is a fairly new kid on the block, becoming more popular in the late 20th and early 21st centuries as researchers began to see the value in using multiple approaches to tackle complex questions. It's the Swiss Army knife in our research toolkit, combining the best parts of other designs to be more versatile.

Here's how it could work: Imagine you're studying the effects of a new educational app on students' math skills. You might use quantitative methods like tests and grades to measure how much the students improve—that's the 'numbers part.'

But you also want to know how the students feel about math now, or why they think they got better or worse. For that, you could conduct interviews or have students fill out journals—that's the 'story part.'

Mixed-Methods Design Pros

So, what's the scoop on Mixed-Methods Design? The strength is its versatility and depth; you're not just getting numbers or stories, you're getting both, which gives a fuller picture.

Mixed-Methods Design Cons

But, it's also more challenging. Imagine trying to play two sports at the same time! You have to be skilled in different research methods and know how to combine them effectively.

Mixed-Methods Design Uses

A high-profile example of Mixed-Methods Design is research on climate change. Scientists use numbers and data to show temperature changes (quantitative), but they also interview people to understand how these changes are affecting communities (qualitative).

In our team of experimental designs, if True Experimental Design is the quarterback, Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, Repeated Measures Design is the time traveler, Crossover Design is the utility player, and Cluster Randomized Design is the team captain, then Mixed-Methods Design is the Renaissance player—skilled in multiple areas and able to bring them all together for a winning strategy.

14) Multivariate Design

Now, let's turn our attention to Multivariate Design, the multitasker of the research world.

If our lineup of research designs were like players on a basketball court, Multivariate Design would be the player dribbling, passing, and shooting all at once. This design doesn't just look at one or two things; it looks at several variables simultaneously to see how they interact and affect each other.

Multivariate Design is like baking a cake with many ingredients. Instead of just looking at how flour affects the cake, you also consider sugar, eggs, and milk all at once. This way, you understand how everything works together to make the cake taste good or bad.

Multivariate Design has been a go-to method in psychology, economics, and social sciences since the latter half of the 20th century. With the advent of computers and advanced statistical software, analyzing multiple variables at once became a lot easier, and Multivariate Design soared in popularity.

Multivariate Design Pros

So, what's the benefit of using Multivariate Design? Its power lies in its complexity. By studying multiple variables at the same time, you can get a really rich, detailed understanding of what's going on.

Multivariate Design Cons

But that complexity can also be a drawback. With so many variables, it can be tough to tell which ones are really making a difference and which ones are just along for the ride.

Multivariate Design Uses

Imagine you're a coach trying to figure out the best strategy to win games. You wouldn't just look at how many points your star player scores; you'd also consider assists, rebounds, turnovers, and maybe even how loud the crowd is. A Multivariate Design would help you understand how all these factors work together to determine whether you win or lose.

A well-known example of Multivariate Design is in market research. Companies often use this approach to figure out how different factors—like price, packaging, and advertising—affect sales. By studying multiple variables at once, they can find the best combination to boost profits.

In our metaphorical research team, if True Experimental Design is the quarterback, Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, Repeated Measures Design is the time traveler, Crossover Design is the utility player, Cluster Randomized Design is the team captain, and Mixed-Methods Design is the Renaissance player, then Multivariate Design is the multitasker—juggling many variables at once to get a fuller picture of what's happening.

15) Pretest-Posttest Design

Let's introduce Pretest-Posttest Design, the "Before and After" superstar of our research team. You've probably seen those before-and-after pictures in ads for weight loss programs or home renovations, right?

Well, this design is like that, but for science! Pretest-Posttest Design checks out what things are like before the experiment starts and then compares that to what things are like after the experiment ends.

This design is one of the classics, a staple in research for decades across various fields like psychology, education, and healthcare. It's so simple and straightforward that it has stayed popular for a long time.

In Pretest-Posttest Design, you measure your subject's behavior or condition before you introduce any changes—that's your "before" or "pretest." Then you do your experiment, and after it's done, you measure the same thing again—that's your "after" or "posttest."

Pretest-Posttest Design Pros

What makes Pretest-Posttest Design special? It's pretty easy to understand and doesn't require fancy statistics.

Pretest-Posttest Design Cons

But there are some pitfalls. For example, what if the kids in our math example get better at multiplication just because they're older or because they've taken the test before? That would make it hard to tell if the program is really effective or not.

Pretest-Posttest Design Uses

Let's say you're a teacher and you want to know if a new math program helps kids get better at multiplication. First, you'd give all the kids a multiplication test—that's your pretest. Then you'd teach them using the new math program. At the end, you'd give them the same test again—that's your posttest. If the kids do better on the second test, you might conclude that the program works.

One famous use of Pretest-Posttest Design is in evaluating the effectiveness of driver's education courses. Researchers will measure people's driving skills before and after the course to see if they've improved.

16) Solomon Four-Group Design

Next up is the Solomon Four-Group Design, the "chess master" of our research team. This design is all about strategy and careful planning. Named after Richard L. Solomon who introduced it in the 1940s, this method tries to correct some of the weaknesses in simpler designs, like the Pretest-Posttest Design.

Here's how it rolls: The Solomon Four-Group Design uses four different groups to test a hypothesis. Two groups get a pretest, then one of them receives the treatment or intervention, and both get a posttest. The other two groups skip the pretest, and only one of them receives the treatment before they both get a posttest.

Sound complicated? It's like playing 4D chess; you're thinking several moves ahead!

Solomon Four-Group Design Pros

What's the pro and con of the Solomon Four-Group Design? On the plus side, it provides really robust results because it accounts for so many variables.

Solomon Four-Group Design Cons

The downside? It's a lot of work and requires a lot of participants, making it more time-consuming and costly.

Solomon Four-Group Design Uses

Let's say you want to figure out if a new way of teaching history helps students remember facts better. Two classes take a history quiz (pretest), then one class uses the new teaching method while the other sticks with the old way. Both classes take another quiz afterward (posttest).

Meanwhile, two more classes skip the initial quiz, and then one uses the new method before both take the final quiz. Comparing all four groups will give you a much clearer picture of whether the new teaching method works and whether the pretest itself affects the outcome.

The Solomon Four-Group Design is less commonly used than simpler designs but is highly respected for its ability to control for more variables. It's a favorite in educational and psychological research where you really want to dig deep and figure out what's actually causing changes.

17) Adaptive Designs

Now, let's talk about Adaptive Designs, the chameleons of the experimental world.

Imagine you're a detective, and halfway through solving a case, you find a clue that changes everything. You wouldn't just stick to your old plan; you'd adapt and change your approach, right? That's exactly what Adaptive Designs allow researchers to do.

In an Adaptive Design, researchers can make changes to the study as it's happening, based on early results. In a traditional study, once you set your plan, you stick to it from start to finish.

Adaptive Design Pros

This method is particularly useful in fast-paced or high-stakes situations, like developing a new vaccine in the middle of a pandemic. The ability to adapt can save both time and resources, and more importantly, it can save lives by getting effective treatments out faster.

Adaptive Design Cons

But Adaptive Designs aren't without their drawbacks. They can be very complex to plan and carry out, and there's always a risk that the changes made during the study could introduce bias or errors.

Adaptive Design Uses

Adaptive Designs are most often seen in clinical trials, particularly in the medical and pharmaceutical fields.

For instance, if a new drug is showing really promising results, the study might be adjusted to give more participants the new treatment instead of a placebo. Or if one dose level is showing bad side effects, it might be dropped from the study.

The best part is, these changes are pre-planned. Researchers lay out in advance what changes might be made and under what conditions, which helps keep everything scientific and above board.

In terms of applications, besides their heavy usage in medical and pharmaceutical research, Adaptive Designs are also becoming increasingly popular in software testing and market research. In these fields, being able to quickly adjust to early results can give companies a significant advantage.

Adaptive Designs are like the agile startups of the research world—quick to pivot, keen to learn from ongoing results, and focused on rapid, efficient progress. However, they require a great deal of expertise and careful planning to ensure that the adaptability doesn't compromise the integrity of the research.

18) Bayesian Designs

Next, let's dive into Bayesian Designs, the data detectives of the research universe. Named after Thomas Bayes, an 18th-century statistician and minister, this design doesn't just look at what's happening now; it also takes into account what's happened before.

Imagine if you were a detective who not only looked at the evidence in front of you but also used your past cases to make better guesses about your current one. That's the essence of Bayesian Designs.

Bayesian Designs are like detective work in science. As you gather more clues (or data), you update your best guess on what's really happening. This way, your experiment gets smarter as it goes along.

In the world of research, Bayesian Designs are most notably used in areas where you have some prior knowledge that can inform your current study. For example, if earlier research shows that a certain type of medicine usually works well for a specific illness, a Bayesian Design would include that information when studying a new group of patients with the same illness.

Bayesian Design Pros

One of the major advantages of Bayesian Designs is their efficiency. Because they use existing data to inform the current experiment, often fewer resources are needed to reach a reliable conclusion.

Bayesian Design Cons

However, they can be quite complicated to set up and require a deep understanding of both statistics and the subject matter at hand.

Bayesian Design Uses

Bayesian Designs are highly valued in medical research, finance, environmental science, and even in Internet search algorithms. Their ability to continually update and refine hypotheses based on new evidence makes them particularly useful in fields where data is constantly evolving and where quick, informed decisions are crucial.

Here's a real-world example: In the development of personalized medicine, where treatments are tailored to individual patients, Bayesian Designs are invaluable. If a treatment has been effective for patients with similar genetics or symptoms in the past, a Bayesian approach can use that data to predict how well it might work for a new patient.

This type of design is also increasingly popular in machine learning and artificial intelligence. In these fields, Bayesian Designs help algorithms "learn" from past data to make better predictions or decisions in new situations. It's like teaching a computer to be a detective that gets better and better at solving puzzles the more puzzles it sees.

19) Covariate Adaptive Randomization

old person and young person

Now let's turn our attention to Covariate Adaptive Randomization, which you can think of as the "matchmaker" of experimental designs.

Picture a soccer coach trying to create the most balanced teams for a friendly match. They wouldn't just randomly assign players; they'd take into account each player's skills, experience, and other traits.

Covariate Adaptive Randomization is all about creating the most evenly matched groups possible for an experiment.

In traditional randomization, participants are allocated to different groups purely by chance. This is a pretty fair way to do things, but it can sometimes lead to unbalanced groups.

Imagine if all the professional-level players ended up on one soccer team and all the beginners on another; that wouldn't be a very informative match! Covariate Adaptive Randomization fixes this by using important traits or characteristics (called "covariates") to guide the randomization process.

Covariate Adaptive Randomization Pros

The benefits of this design are pretty clear: it aims for balance and fairness, making the final results more trustworthy.

Covariate Adaptive Randomization Cons

But it's not perfect. It can be complex to implement and requires a deep understanding of which characteristics are most important to balance.

Covariate Adaptive Randomization Uses

This design is particularly useful in medical trials. Let's say researchers are testing a new medication for high blood pressure. Participants might have different ages, weights, or pre-existing conditions that could affect the results.

Covariate Adaptive Randomization would make sure that each treatment group has a similar mix of these characteristics, making the results more reliable and easier to interpret.

In practical terms, this design is often seen in clinical trials for new drugs or therapies, but its principles are also applicable in fields like psychology, education, and social sciences.

For instance, in educational research, it might be used to ensure that classrooms being compared have similar distributions of students in terms of academic ability, socioeconomic status, and other factors.

Covariate Adaptive Randomization is like the wise elder of the group, ensuring that everyone has an equal opportunity to show their true capabilities, thereby making the collective results as reliable as possible.

20) Stepped Wedge Design

Let's now focus on the Stepped Wedge Design, a thoughtful and cautious member of the experimental design family.

Imagine you're trying out a new gardening technique, but you're not sure how well it will work. You decide to apply it to one section of your garden first, watch how it performs, and then gradually extend the technique to other sections. This way, you get to see its effects over time and across different conditions. That's basically how Stepped Wedge Design works.

In a Stepped Wedge Design, all participants or clusters start off in the control group, and then, at different times, they 'step' over to the intervention or treatment group. This creates a wedge-like pattern over time where more and more participants receive the treatment as the study progresses. It's like rolling out a new policy in phases, monitoring its impact at each stage before extending it to more people.

Stepped Wedge Design Pros

The Stepped Wedge Design offers several advantages. Firstly, it allows for the study of interventions that are expected to do more good than harm, which makes it ethically appealing.

Secondly, it's useful when resources are limited and it's not feasible to roll out a new treatment to everyone at once. Lastly, because everyone eventually receives the treatment, it can be easier to get buy-in from participants or organizations involved in the study.

Stepped Wedge Design Cons

However, this design can be complex to analyze because it has to account for both the time factor and the changing conditions in each 'step' of the wedge. And like any study where participants know they're receiving an intervention, there's the potential for the results to be influenced by the placebo effect or other biases.

Stepped Wedge Design Uses

This design is particularly useful in health and social care research. For instance, if a hospital wants to implement a new hygiene protocol, it might start in one department, assess its impact, and then roll it out to other departments over time. This allows the hospital to adjust and refine the new protocol based on real-world data before it's fully implemented.

In terms of applications, Stepped Wedge Designs are commonly used in public health initiatives, organizational changes in healthcare settings, and social policy trials. They are particularly useful in situations where an intervention is being rolled out gradually and it's important to understand its impacts at each stage.

21) Sequential Design

Next up is Sequential Design, the dynamic and flexible member of our experimental design family.

Imagine you're playing a video game where you can choose different paths. If you take one path and find a treasure chest, you might decide to continue in that direction. If you hit a dead end, you might backtrack and try a different route. Sequential Design operates in a similar fashion, allowing researchers to make decisions at different stages based on what they've learned so far.

In a Sequential Design, the experiment is broken down into smaller parts, or "sequences." After each sequence, researchers pause to look at the data they've collected. Based on those findings, they then decide whether to stop the experiment because they've got enough information, or to continue and perhaps even modify the next sequence.

Sequential Design Pros

This allows for a more efficient use of resources, as you're only continuing with the experiment if the data suggests it's worth doing so.

One of the great things about Sequential Design is its efficiency. Because you're making data-driven decisions along the way, you can often reach conclusions more quickly and with fewer resources.

Sequential Design Cons

However, it requires careful planning and expertise to ensure that these "stop or go" decisions are made correctly and without bias.

Sequential Design Uses

In terms of its applications, besides healthcare and medicine, Sequential Design is also popular in quality control in manufacturing, environmental monitoring, and financial modeling. In these areas, being able to make quick decisions based on incoming data can be a big advantage.

This design is often used in clinical trials involving new medications or treatments. For example, if early results show that a new drug has significant side effects, the trial can be stopped before more people are exposed to it.

On the flip side, if the drug is showing promising results, the trial might be expanded to include more participants or to extend the testing period.

Think of Sequential Design as the nimble athlete of experimental designs, capable of quick pivots and adjustments to reach the finish line in the most effective way possible. But just like an athlete needs a good coach, this design requires expert oversight to make sure it stays on the right track.

22) Field Experiments

Last but certainly not least, let's explore Field Experiments—the adventurers of the experimental design world.

Picture a scientist leaving the controlled environment of a lab to test a theory in the real world, like a biologist studying animals in their natural habitat or a social scientist observing people in a real community. These are Field Experiments, and they're all about getting out there and gathering data in real-world settings.

Field Experiments embrace the messiness of the real world, unlike laboratory experiments, where everything is controlled down to the smallest detail. This makes them both exciting and challenging.

Field Experiment Pros

On one hand, the results often give us a better understanding of how things work outside the lab.

While Field Experiments offer real-world relevance, they come with challenges like controlling for outside factors and the ethical considerations of intervening in people's lives without their knowledge.

Field Experiment Cons

On the other hand, the lack of control can make it harder to tell exactly what's causing what. Yet, despite these challenges, they remain a valuable tool for researchers who want to understand how theories play out in the real world.

Field Experiment Uses

Let's say a school wants to improve student performance. In a Field Experiment, they might change the school's daily schedule for one semester and keep track of how students perform compared to another school where the schedule remained the same.

Because the study is happening in a real school with real students, the results could be very useful for understanding how the change might work in other schools. But since it's the real world, lots of other factors—like changes in teachers or even the weather—could affect the results.

Field Experiments are widely used in economics, psychology, education, and public policy. For example, you might have heard of the famous "Broken Windows" experiment in the 1980s that looked at how small signs of disorder, like broken windows or graffiti, could encourage more serious crime in neighborhoods. This experiment had a big impact on how cities think about crime prevention.

From the foundational concepts of control groups and independent variables to the sophisticated layouts like Covariate Adaptive Randomization and Sequential Design, it's clear that the realm of experimental design is as varied as it is fascinating.

We've seen that each design has its own special talents, ideal for specific situations. Some designs, like the Classic Controlled Experiment, are like reliable old friends you can always count on.

Others, like Sequential Design, are flexible and adaptable, making quick changes based on what they learn. And let's not forget the adventurous Field Experiments, which take us out of the lab and into the real world to discover things we might not see otherwise.

Choosing the right experimental design is like picking the right tool for the job. The method you choose can make a big difference in how reliable your results are and how much people will trust what you've discovered. And as we've learned, there's a design to suit just about every question, every problem, and every curiosity.

So the next time you read about a new discovery in medicine, psychology, or any other field, you'll have a better understanding of the thought and planning that went into figuring things out. Experimental design is more than just a set of rules; it's a structured way to explore the unknown and answer questions that can change the world.

Related posts:

  • Experimental Psychologist Career (Salary + Duties + Interviews)
  • 40+ Famous Psychologists (Images + Biographies)
  • 11+ Psychology Experiment Ideas (Goals + Methods)
  • The Little Albert Experiment
  • 41+ White Collar Job Examples (Salary + Path)

Reference this article:

About The Author

Photo of author

Free Personality Test

Free Personality Quiz

Free Memory Test

Free Memory Test

Free IQ Test

Free IQ Test

PracticalPie.com is a participant in the Amazon Associates Program. As an Amazon Associate we earn from qualifying purchases.

Follow Us On:

Youtube Facebook Instagram X/Twitter

Psychology Resources

Developmental

Personality

Relationships

Psychologists

Serial Killers

Psychology Tests

Personality Quiz

Memory Test

Depression test

Type A/B Personality Test

© PracticalPsychology. All rights reserved

Privacy Policy | Terms of Use

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

1.1 - a quick history of the design of experiments (doe).

The textbook we are using brings an engineering perspective to the design of experiments. We will bring in other contexts and examples from other fields of study including agriculture (where much of the early research was done) education and nutrition. Surprisingly the service industry has begun using design of experiments as well.

  All experiments are designed experiments, it is just that some are poorly designed and some are well-designed.  

Engineering Experiments Section  

If we had infinite time and resource budgets there probably wouldn't be a big fuss made over designing experiments. In production and quality control we want to control the error and learn as much as we can about the process or the underlying theory with the resources at hand. From an engineering perspective we're trying to use experimentation for the following purposes:

  • reduce time to design/develop new products & processes
  • improve performance of existing processes
  • improve reliability and performance of products
  • achieve product & process robustness
  • perform evaluation of materials, design alternatives, setting component & system tolerances, etc.

We always want to fine-tune or improve the process. In today's global world this drive for competitiveness affects all of us both as consumers and producers.

Robustness is a concept that enters into statistics at several points. At the analysis, stage robustness refers to a technique that isn't overly influenced by bad data. Even if there is an outlier or bad data you still want to get the right answer. Regardless of who or what is involved in the process - it is still going to work. We will come back to this notion of robustness later in the course (Lesson 12).

Every experiment design has inputs. Back to the cake baking example: we have our ingredients such as flour, sugar, milk, eggs, etc. Regardless of the quality of these ingredients we still want our cake to come out successfully. In every experiment there are inputs and in addition, there are factors (such as time of baking, temperature, geometry of the cake pan, etc.), some of which you can control and others that you can't control. The experimenter must think about factors that affect the outcome. We also talk about the output and the yield or the response to your experiment. For the cake, the output might be measured as texture, flavor, height, size, or flavor.

Four Eras in the History of DOE Section  

Here's a quick timeline:

  • R. A. Fisher & his co-workers
  • Profound impact on agricultural science
  • Factorial designs, ANOVA
  • Box & Wilson, response surfaces
  • Applications in the chemical & process industries
  • Quality improvement initiatives in many companies
  • CQI and TQM were important ideas and became management goals
  • Taguchi and robust parameter design, process robustness
  • The modern era, beginning circa 1990, when economic competitiveness and globalization are driving all sectors of the economy to be more competitive.

Immediately following World War II the first industrial era marked another resurgence in the use of DOE. It was at this time that Box and Wilson (1951) wrote the key paper in response surface designs thinking of the output as a response function and trying to find the optimum conditions for this function. George Box died early in 2013. And, an interesting fact here - he married Fisher's daughter! He worked in the chemical industry in England in his early career and then came to America and worked at the University of Wisconsin for most of his career.

The Second Industrial Era - or the Quality Revolution

image of W Edward Deming

W. Edwards Deming

The importance of statistical quality control was taken to Japan in the 1950s by W Edward Deming. This started what Montgomery calls a second Industrial Era, and sometimes the quality revolution. After the second world war, Japanese products were of terrible quality. They were cheaply made and not very good. In the 1960s their quality started improving. The Japanese car industry adopted statistical quality control procedures and conducted experiments which started this new era. Total Quality Management (TQM), Continuous Quality Improvement (CQI) are management techniques that have come out of this statistical quality revolution - statistical quality control and design of experiments.

Taguchi, a Japanese engineer, discovered and published a lot of the techniques that were later brought to the West, using an independent development of what he referred to as orthogonal arrays. In the West, these were referred to as fractional factorial designs. These are both very similar and we will discuss both of these in this course. He came up with the concept of robust parameter design and process robustness.

The Modern Era

Around 1990 Six Sigma, a new way of representing CQI, became popular. Now it is a company and they employ a technique which has been adopted by many of the large manufacturing companies. This is a technique that uses statistics to make decisions based on quality and feedback loops. It incorporates a lot of previous statistical and management techniques.

Clinical Trials

Montgomery omits in this brief history a major part of design of experimentation that evolved - clinical trials. This evolved in the 1960s when medical advances were previously based on anecdotal data; a doctor would examine six patients and from this wrote a paper and published it. The incredible biases resulting from these kinds of anecdotal studies became known. The outcome was a move toward making the randomized double-blind clinical trial the gold standard for approval of any new product, medical device, or procedure. The scientific application of the statistical procedures became very important.

design of experiment

Design of Experiments

Introductory basics, introduction to design of experiments.

The Open Educator Textbook Explanation with Examples and Video Demonstrations

Video Demonstration Only, Click on the Topic Below

What is Design of Experiments DOE?

Hypothesis Testing Basic

Explanation of Factor, Response, dependent, independent, variable

Levels of a Factor

Fixed Factor, Random Factor, and Block

Descriptive Statistics and Inferential Statistics

What is Analysis of Variance ANOVA & Why

p-value & Level of Significance

Errors in Statistical Tests Type 1, Type II, Type III

Hypothesis Testing

How to Choose an Appropriate Statistical Method/Test for Your Design of Experiments or Data Analysis

Single Sample Z Test Application, Data Collection, Analysis, Results Explained in MS Excel & Minitab

Single Sample T Test Application, Data Collection, Analysis, Results Explained in MS Excel & Minitab

Single Proportion Test Application, Data Collection, Analysis, Results Explained MS Excel & Minitab

Two-Sample Z Test Application, Data Collection, Analysis, Results Explained Using MS Excel & Minitab

Two Sample T Test Application, Data Collection, Analysis, Results Explained Using MS Excel & Minitab

Paired T Test Application, Data Collection, Analysis, Results Explained Using MS Excel & Minitab

Two Sample/Population Proportion Test Application, Analysis & Result Explained in MS Excel & Minitab

Completely Randomized Design (CRD)

One-way/single factor analysis of variance, anova.

One Way Single Factor Analysis of Variance ANOVA Completely Randomized Design Analysis in MS Excel

One Way Single Factor Analysis of Variance ANOVA Completely Randomized Design Analysis in Minitab

One Way Single Factor Analysis of Variance ANOVA Post Hoc Pairwise Comparison Analysis in MS Excel

Fixed vs Random Effect Model Explained with Examples Using Excel and Minitab

Randomized Complete Block Design

Randomized Complete Block Design of Experiments RCBD Using Minitab 2020

Latin Square Design Using Minitab Updated 2020

Graeco Latin Square Design Updated 2020

Latin Square and Graeco Latin Square Design

Latin Square and Graeco Latin Square Design Analysis using Minitab

Screening the Important Factors/Variables

Factorial design of experiments.

Introduction to Factorial Design and the Main Effect Calculation

C alculate Two Factors Interaction Effect

Regression using the Calculated Effects

Basic Response Surface Methodology RSM Factorial Design

Construct ANOVA Table from the Effect Estimates

2k Factorial Design of Experiments

The Open Educator Textbook Explanation with Examples and Video Demonstrations for All Topics

Introduction to 2K Factorial Design

Contrast, Effect, Sum of Square, Estimate Formula, ANOVA table

Design Layout and Construction of 2K Factorial Design Using MS Excel

Write Treatment Combinations Systematically and Flawlessly

Contrast, Effect, Estimate, and Sum of Square Calculation Using MS Excel

Comparisons between MS Excel, Minitab, SPSS, and SAS in Design and Analysis of Experiments

Blocking and Confounding in 2k Design

Introduction to Blocking and Confounding

Confounding in Factorial and Fractional Factorial

Blocking and Confounding Using -1/+1 Coding System

Blocking and Confounding Using Linear Combination Method

Multiple Blocking and Confounding, How To

Complete vs Partial Confounding and The Appropriate Use of Them

How Many Confounded Treatments are There in a Multiple Confounded Effects

How to Confound Three or More Effects in Eight or More Blocks

Fractional Factorial Design

What is Fractional Factorial Design of Experiments

The One-Half Fraction Explained in 2K Fractional Factorial Design

Introduction to the Primary Basics of the Fractional Factorial Design

Design Resolution Explained

One-Half Fractional Factorial 2k Design Details Explained

How to Design a One-Half Fractional Factorial 2k Design using MS Excel

One-Quarter Fractional Factorial 2k Design

Design a One-Quarter Fractional Factorial 2k Design Using MS Excel

Calculate and Write All Effects in 2k Factorial Design Systematic Flawless

Write Alias Structure in 2K Fractional Factorial Design

Write Alias Structure in 2K Six Factor Quarter Fraction Factorial Design

Design a One-Eighth Fractional Factorial 2k Design Using MS Excel

2K Alias Structure Solution an Example Solution

Fractional Factorial Data Analysis Example Minitab ( Fractional Factorial DOE Data Analysis Example Document )

Design any Fractional Factorial Design with the Lowest Number of Possible Runs Easiest Method in MS Excel

The Easiest Way to Randomize an Experiment in using MS Excel

Plackett-Burman Fractional Factorial Design Using MS Excel

Plackett Burman Fractional Factorial Design of Experiments DOE Using Minitab

Optimize the Important Factors/Variables

Applied regression analysis.

Simple Linear Regression Analysis Using MS Excel and Minitab

Simple Linear Regression Analysis Real Life Example 1

Simple Linear Regression Analysis Real Life Example 2

Simple Linear Regression Analysis Example Cost Estimation

Linear Regression Diagnostics Analysis

Response Surface Methodology

What is Response Surface Methodology RSM and How to Learn it?

Basic Response Surface Methodology RSM Design and Analysis Minitab

Response Surface Basic Central Composite Design

Response Surface Central Composite Design in MS Excel

Response Surface Design Layout Construction Minitab MS Excel

Response Surface Design Analysis Example Minitab

Multiple Response Optimization in Response Surface Methodology RSM

Box Behnken Response Surface Methodology RSM Design and Analysis Explained Example using Minitab

Is Box Behnken Better than the Central Composite Design in the Response Surface Methodology?

Advanced Complex Mixed Factors

Expected mean square, basics to complex models.

Expected Mean Square All Fixed Factors

Expected Mean Square Random Effect Model

Restricted vs Unrestricted Mixed Model Design of Experiments with Fixed and Random Factors

How to Systematically Develop Expected Mean Square Fixed and Random Mixed Effect Model

How to Systematically Develop Expected Mean Square Random, Nested, and Fixed Mixed Effect Model

Restricted vs Unrestricted Mixed Models, How to Choose the Appropriate Model

Nested, & Repeated Measure, Split-Plot Design

Nested Design

Repeated Measure Design

Split Plot Design

Difference between Nested, Split Plot and Repeated Measure Design

Minitab Analysis Nested, Split Plot, and Repeated Measure Design

Analysis & Results Explained for Advanced DOE Partly Nested, Split-Plot, Mixed Fixed Random Models

Approximate F test | Pseudo F Test for Advanced Mixed Models nested, split plot, repeated measure

Taguchi Robust Parameter Design

Files used in the video.

Data Used in the Video for Robust Parameter Taguchi Design

How to Construct Taguchi Orthogonal Arrays Bose Design Generator

How to Construct Taguchi Orthogonal Arrays Plackett-Burman Design Generator

Taguchi Linear Graphs Possible Interactions

Taguchi Interaction Table Development How to

Video Demonstrations

Robust parameter Taguchi Design Terms Explained

Introduction To Robust Parameter Taguchi Design of Experiments Analysis Steps Explained

Robust Parameter Taguchi Design Signal to Noise Ratio Calculation in MS Excel

Robust Parameter Taguchi Design Example in MS Excel

Robust Parameter Taguchi Design Example in Minitab

How to Construct Taguchi Orthogonal Array L8(2^7) in MS Excel

How to Construct Taguchi Orthogonal Array L9(3^4) in MS Excel

How to Construct Taguchi Orthogonal Array L16(4^5) in MS Excel ( MS Excel file for the Design )

How to Construct Taguchi Orthogonal Array L16(2^15) in MS Excel

How to Construct Taguchi Orthogonal Array L32(2^31) in MS Excel

Construct Any (Taguchi) Orthogonal Arrays upto L36(2^35) in MS Excel

Taguchi Linear Graphs Explained and How to Use Them

Taguchi Triangular Interactions Table Explained and How to Use them in the Design of Experiments

Taguchi Interaction Table Construction Design of Experiments How to

Taguchi Linear Graphs, Interactions Table, Design Resolution, Alias Structure, & Fractional Factorial Design of Experiments

How to Create Robust Parameter Taguchi Design in Minitab

How to perform Robust Parameter Taguchi Static Analysis in Minitab

How to perform Robust Parameter Taguchi Dynamic Analysis in Minitab

How to perform Robust Parameter Taguchi Dynamic Analysis in MS Excel

Robust Parameter Taguchi Dynamic Analysis Regress Method in MS Excel and Minitab

Recommended Texts

General design of experiments.

[The order is based on the Use of the Book]

Hinkelmann, K., & Kempthorne, O. (2007). Design and Analysis of Experiments, Introduction to Experimental Design (Volume 1) . John Wiley & Sons. ISBN-13: 978-0471727569; ISBN-10: 0471727563.

Hinkelmann, K., & Kempthorne, O. (2005). Design and Analysis of Experiments, Advanced Experimental Design (Volume 2) . John Wiley & Sons. ISBN-13: 978-0471551775; ISBN-10: 0471551775.

Montgomery, D. C. (2012). Design and analysis of experiments 8 th /E. John Wiley & Sons. ISBN-13: 978-1118146927; ISBN-10: 1118146921

Box, G. E., J. S. Hunter, et al. (2005). Statistics for experimenters: design, discovery and innovation, Wiley-Interscience.

Kempthorne, O. (1952). The design and analysis of experiments, John Wiley & Sons Inc.

Fisher, R. A., Bennett, J. H., Fisher, R. A., & Bennett, J. H. (1990). Statistical methods, experimental design, and scientific inference. Oxford University Press. ISBN-10: 0198522290; ISBN-13: 978-0198522294.

Regression & Response Surface

Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2013). Applied linear statistical models .

Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2019). Response surface methodology: Process and product optimization using designed experiments . Hoboken: Wiley.

Robust Parameter Optimization

Taguchi design of experiments.

Kacker, R. N., Lagergren, E. S., & Filliben, J. J. (1991). Taguchi’s orthogonal arrays are classical designs of experiments. Journal of research of the National Institute of Standards and Technology , 96 (5), 577.

Plackett, R. L., & Burman, J. P. (1946). The design of optimum multifactorial experiments. Biometrika , 305-325. (for Video #11)

Taguchi, G., Chowdhury, S., Wu, Y., Taguchi, S., & Yano, H. (2011). Taguchi's quality engineering handbook. Hoboken, N.J: John Wiley & Sons.

Chowdhury, S., & Taguchi, S. (2016). Robust Optimization: World's Best Practices for Developing Winning Vehicles. John Wiley & Sons.

Random-Effect Models, Mixed Models, Nested, Split-Plot & Repeated Measure Design of Experiments

Quinn, G. P., & Keough, M. J. (2014). Experimental design and data analysis for biologists . Cambridge: Cambridge Univ. Press.

  • Foundations
  • Write Paper

Search form

  • Experiments
  • Anthropology
  • Self-Esteem
  • Social Anxiety

design of experiment

  • Experiments >

Design of Experiment

The Design of Experiment (DoE) is a rigorous method, regarded as the most accurate and unequivocal standard for testing a hypothesis.

This article is a part of the guide:

  • Research Designs
  • Quantitative and Qualitative Research
  • Literature Review
  • Quantitative Research Design

Browse Full Outline

  • 1 Research Designs
  • 2.1 Pilot Study
  • 2.2 Quantitative Research Design
  • 2.3 Qualitative Research Design
  • 2.4 Quantitative and Qualitative Research
  • 3.1 Case Study
  • 3.2 Naturalistic Observation
  • 3.3 Survey Research Design
  • 3.4 Observational Study
  • 4.1 Case-Control Study
  • 4.2 Cohort Study
  • 4.3 Longitudinal Study
  • 4.4 Cross Sectional Study
  • 4.5 Correlational Study
  • 5.1 Field Experiments
  • 5.2 Quasi-Experimental Design
  • 5.3 Identical Twins Study
  • 6.1 Experimental Design
  • 6.2 True Experimental Design
  • 6.3 Double Blind Experiment
  • 6.4 Factorial Design
  • 7.1 Literature Review
  • 7.2 Systematic Reviews
  • 7.3 Meta Analysis

A well-designed and constructed experiment will be robust under questioning, and will focus criticism on conclusions , rather than potential experimental errors . A sound experimental design should follow the established scientific protocols and generate good statistical data .

As an example, experiments on an industrial scale can cost millions of dollars. Repeating the experiment because it had poor control groups , or insufficient samples for a statistical analysis, is not an option. For this reason, the design phase is possibly the most crucial.

design of experiment

Design of Experiment Basics

With most true experiments , the researcher is trying to establish a causal relationship between variables, by manipulating an independent variable to assess the effect upon dependent variables .

In the simplest type of experiment, the researcher is trying to prove that if one event occurs, a certain outcome happens.

For example;

"If children eat fish, their IQ increases."

This is a good hypothesis and, at first glance, appears easily testable. The problem is that, in any solid experimental design, the opposite (contrapositive) should also be true. The design of experiment dictates that, if a certain event does not occur, the tested outcome will not happen, a subtle but crucial factor.

The reason for this is that it ensures that there is a genuine causal relationship between the independent and dependent variables.

Therefore, the following statement should also be true.

"If children do not eat fish, then their IQ will not increase."

The first statement is fairly easy to study, relying upon feeding children varying amounts of fish, and measuring their IQ.

However, it is much more difficult to test the second statement. The only way to test it properly is not to feed the children fish. It is impossible to use the same children, so a compromise must be reached, and the researcher must use two different groups of children.

The problem is that it is impossible to have two identical groups, and the Design of Experiment must take this into account. The researcher must understand that there are always going to be differences between the groups

This is why a solid experimental design should have extremely strong controls , and meticulous operationalization . Random groups are the best way of ensuring that the groups are as identical as possible.

In the fish example, all of the children could eat the same diet, but the tested group could be given extra fish supplements. Randomizing the groups tries to balance out the differences between individuals, and also removes any potential experimental bias .

design of experiment

Internal vs. External Validity

The second problem is that you have no idea whether other factors could influence the result.

Obviously, it is unethical to starve children, but other foods could have a significant influence upon IQ.

It is difficult to monitor what food the children are eating at home, leading to a potential confounding variable .

In addition, children from different schools may have a varying quality of teaching, potentially influencing the results .

These are just some of the factors potentially affecting the experiment , and any design of experiment must try to filter out the true results from the experimental 'noise'.

In an ideal ' True Experiment ' situation, you would lock all of the children in a laboratory, subjecting them all to the same conditions. The researcher could then ensure that all variables are controlled , except for the independent variable, eating fish.

However, apart from being unethical, this places false restrictions upon the children. The researcher is trying to establish whether eating fish is beneficial to children's intelligence, so that they can advise parents and teachers about diet.

The real world is very different from the laboratory, and it would be dangerous to extrapolate the results from laboratory-based research to encompass all of the children in the world. The external validity would have been sacrificed for internal validity .

Design of Experiment, especially in the life sciences, usually involves finding the correct balance between internal and external validity, using judgment and experience.

Of course, complete perfection in an experiment is almost impossible, because time, resources and unknown factors will always play a significant role. The main point is that the experimental design should strive towards this goal.

The Design of Experiment is also influenced by the specific field of science. Physical sciences rarely have to consider ethics or random fluctuations; one lump of iron, for a chemistry experiment, is usually similar to another. Children, by contrast not only vary from each other but can rapidly change their behavior, in a few moments.

Physical Sciences vs. Life Sciences

Physics and chemistry, for example, are always going to facilitate more accurate designs than the life sciences. This is one of the reasons why there are two levels of significance; if p had to be < 0.01 (under 1% chance that the effect is due to coincidences), a biological experiment would never produce results.

To summarize, Design of Experiment is an ideal, a 'Gold Standard' towards which scientists should aspire, ensuring that any variations within an experiment are minimized.

With life and behavioral sciences, this is difficult to achieve, especially in artificial laboratory conditions, which may influence behavior and risk external validity. As long as a researcher justifies and assesses the effects of any deviation from the method, external and internal validity will not be compromised.

This difficulty is one of the reasons why behavioral sciences use quasi-experimental methods , and case studies , because Design of Experiment is all but impossible.

  • Psychology 101
  • Flags and Countries
  • Capitals and Countries

Martyn Shuttleworth (Nov 11, 2008). Design of Experiment. Retrieved Aug 28, 2024 from Explorable.com: https://explorable.com/design-of-experiment

You Are Allowed To Copy The Text

The text in this article is licensed under the Creative Commons-License Attribution 4.0 International (CC BY 4.0) .

This means you're free to copy, share and adapt any parts (or all) of the text in the article, as long as you give appropriate credit and provide a link/reference to this page.

That is it. You don't need our permission to copy the article; just include a link/reference back to this page. You can use it freely (with some kind of link), and we're also okay with people reprinting in publications like books, blogs, newsletters, course-material, papers, wikipedia and presentations (with clear attribution).

Want to stay up to date? Follow us!

Get all these articles in 1 guide.

Want the full version to study at home, take to school or just scribble on?

Whether you are an academic novice, or you simply want to brush up your skills, this book will take your academic writing skills to the next level.

design of experiment

Download electronic versions: - Epub for mobiles and tablets - PDF version here

Save this course for later

Don't have time for it all now? No problem, save it as a course and come back to it later.

Footer bottom

  • Privacy Policy

design of experiment

  • Subscribe to our RSS Feed
  • Like us on Facebook
  • Follow us on Twitter

Search

www.springer.com The European Mathematical Society

  • StatProb Collection
  • Recent changes
  • Current events
  • Random page
  • Project talk
  • Request account
  • What links here
  • Related changes
  • Special pages
  • Printable version
  • Permanent link
  • Page information
  • View source

Design of experiments

The branch of mathematical statistics dealing with the rational organization of measurements subject to random errors. One usually considers the following scheme. A function $f(\theta,x)$ is measured with random errors, these being dependent on unknown parameters (the vector $\theta$) and on variables $x$, which, at the experimenter's choice, may take values from some admissible set $X$. The purpose of the experiment is usually either to estimate all or some of the parameters $\theta$ or functions of them, or else to test certain hypotheses concerning $\theta$. The purpose of the experiment is used in formulating a criterion for the design's optimality. The design of an experiment is understood to mean the set of values given to the variables $x$ in the experiment.

[1] V.V. Nalimov, N.A. Chernova, "Statistical methods of designing extremal experiments" , Moscow (1965) (In Russian)
[2] V.V. Fedorov, "Theory of optimal experiments" , Acad. Press (1972) (Translated from Russian)
[3] C. Hicks, "Basic principles of experiment design" , Moscow (1967) (In Russian; translated from English)
[4] D. Finney, "An introduction to the theory of experimental design" , Univ. Chicago Press (1960)
  • This page was last edited on 19 October 2014, at 16:50.
  • Privacy policy
  • About Encyclopedia of Mathematics
  • Disclaimers
  • Impressum-Legal

Design and experiments of an intelligent seedlings transplanting robot

New citation alert added.

This alert has been successfully added and will be sent to:

You will be notified whenever a record that you have chosen has been cited.

To manage your alert preferences, click on the button below.

New Citation Alert!

Please log in to your account

Information & Contributors

Bibliometrics & citations, index terms.

Emerging technologies

Analysis and design of emerging devices and systems

Emerging tools and methodologies

Recommendations

Conceptual design and kinematic analysis of a novel open field 3dof multi-gripper pot seedlings transplanting robot.

Pot seedlings transplanting is an activity in horticulture and agricultural production industry. It involves the transfer of pot seedlings from seedlings try into growing media in a greenhouse or an open agricultural field for further growth. This ...

Using VNIR and SWIR field imaging spectroscopy for drought stress monitoring of beech seedlings

Drought stress is expected to become a recurrent problem for central European forests due to regional climate change. In order to study the effects on one of the most common tree species in Germany, the European beech Fagus sylvatica , young potted beech ...

Development of IoT Cloud Platform Based Intelligent Raising System for Rice Seedlings

Precision agriculture is an important way to maximize the utilization efficiency of water resources and minimize the environmental impact. In recent years, the centralized raising of rice seedlings in greenhouse has been vigorously promoted and ...

Information

Published in.

cover image ACM Other conferences

Association for Computing Machinery

New York, NY, United States

Publication History

Permissions, check for updates.

  • Research-article
  • Refereed limited

Acceptance Rates

Contributors, other metrics, bibliometrics, article metrics.

  • 0 Total Citations
  • 0 Total Downloads
  • Downloads (Last 12 months) 0
  • Downloads (Last 6 weeks) 0

View Options

Login options.

Check if you have access through your login credentials or your institution to get full access on this article.

Full Access

View options.

View or Download as a PDF file.

View online with eReader .

HTML Format

View this article in HTML Format.

Share this Publication link

Copying failed.

Share on social media

Affiliations, export citations.

  • Please download or close your previous search result export first before starting a new bulk export. Preview is not available. By clicking download, a status dialog will open to start the export process. The process may take a few minutes but once it finishes a file will be downloadable from your browser. You may continue to browse the DL while the export process is in progress. Download
  • Download citation
  • Copy citation

We are preparing your search results for download ...

We will inform you here when the file is ready.

Your file of search results citations is now ready.

Your search export query has expired. Please try again.

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

agronomy-logo

Article Menu

design of experiment

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Design and experiments of a roll-knife pickup for a buckwheat pickup harvester.

design of experiment

Share and Cite

Ye, S.; Wang, X.; Zhang, C.; Zhang, J.; Wang, J.; Zheng, D. Design and Experiments of a Roll-Knife Pickup for a Buckwheat Pickup Harvester. Agronomy 2024 , 14 , 1944. https://doi.org/10.3390/agronomy14091944

Ye S, Wang X, Zhang C, Zhang J, Wang J, Zheng D. Design and Experiments of a Roll-Knife Pickup for a Buckwheat Pickup Harvester. Agronomy . 2024; 14(9):1944. https://doi.org/10.3390/agronomy14091944

Ye, Shaobo, Xiaolei Wang, Chao Zhang, Jianlong Zhang, Jiawei Wang, and Decong Zheng. 2024. "Design and Experiments of a Roll-Knife Pickup for a Buckwheat Pickup Harvester" Agronomy 14, no. 9: 1944. https://doi.org/10.3390/agronomy14091944

Article Metrics

Further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

NTRS - NASA Technical Reports Server

Available downloads, related records.

arXiv's Accessibility Forum starts next month!

Help | Advanced Search

Physics > Instrumentation and Detectors

Title: thermal management design and key technology validation for pandax underground experiment.

Abstract: The scale of liquid xenon experiments for rare events searching is expanding, which is planned even to fifty tons level. The detector and distillation tower require a reliable cooling source with large cooling power at liquid xenon temperature range. Pulse tube refrigerators and GM refrigerators, which were widely used in previous detectors, have the disadvantages of small cooling power, large space occupation, and non-standby mutuality, which become bottlenecks of the experiment scale expansion. In this study, an auto-cascade refrigerator with ethanol coolant is developed, and the heat transfer effect is improved by adopting the concentric shaft heat exchanger and after-pumping heat transfer scheme. The 2.5 kW stable cooling power is obtained at 155 K. Further, the feasibility and key technology of the centralized cooling system of 5 kw at 160 K is discussed. The study can simplify liquid xenon experimental auxiliary devices, which will be helpful for the PandaX-xT experiment scheme and its laboratory infrastructure design.
Comments: 25pages, 10 figures
Subjects: Instrumentation and Detectors (physics.ins-det); High Energy Physics - Experiment (hep-ex)
Cite as: [physics.ins-det]
  (or [physics.ins-det] for this version)
  Focus to learn more arXiv-issued DOI via DataCite

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

References & Citations

  • INSPIRE HEP
  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

duelling clowns and errant paintball guns embrace creative chaos for +61's experimental film

Bear meets eagle on fire teams up with glue society & revolver.

+61 Chaos Experiments embodies the idea that ambitious creativity thrives on making room for chaos through a series of films . Various disruptive visual experiments were conducted by Bear Meets Eagle on Fire alongside Glue Society and Revolver while they captured the disruptive completion of +61 agency’s brand identity in a white box.

The experiments were at the mercy of the unpredictable physics of live fireworks, an errant paintball gun, duelling clowns, and an accordion-powered exploding paint balloon, among other things, all adding distinctive textures and distress to an unfinished logo.

+61 chaos experiments embraces unpredictability

Marking the launch of Telstra’s bespoke agency , +61, the films of +61 Chaos Experiments were directed by Luke Nuto and Paul Bruty of directing collective Glue Society.  Creative studio Bear Meets Eagle on Fire provided the design idea and filming brief, calling for two outcomes: creating diverse, chaotic visual marks for +61’s brand fabric, and using the subsequent films as part of the agency’s launch. Led by Bear Meets Eagle On Fire’s Founder Micah Walker and Creative Director Les Sharpe, with production by Revolver, and shot with construction partners Set Fusion, the concept was contained within a large white box as a canvas for harnessing the unpredictability of the creative process. ‘The moment we blew a hole in the side of a spray booth with firework-powered children’s crayons, we knew we were onto something good,’ shares Bruty.

Glue Society adopted imperfection as a critical component of the agency’s identity. ‘Each experiment was a one-shot deal,’ adds Nuto. ‘The chaotic ink, paint, or pigment splatters on paper became part of the final brand mark. To have logos at the mercy of disorder and disruption was a rare antidote to the usual perfectionism in brand identity creation. The chaos is the secret sauce.’

project info:

name:  +61 Chaos Experiments designer:   Bear Meets Eagle on Fire | @bearmeetseagleonfire , Glue Society | @gluesociety ,   Revolver | @revolver.ws

client: +61

designboom has received this project from our DIY submissions feature, where we welcome our readers to submit their own work for publication. see more project submissions from our readers here.

edited by: ravail khan | designboom

PRODUCT LIBRARY

a diverse digital database that acts as a valuable guide in gaining insight and information about a product directly from the manufacturer, and serves as a rich reference point in developing a project or scheme.

  • growing plants (4)
  • materials (88)
  • packaging design (104)
  • exhibition design (594)
  • paris olympics 2024 (30)
  • maison et objet fall 2024 (3)
  • design interviews (60)
  • love hultén (12)
  • musical instruments (177)

IMAGES

  1. Design of Experiment II

    design of experiment

  2. The 3 Types Of Experimental Design (2024)

    design of experiment

  3. Design of Experiments (DoE)

    design of experiment

  4. DESIGN OF EXPERIMENT (DOE)

    design of experiment

  5. Experimental Design Steps

    design of experiment

  6. PPT

    design of experiment

COMMENTS

  1. Design of experiments

    Learn about the history, principles, and methods of designing experiments to describe and explain the variation of information under different conditions. Find out how to use randomization, replication, blocking, and other techniques to improve the validity, reliability, and replicability of experiments.

  2. What Is Design of Experiments (DOE)?

    DOE is a statistical method to study the effect of multiple factors on a response variable. Learn how to plan, conduct, and analyze a DOE with a free template and examples.

  3. PDF DESIGN OF EXPERIMENTS (DOE) FUNDAMENTALS

    Learn how to use DOE to evaluate and optimize the relationship between key process inputs and outputs. Understand the terminology, design choices, analysis and interpretation of DOE with examples and exercises.

  4. What is DOE? Design of Experiments Basics for Beginners

    Learn what Design of Experiments (DOE) is and how it can help you optimize your experiments or processes. Compare DOE with the COST approach and see examples of DOE applications and benefits.

  5. Design of experiments

    Learn what design of experiments (DOE) is, when and why to use it, and how it compares to trial and error and one-factor-at-a-time methods. See examples of DOE with JMP software and explore the interaction between factors.

  6. (PDF) Design of experiments application, concepts, examples: State of

    Design of Experiments (DOE) is statistical tool deployed in various types of system, process and product design, development and optimization. It is multipurpose tool that can be used in various ...

  7. PDF Lesson 1: Introduction to Design of Experiments

    Learn the basics of design of experiments (DOE), a process of systematically varying factors to study their effects on a response. Explore the historical origins and applications of DOE in engineering, agriculture, and other fields.

  8. Experimental Design

    Learn how to plan and conduct scientific experiments to test hypotheses or research questions. Explore different types of experimental design, methods, data collection and analysis techniques.

  9. Design of Experiments (DoE) simply explained

    In this video, we discuss what Design of Experiments (DoE) is. We go through the most important process steps in a DoE project and discuss how a DoE helps yo...

  10. PDF Handbook Experimenters

    Design of experiments is a method by which you make purposeful changes to input factors of your process in order to observe the effects on the output. DOE's can and have been performed in virtually every industry on the planet— ...

  11. 4.3.1. What is design of experiments (DOE)?

    DOE is a systematic approach to engineering problem-solving that applies principles and techniques at the data collection stage. Learn about the four general problem areas in which DOE may be applied: comparative, screening, characterizing, and modeling.

  12. Maximizing Efficiency and Accuracy with Design of Experiments

    A design of experiments (DOE) is a set of statistical tools for planning, executing, analyzing, and interpreting experimental tests to determine the impact of your process factors on the outcomes of your process. The technique allows you to simultaneously control and manipulate multiple input factors to determine their effect on a desired ...

  13. Design of Experiments DOE Process

    A designed experiment is a controlled set of tests designed to model and explore the relationship between factors and one or more responses. JMP includes a v...

  14. PDF Design of Experiments (DOE) for the Beginner

    Born in Data Analytics. Company founded in 1987 by Professor Svante Wold, in Umeå, Sweden. Originator of Chemometrics and the SIMCA® Methodology. Patented technologies in Design of Experiments and Multivariate Data Analysis. We help our customers bring high-quality products to market faster. Part of Sartorius Stedim Biotech since April 2017.

  15. Design of Experiments: Definition, How It Works, & Examples

    "The design of experiments (DOE or DOX), also known as experiment design or experimental design, is the design of any task that aims to describe and explain the variation of information under conditions that are hypothesized to reflect the variation. The term is generally associated with experiments in which the design introduces conditions ...

  16. Experimental Design: Types, Examples & Methods

    Three types of experimental designs are commonly used: 1. Independent Measures. Independent measures design, also known as between-groups, is an experimental design where different participants are used in each condition of the independent variable. This means that each condition of the experiment includes a different group of participants.

  17. 19+ Experimental Design Examples (Methods + Types)

    1) True Experimental Design. In the world of experiments, the True Experimental Design is like the superstar quarterback everyone talks about. Born out of the early 20th-century work of statisticians like Ronald A. Fisher, this design is all about control, precision, and reliability.

  18. PDF Design of Experiments: Part 1

    "Robust Parameter Design … is a statistical / engineering methodology that aims at reducing the performance variation of a system (i.e. a product or process) by choosing the setting of its control factors to make it less sensitive to noise variation." Robust Parameter Design Wu, C. F. J. and M. Hamada, 2000, Experiments: Planning, Analysis, and

  19. PDF Introduction to Design of Experiments (DOE)

    Draw backs of Factorial Design If the parameters (factors) are more, then more number of experiments must be done. No. of experiments = 2n where 'n'is the number of factors. So if you have 10 parameters then the no. of experiments is : 210 That is : 1024 experiments it is called as full factorial design This is not practical.

  20. 1.1

    Surprisingly the service industry has begun using design of experiments as well. All experiments are designed experiments, it is just that some are poorly designed and some are well-designed. Engineering Experiments Section . If we had infinite time and resource budgets there probably wouldn't be a big fuss made over designing experiments. ...

  21. The Open Educator

    Design and Analysis of Experiments, Introduction to Experimental Design (Volume 1). John Wiley & Sons. ISBN-13: 978-0471727569; ISBN-10: 0471727563. Hinkelmann, K., & Kempthorne, O. (2005). Design and Analysis of Experiments, Advanced Experimental Design (Volume 2). John Wiley & Sons.

  22. Design of Experiment

    The Design of Experiment (DoE) is a rigorous method, regarded as the most accurate and unequivocal standard for testing a hypothesis. A well-designed and constructed experiment will be robust under questioning, and will focus criticism on conclusions, rather than potential experimental errors. A sound experimental design should follow the ...

  23. Design of experiments

    The purpose of the experiment is usually either to estimate all or some of the parameters $\theta$ or functions of them, or else to test certain hypotheses concerning $\theta$. The purpose of the experiment is used in formulating a criterion for the design's optimality. The design of an experiment is understood to mean the set of values given ...

  24. Analytical Leakage Model Development for Labyrinth Seals With Honeycomb

    Design of experiments studies were conducted to derive flow coefficients by changing operating conditions and geometric parameters of honeycomb and labyrinth seals. In the available literature, there are limited efforts taken to investigate the flow dynamic behavior of alternative and deteriorated honeycomb structures. For this reason ...

  25. Design and experiments of an intelligent seedlings transplanting robot

    Design and experiment of the automatic conveying and separating device for substrate block seedling transplanting machine. Transactions of the Chinese Society of Agricultural Engineering, 39, 13, 68-79. Google Scholar [9] Juan Ren. 2023. Design and experimental research of agricultural seeding robot. Journal of Agricultural Mechanization ...

  26. Agronomy

    To reduce grain loss during pickup and prevent stalk entanglement in buckwheat harvesters, thereby improving the quality of mechanized harvesting, a three-stage pickup conveyor roll with a ground-level rotary knife-type pickup header was designed and tested. This paper, based on the growth characteristics of buckwheat, determined the three-stage pickup conveying process and the overall ...

  27. NTRS

    Computational fluid dynamics (CFD) has become widely used in the design and analysis of turbomachinery components such as centrifugal compressors. However, CFD is only a limited representation of experimental cases and struggles to model complex flows or lack model details to increase computation speed. The High Efficiency Centrifugal Compressor (HECC) was designed by United Technologies ...

  28. [2408.13433] Thermal Management Design and Key Technology Validation

    The 2.5 kW stable cooling power is obtained at 155 K. Further, the feasibility and key technology of the centralized cooling system of 5 kw at 160 K is discussed. The study can simplify liquid xenon experimental auxiliary devices, which will be helpful for the PandaX-xT experiment scheme and its laboratory infrastructure design.

  29. Assessing the effect of nonvisual information factors in pandemic

    Methods: Twelve short health communication videos related to pandemics were produced and shown to a large sample of participants, applying a randomized controlled between-subjects design. Three factors were included in the creation of the videos: the topic (exponential growth, handwashing, and burden of pandemics on the health care system), the ...

  30. duelling clowns and errant paintball guns embrace creative chaos for

    The experiments were at the mercy of the unpredictable physics of live fireworks, an errant paintball gun, duelling clowns, and an accordion-powered exploding paint balloon, among other things ...