Essay on Effects of Global Warming for Students and Children

500+ words essay on effects of global warming.

Global warming refers to climate change that causes an increase in the average of Earth’s temperature. Natural events and human influences are believed to be top contributions towards the increase in average temperatures. Global warming is a rise in the surface and atmospheric temperature of the earth that has changed various life forms on the earth. The issues that ascertain global warming are divided into two broad categories – “natural” and “human influences” of global warming.

essay on effects of global warming

Natural Causes of Global Warming

The climate has been continuously changing for centuries. One natural cause of global warming is greenhouse gases. Greenhouse gases are carbon monoxide and sulphur dioxide . It traps the solar rays and prevents them from escaping the surface of the earth.

This causes an increase in the temperature of the earth. Volcanic eruptions are another reason for global warming. A single volcanic eruption can release a great amount of carbon dioxide and ash to the atmosphere. Increased carbon dioxide leads to a rise in the temperature of the earth.

Also, methane gas is another contributor to global warming. Methane is also a greenhouse gas. Methane is twenty times more effective in trapping heat in the atmosphere than carbon dioxide. Usually, methane gas is released from many areas like animal waste, landfill, natural gas, and others.

Get the huge list of more than 500 Essay Topics and Ideas

Human Influences on Global Warming

Human influence has been a very serious issue now as it is contributing more than natural causes of global warming. Since human evolution, the earth has been changing for many years until now and it is still changing because of our modern lifestyle. Human activities include industrial production, burning fossil fuel, mining of minerals, cattle rearing and deforestation.

Industries, transportation such as cars, buses, trucks burn fuel to power machines, which eventually releases carbon dioxide and monoxide from the exhaust, leading to an increase in a temperature rise of Earth’s atmosphere.

Another contributor is mining. During the process of mining, the methane gas trapped below the earth escapes. Rearing cattle also causes the release of methane from manure. Another cause is the most common but most dangerous – deforestation.

Deforestation is a human influence because human have been cutting down trees to produce paper, wood, build houses and more. Trees can absorb carbon dioxide from the atmosphere and their absence can lead to the concentration of such gases.

The Effect of Global Warming

The impact that global warming is causing on earth is extremely serious. There are many hazardous effects that will happen in the future if global warming continues. It includes melting of polar ice caps, leading to an increase in sea level drowning coastlines and slowly submerging continents.

Recent studies by National Snow and Ice Datacenter “if the ice melted today the seas would rise about 230 feet”. Another effect is climate change leading to the extinction of various species. More hurricanes, cyclonic storms, heat waves, drought, and extreme rainfalls will occur causing disaster to humankind.

The solution to Stop Global Warming

We humans need to work together towards the prevention of global warming. To reduce global warming we can contribute by reducing the production and concentration of greenhouse gases in the atmosphere. We need to curb usage of gasoline, electricity and other activities including mining and industrialization that cause global warming.

Another way to reduce global warming is through recycling. Recycling can help reduce open burning of garbage by reusing plastic bags, bottles, papers or glass. We need to stop open burning dry leaves or burning garbage. It contributes to releasing carbon dioxide and toxins. Besides, we should reduce deforestation and start planting more trees. Trees will help improve the temperature on earth and prevent drastic climatic change.

From today’s scenario, we can derive that our earth is “sick” and we humans need to “heal” it. Global Warming has already caused many problems for human and we need to prevent disasters of the future. Our generation needs to take care of the earth with immediate effect to safeguard future generations or they will suffer the consequences of global warming.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

News from the Columbia Climate School

10 Climate Change Impacts That Will Affect Us All

harmful effects of global warming essay

As global greenhouse gases are projected to hit a new high for 2019, Petteri Taalas of the World Meteorological Organization recently declared, “Things are getting worse.” A 2019 poll found that only 24 percent of U.S. respondents believed climate change would have a great deal of impact on their lives; 31 percent believed it would have a fair amount of impact.

Different regions of the country will be affected in different ways, some more than others. But there are certain impacts that will probably affect every American’s way of life. Here are 10 of them.

1. Damage to your home

Floods, the most common and deadly natural disasters in the U.S., will likely be exacerbated and intensified by sea level rise and extreme weather. Heavy precipitation is projected to increase throughout the century to potentially three times the historical average. A 2018 study found that over 40 million Americans are at risk of flooding from rivers, and over 8.6 million people live in areas that already experience coastal flooding from storm surges during hurricanes. FEMA estimated that even one inch of floodwater in an average-sized home could cost homeowners almost $27,000 in damages.

harmful effects of global warming essay

In September, Adam Sobel, founding director of Columbia University’s Initiative on Extreme Weather and Climate , testified before the House Science, Space and Technology Committee. He asserted that scientists have strong evidence that global warming will increase the frequency or intensity of heavy rain events, and coastal flooding due to hurricane storm surge is also worsening because of sea level rise and increased precipitation.

In addition, he said, the frequency and intensity of droughts and wildfires are on the rise. While no state is immune to wildfires, 13 states in the West are considered susceptible to the most severe wildfire damage, with California having the most acres burned in 2018. A national analysis found that 775,654 homes are at extreme risk of wildfire in these 13 states. But even if homes do not burn to the ground, they may suffer smoke and fire damage, as well as water damage and flooding from fire fighting efforts.

How to protect yourself

  • Apply sealants and coatings to prevent floodwaters from entering your house
  • Install a sump pump
  • Keep your gutters and drains clear
  • Where flooding occurs regularly, raise your home up on stilts or piles
  • Remove dry vegetation around the house
  • When replacing a roof, opt for tile or metal
  • Take all evacuation warnings seriously and have an emergency supply kit ready to go

2. More expensive home insurance

As insurance companies pay out huge amounts to homeowners whose houses have been damaged by climate change impacts, many are raising premiums to offset their costs. Home insurance rates increased more than 50 percent between 2005 and 2015.

In high-risk areas, premiums and deductibles may rise, coverage may be more limited, and insurance could ultimately become unaffordable or unavailable for some, especially in climate-vulnerable areas. For Connecticut homeowners, insurance rates have gone up 35 percent in the last 10 years; for homeowners with property along the coast, rates have gone up by over 50 percent. In 2016, California insurance companies would not renew over 10,000 policies for homes in high-risk areas. (Recently, however, the state issued a one-year moratorium preventing insurers from dropping customers who live in areas at risk from wildfire.) Travelers Insurance Company now requires separate deductibles in areas where hurricanes and tornadoes are more common.

Moreover, standard homeowners’ insurance does not cover flooding, so homeowners must buy private insurance or sign up for the National Flood Insurance Program  run by FEMA. Due to billions of dollars in payouts for Hurricanes Katrina, Harvey, Irma, Maria and Sandy, however, NFIP is $20.5 billion in debt. In October, FEMA announced that rates would rise 11.3 percent in April 2020, and will be further restructured in October 2021.

  • When choosing a home, factor in climate risks
  • Check FEMA flood maps (even though almost 60 percent are out of date)
  • Understand your insurance coverage and needs
  • Shop around for your insurance policy
  • Raise your deductible for lower monthly payments
  • Make your home more disaster-resistant

3. Outdoor work could become unbearable

With continued global warming, heat waves are expected to increase in frequency, duration and intensity. Jane Baldwin, a postdoctoral research scientist at Lamont-Doherty Earth Observatory, found that compound heat waves—heat waves that occur in sequence, one after the other—will also increase, making recovery from heat waves more difficult.

harmful effects of global warming essay

People who work outdoors, such as construction workers, miners, firefighters and agricultural workers, will be most affected by increasing temperatures. Florida, for example, has one of the highest rates of heat-related hospitalizations in the U.S. This summer during a heat wave, the majority of heat-related visits to emergency rooms in Virginia were made by people aged 29-40, 70 percent of whom were men. Indoor workers in warehouses and steel plants can also be affected by excessive heat.

One study suggested that outdoor workers should begin their shifts earlier in the day, but if global warming continues at the current pace, by 2100, they would have to start working four to six hours before dawn. Currently, there are no federal laws that protect workers from heat stress, but in July, a bill was introduced into the House of Representatives that would require the Occupational Safety and Health Administration to establish standards to protect those working in the heat.

  • Take frequent shade and water breaks
  • Use a damp rag to keep cool
  • Wear light-colored clothing and a hat
  • Know the symptoms of heat exhaustion and heat stroke

4. Higher electric bills and more blackouts

As temperatures rise, people will need to stay cool for health and comfort reasons. Climate Central analyzed 244 cities in the U.S. and determined that 93 percent experienced an increase in the number of days that required extra cooling to remain comfortable. As we rely more heavily on air conditioners and fans, electricity bills will get higher.

The increased demand for electricity, especially during peak periods, can also over-tax the electrical grid, triggering brownouts or blackouts. Extreme weather, such as hurricanes, heat waves or snowstorms, can cause power outages too.

harmful effects of global warming essay

Between the mid-1980s and 2012, there was a ten-fold increase in power outages, 80 percent of which were caused by weather.

As wildfires plague California, Pacific Gas & Electric has been preemptively shutting down power to avoid the possibility of sparking fires in the dry, windy conditions. Millions lost power during this year’s blackouts. Pre-emptive blackouts could become a common occurrence.

Brownouts or blackouts can also result if hydropower plants have less water to draw from in rivers and lakes, and if water becomes too warm to cool nuclear or coal power plants.

  • Find greener ways to stay cool
  • Install a programmable thermostat and set the temperature higher
  • Run your appliances at night
  • During a blackout, fill the bathtub so you have water to flush toilets; keep freezers and refrigerators closed
  • If the power goes out, unplug appliances and electronics to avoid damage from electrical surges
  • Don’t run generators inside the garage or near open windows, to avoid carbon monoxide poisoning

5.  Rising taxes   

Municipalities are recognizing the need to make their communities more resilient in the face of climate change impacts. Although measures such as building seawalls or hardening infrastructure are hugely expensive, the National Climate Assessment determined that resiliency measures save money in the long run — for example, by reducing coastal property damage to about $800 billion from a projected $3.5 trillion. Paying for mitigation and adaptation measures, however, will likely have to be funded through higher property taxes or “resilience fees.”

Grand Rapids, Michigan had problems with flooding and aging stormwater infrastructure. In 2014, the residents rejected a 13.3 percent income tax cut in order to implement green infrastructure measures that absorb runoff and reduce flooding on streets.

harmful effects of global warming essay

In 2018, Norfolk, VA, which is surrounded by water and vulnerable to sea level rise, approved a $0.10 increase to the real estate tax rate, which will go towards citywide resiliency plans to address flooding. And in the wake of California’s recent wildfires, Marin County is proposing a $0.10 per square foot parcel tax on property owners across the county to fund wildfire prevention.

  • See if you qualify for a tax rebate or credit for renewable energy   and/or energy efficiency
  • Check to see if your state gives tax exemptions for seniors, veterans, or the disabled

6. More allergies and other health risks

Warmer temperatures cause the pollen season to be longer and worsen air quality, both of which can result in more allergy and asthma attacks. Ground-level ozone, a major component of smog, which increases when temperatures warm, can also cause coughing, chest tightness or pain, decrease lung function and worsen asthma and other chronic lung diseases.

harmful effects of global warming essay

In addition, after floods or storms, damp buildings may foster mold growth, which has been linked to allergies and other lung diseases.

With rising temperatures, more people will suffer heat cramps, heat exhaustion, hyperthermia (high body temperature) and heat stroke as days that are unusually hot for the season hamper the body’s ability to regulate its temperature. Prolonged exposure to heat can exacerbate cardiovascular, respiratory and kidney diseases, diabetes, and increase the chance for strokes.

Older adults, pregnant women, and children are particularly vulnerable to excess heat. A 2018 paper , written by Madeline Thomson while she was a senior researcher at the Earth Institute’s International Research Institute for Climate and Society, called attention to the fact that children and infants are more vulnerable to dehydration and heat stress, as well as to respiratory disease, allergies and fever during heat waves and to the need for adults to protect them.

As the climate changes, disease-carrying mosquitoes are extending their range, bringing diseases such as malaria, dengue fever, chikungunya and West Nile virus farther north than they’ve ever been. In the summer of 2013, the Aedes aegypti mosquito, usually found in Texas and the southeastern U.S., suddenly appeared in California as far north as San Francisco — fortunately, none of the tested mosquitoes carried dengue or yellow fever. One study projects that Aedes aegypti could reach as far north as Chicago by 2050.

Heat waves, natural disasters, and the disruption in lives they cause can also aggravate mental health. During one recent California wildfire, suicidal and traumatized people flooded emergency rooms.

  • When pollen counts are high or air quality is bad, stay indoors
  • During a heat wave, limit outside activity during the hottest hours
  • Stay hydrated
  • Use insect repellent
  • Understand how climate impacts can affect your children and take precautions for them

7. Food will be more expensive and variety may suffer

In the last 20 years, food prices have risen about 2.6 percent each year, and the USDA expects that food prices will continue to rise. While there are several reasons for higher food prices, climate change is a major factor. Extreme weather affects livestock and crops, and droughts can have impacts on the stability and price of food. New York apple farmers, for example, are facing warmer winters and extreme weather, which can wipe out harvests. They are trying to save their apples with new irrigation systems and wind machines that blow warm air during cold spells, but eventually these added costs will be reflected in the price of apples.

As temperatures warm and precipitation increases, more pathogens will thrive and affect plant health; in addition, more food will spoil. And because food is a globally traded commodity today, climate events in one region can raise prices and cause shortages across the globe. For example, a drought in Brazil in 2013 and 2014 caused Arabica coffee prices to double.

Michael Puma , director of the Earth Institute’s Center for Climate Systems Research, studies global food security , especially how susceptible the global network of food trade is to natural (e.g., megadroughts, volcanic eruptions) and manmade (e.g., wars, trade restrictions) disturbances. He and his colleagues are building quantitative economic models to examine vulnerabilities in the food system under different scenarios; they will use the tool to explore how altering certain policies might reduce the vulnerabilities of the food system to disruptions.

Three-quarters of our crops rely on insects for pollination and scientists believe 41 percent of insect species are threatened with extinction. While habitat loss is the major reason, climate change also plays a large part. If we lose pollinators, that could mean losing some of the crops and varieties they pollinate.

  • To save money, cook at home more often and avoid purchasing prepared foods
  • Don’t waste food
  • Buy in bulk
  • Eat less meat

8. Water quality could suffer 

Intense storms and heavy precipitation can result in the contamination of water resources . In cities, runoff picks up pollutants from the streets, and can overflow sewage systems, allowing untreated sewage to enter drinking water supplies.

harmful effects of global warming essay

In rural areas, runoff transports animal waste, pesticides and chemical fertilizer, and can enter drinking or recreational waters. Polluted drinking water can cause diarrhea, Legionnaires’ disease, and cholera; it can also cause eye, ear and skin infections. In some low-lying coastal areas, sea level rise could enable saltwater to enter groundwater drinking water supplies. And in areas suffering from drought, contaminants become more concentrated as water supplies decrease. In addition, algal blooms thrive in warm temperatures and can contaminate drinking water. In 2014, residents of Toledo, Ohio had to drink bottled water for three days because their water supply was polluted with cyanobacteria toxins.

The Earth Institute’s Columbia Water Center studies the state of fresh water availability in the face of climate change, and the water needs of food production, energy generation and ecosystems. It aims to provide “sustainable models of water management and development” to apply on local, regional and global levels.

  • Don’t use water you suspect is contaminated to wash dishes, brush teeth, wash or prepare food, make ice, wash hands or make baby formula
  • Keep bottled water on hand
  • Decrease your household water use, especially during droughts
  • Heed government precautions when drinking water is found to be contaminated and boil your water

9. Outdoor exercise and recreational sports will become more difficult

Reduced snowfall and early snowmelt in the spring will have an impact on skiing, snowmobiling and other winter sports. Less water in lakes and rivers could also affect boating and fishing during summer.

harmful effects of global warming essay

Hotter temperatures, especially in the South and Southwest, will make summer activities like running, biking, hiking and fishing less comfortable and potentially dangerous to your health.

  • Shorten your outdoor workout
  • Substitute indoor activities when temperatures are excessively hot
  • Plan outdoor exercise for early or late in the day
  • Choose shady routes if possible
  • Wear loose, light-colored clothing
  • Keep salty or juicy snacks on hand
  • Know the signs of heat cramps, heat exhaustion and heatstroke

10. Disruptions in travel

As temperatures rise, it may get too hot for some planes to fly. In 2015, Radley Horton, associate research professor at Lamont-Doherty Earth Observatory, and then Ph.D. student Ethan Coffel published a study calculating how extreme heat could restrict the takeoff weight of airplanes. Hotter air is less dense, so planes get less lift under their wings and engines produce less power. Airlines may be forced to bump passengers or leave luggage behind to lighten their loads. This concern is one reason why long-distance flights from the Middle East leave at night; the practice could become standard for the U.S. as well.

Flights can be disrupted due to flooding because many airports are located on low-lying land.

harmful effects of global warming essay

Superstorm Sandy in 2012 flooded LaGuardia Airport for three days. One runway in Northern Canada had to be repaved because the permafrost on which it was built began melting.

Once in the air, you may experience more turbulence. Stronger winds create more shear (a difference in wind speed over a short distance) in the atmosphere, which results in turbulence. And distant storms can create waves in the atmosphere that cause turbulence hundreds of miles away.

Recreational travel could be upended as climate change impacts many popular destinations. Sea level rise, storm surge and erosion are affecting Waikiki Beach in Hawaii, Miami Beach in Florida, and Copacabana in Rio de Janeiro. Along Florida’s southwest and Gulf coasts, toxic algae blooms have killed fish and turtles, sending the stench and toxins into the air, and making beaches unpleasant and unhealthy.

harmful effects of global warming essay

In the U.S., Montana’s Glacier National Park is losing its glaciers; in 1910 it had more than 100, but now fewer than two dozen remain. The Everglades are experiencing salt water intrusion from sea level rise. World heritage sites, too, are being affected by global warming impacts: The Amazon rainforest is threatened by logging and fires, the Arctic is thawing, the snows of Kilamanjaro are melting, and the Great Barrier Reef’s corals are bleaching.

  • Change your travel destination
  • Purchase travel insurance
  • Check the weather of your travel destination
  • Fly during the morning to reduce chances of thunderstorms and turbulence
  • On the plane, keep your seat belt buckled as much as possible

As global temperatures continue to rise, climate change will affect our wallets, our health, our safety, and our lives. Many people are already feeling these impacts. And while there are ways to adapt on a personal level, some of these changes are going to become more severe and unavoidable over time. The best way to protect ourselves for the future is to support policies and measures that cut carbon emissions and enhance climate resilience.

Related Posts

New 400-Year Record Shows Great Barrier Reef Faces Catastrophic Damage

New 400-Year Record Shows Great Barrier Reef Faces Catastrophic Damage

Ancient Plant, Insect Bits Confirm Greenland Melted in Recent Geologic Past

Ancient Plant, Insect Bits Confirm Greenland Melted in Recent Geologic Past

Planting Some Tree Species May Worsen, Not Improve, NYC Air, Says New Study

Planting Some Tree Species May Worsen, Not Improve, NYC Air, Says New Study

guest

Ocean pollution puts a large portion of our food and water supply at risk. 2020 needs to be the year for our oceans. I’ve started using Ekoru.org instead of Google because every search helps clean plastics from our oceans.

zach parmer

ugh but 2020 aint the year anymore:(

pricilla preston

THANK YOU SO MUCH YOU HAVE HELPED ME SO MUCH!!!

rob

All the climate charts you could ever want on one page https://lokisrevengeblog.wordpress.com/collpase-charts/ No Water No Food No Life https://www.reddit.com/r/collapse/comments/ee7ewr/no_water_no_food_no_life/

Wendy Jones

may god bless you

John denker

Please check your facts and do not rely on computer models that have proven unreliable. The public actually can look up and find out for themselves that floods and forest fires are not any where near historic levels now. And by the way, CO2 and the earths average temperatures have also been greater in the past. How many times have we been told we only have 10 years to Change our ways. At least 40 years now. “But this time it’s real?”

Am I right?

Let me guess – American?

Connor

Probably, unfortunately. Please don’t think all of us are as foolish as some of us.

student

ah, politics will be the end of the world. congrats democracy, really did us a favor this time

klein

i think we should worry about climate change because it can affect our futures and people on the earth

Anoyamous

I very much agree

kuldeep singh

Yes, It’s a serious concern for all of us.

cameron james macfarlane

John Denker, y ou are wrong. The  2020 Oregon wildfire season  was one of the most destructive on record in the state of Oregon. How twould it have ever been possible for Earth’s CO2 average to be greater in the past? Your argument is weak, and false. We haven’t changed our ways, and each year we pay the price. Things are getting worse every year.

BananaMonster

Actually Earth did have higher CO2 concentrations in the past. Look up the Paleocene-Eocene Thermal Maximum (PETM). Earth’s temperature was much higher. The CO2 and temperature increases that led to the PETM happened rapidly, on geologic timescales, but nowhere near as fast as today. And it wasn’t accompanied by the level of habitat loss and pollution we have now. Climate change isn’t necessarily always bad; in our case it is though, because many species don’t have enough time to adapt.

That’s because we are actually doing things about it ( I mean about the Co2 part )

Yes I agree, taxes are rising soo much and I have had 8 power cuts in the last year

Very true but not a reason the ignore these things.

Charmaine

It’s very helping to us school kids

Kuijer, Johan

Over the years, we have been informed and warned about the effects of global warming. Now we are in the middle of it…so, I have just one question : isn’t it already too late ?

SAVE THE EARTH

ITS NEVER TO LATE Kuijer Johan

I’m sure its not too late- if it is that really sucks.

stop co2 emmisions

doesnt climate change effect the food chain if all ice caps melt

Martin Phillips

It affects the food chain anyway

Yeah, some animals that need cooler temperatures die, their predators have no prey and then they die.

EVA

Lots of great things to know and to learn if you didn’t already know

Shawn

What are the impacts like social, political, economical, Cultural from climate change

Kian

This article is really nice!!!! I give it 100 stars!!!

Jhonny

I love the points this article makes. I, a 49-year-old retired firefighter, faced extreme heat while on the job. Wildfires and house fires were commonplace when I was working. Some of my co-workers suffered from heat related injuries and had to get immediate medical treatment. I’m glad this article brings to light what us outdoor workers have to deal with on a daily basis, and I hope more articles address the conditions of outdoor workers

One day we will run out of animals because it gets too hot to farm them outdoors. I don’t know much about this thing but I kind of understood after reading this.

Gabriel Apotey

World of constant modification,appreciation and communication in quest to making life and its inhabitants better

STOP CLIMATE CHANGE

Very helpfull to school Children 🙂

Martha

I am 78 years old and when I was young there wasn’t any air conditioning – only fans to stir the hot air around. cars didn’t have a/c – windows were rolled down. I don’t see a change in temperature in my 78 years. Sat outside when summer was at it hottest (July and August) and used handheld paper fans. We adjusted our cooking hours so it wouldn’t be so hot in the house. Nighttime was miserable as it was so hot we couldn’t sleep but eventually it came. Might have to put a cold cloth on our heads to cool us just a little. A person did exactly what was required of them. I remember droughts, heavy rainstorms and tornadoes. To me nothing has changed except generations have grown up with A/C in home and cars and can’t tolerate being a little hot.

saharsh

TREE POWER IS IMMENSE

  • trees are good at taking co2
  • you get plant based food from them so eat that food
  • use bing or chatgpt to find how much

tree table coming soon for house plants

Plant Name CO2 Absorption (kg/year) Dumbcane 16.28 Arrow Plant 15.73 Anthurium 14.44 Spider Plant 13.26 Bird’s Nest Fern 11.77 Golden Pothos 11.63 Prayer Plant 11.57 use this times 2

Get the Columbia Climate School Newsletter

NASA Logo

The Effects of Climate Change

The effects of human-caused global warming are happening now, are irreversible for people alive today, and will worsen as long as humans add greenhouse gases to the atmosphere.

harmful effects of global warming essay

  • We already see effects scientists predicted, such as the loss of sea ice, melting glaciers and ice sheets, sea level rise, and more intense heat waves.
  • Scientists predict global temperature increases from human-made greenhouse gases will continue. Severe weather damage will also increase and intensify.

Earth Will Continue to Warm and the Effects Will Be Profound

Effects_page_triptych

Global climate change is not a future problem. Changes to Earth’s climate driven by increased human emissions of heat-trapping greenhouse gases are already having widespread effects on the environment: glaciers and ice sheets are shrinking, river and lake ice is breaking up earlier, plant and animal geographic ranges are shifting, and plants and trees are blooming sooner.

Effects that scientists had long predicted would result from global climate change are now occurring, such as sea ice loss, accelerated sea level rise, and longer, more intense heat waves.

The magnitude and rate of climate change and associated risks depend strongly on near-term mitigation and adaptation actions, and projected adverse impacts and related losses and damages escalate with every increment of global warming.

harmful effects of global warming essay

Intergovernmental Panel on Climate Change

Some changes (such as droughts, wildfires, and extreme rainfall) are happening faster than scientists previously assessed. In fact, according to the Intergovernmental Panel on Climate Change (IPCC) — the United Nations body established to assess the science related to climate change — modern humans have never before seen the observed changes in our global climate, and some of these changes are irreversible over the next hundreds to thousands of years.

Scientists have high confidence that global temperatures will continue to rise for many decades, mainly due to greenhouse gases produced by human activities.

The IPCC’s Sixth Assessment report, published in 2021, found that human emissions of heat-trapping gases have already warmed the climate by nearly 2 degrees Fahrenheit (1.1 degrees Celsius) since 1850-1900. 1 The global average temperature is expected to reach or exceed 1.5 degrees C (about 3 degrees F) within the next few decades. These changes will affect all regions of Earth.

The severity of effects caused by climate change will depend on the path of future human activities. More greenhouse gas emissions will lead to more climate extremes and widespread damaging effects across our planet. However, those future effects depend on the total amount of carbon dioxide we emit. So, if we can reduce emissions, we may avoid some of the worst effects.

The scientific evidence is unequivocal: climate change is a threat to human wellbeing and the health of the planet. Any further delay in concerted global action will miss the brief, rapidly closing window to secure a liveable future.

Here are some of the expected effects of global climate change on the United States, according to the Third and Fourth National Climate Assessment Reports:

Future effects of global climate change in the United States:

sea level rise

U.S. Sea Level Likely to Rise 1 to 6.6 Feet by 2100

Global sea level has risen about 8 inches (0.2 meters) since reliable record-keeping began in 1880. By 2100, scientists project that it will rise at least another foot (0.3 meters), but possibly as high as 6.6 feet (2 meters) in a high-emissions scenario. Sea level is rising because of added water from melting land ice and the expansion of seawater as it warms. Image credit: Creative Commons Attribution-Share Alike 4.0

Sun shining brightly over misty mountains.

Climate Changes Will Continue Through This Century and Beyond

Global climate is projected to continue warming over this century and beyond. Image credit: Khagani Hasanov, Creative Commons Attribution-Share Alike 3.0

Satellite image of a hurricane.

Hurricanes Will Become Stronger and More Intense

Scientists project that hurricane-associated storm intensity and rainfall rates will increase as the climate continues to warm. Image credit: NASA

harmful effects of global warming essay

More Droughts and Heat Waves

Droughts in the Southwest and heat waves (periods of abnormally hot weather lasting days to weeks) are projected to become more intense, and cold waves less intense and less frequent. Image credit: NOAA

2013 Rim Fire

Longer Wildfire Season

Warming temperatures have extended and intensified wildfire season in the West, where long-term drought in the region has heightened the risk of fires. Scientists estimate that human-caused climate change has already doubled the area of forest burned in recent decades. By around 2050, the amount of land consumed by wildfires in Western states is projected to further increase by two to six times. Even in traditionally rainy regions like the Southeast, wildfires are projected to increase by about 30%.

Changes in Precipitation Patterns

Climate change is having an uneven effect on precipitation (rain and snow) in the United States, with some locations experiencing increased precipitation and flooding, while others suffer from drought. On average, more winter and spring precipitation is projected for the northern United States, and less for the Southwest, over this century. Image credit: Marvin Nauman/FEMA

Crop field.

Frost-Free Season (and Growing Season) will Lengthen

The length of the frost-free season, and the corresponding growing season, has been increasing since the 1980s, with the largest increases occurring in the western United States. Across the United States, the growing season is projected to continue to lengthen, which will affect ecosystems and agriculture.

Heatmap showing scorching temperatures in U.S. West

Global Temperatures Will Continue to Rise

Summer of 2023 was Earth's hottest summer on record, 0.41 degrees Fahrenheit (F) (0.23 degrees Celsius (C)) warmer than any other summer in NASA’s record and 2.1 degrees F (1.2 C) warmer than the average summer between 1951 and 1980. Image credit: NASA

Satellite map of arctic sea ice.

Arctic Is Very Likely to Become Ice-Free

Sea ice cover in the Arctic Ocean is expected to continue decreasing, and the Arctic Ocean will very likely become essentially ice-free in late summer if current projections hold. This change is expected to occur before mid-century.

U.S. Regional Effects

Climate change is bringing different types of challenges to each region of the country. Some of the current and future impacts are summarized below. These findings are from the Third 3 and Fourth 4 National Climate Assessment Reports, released by the U.S. Global Change Research Program .

  • Northeast. Heat waves, heavy downpours, and sea level rise pose increasing challenges to many aspects of life in the Northeast. Infrastructure, agriculture, fisheries, and ecosystems will be increasingly compromised. Farmers can explore new crop options, but these adaptations are not cost- or risk-free. Moreover, adaptive capacity , which varies throughout the region, could be overwhelmed by a changing climate. Many states and cities are beginning to incorporate climate change into their planning.
  • Northwest. Changes in the timing of peak flows in rivers and streams are reducing water supplies and worsening competing demands for water. Sea level rise, erosion, flooding, risks to infrastructure, and increasing ocean acidity pose major threats. Increasing wildfire incidence and severity, heat waves, insect outbreaks, and tree diseases are causing widespread forest die-off.
  • Southeast. Sea level rise poses widespread and continuing threats to the region’s economy and environment. Extreme heat will affect health, energy, agriculture, and more. Decreased water availability will have economic and environmental impacts.
  • Midwest. Extreme heat, heavy downpours, and flooding will affect infrastructure, health, agriculture, forestry, transportation, air and water quality, and more. Climate change will also worsen a range of risks to the Great Lakes.
  • Southwest. Climate change has caused increased heat, drought, and insect outbreaks. In turn, these changes have made wildfires more numerous and severe. The warming climate has also caused a decline in water supplies, reduced agricultural yields, and triggered heat-related health impacts in cities. In coastal areas, flooding and erosion are additional concerns.

1. IPCC 2021, Climate Change 2021: The Physical Science Basis , the Working Group I contribution to the Sixth Assessment Report, Cambridge University Press, Cambridge, UK.

2. IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

3. USGCRP 2014, Third Climate Assessment .

4. USGCRP 2017, Fourth Climate Assessment .

Related Resources

harmful effects of global warming essay

A Degree of Difference

So, the Earth's average temperature has increased about 2 degrees Fahrenheit during the 20th century. What's the big deal?

harmful effects of global warming essay

What’s the difference between climate change and global warming?

“Global warming” refers to the long-term warming of the planet. “Climate change” encompasses global warming, but refers to the broader range of changes that are happening to our planet, including rising sea levels; shrinking mountain glaciers; accelerating ice melt in Greenland, Antarctica and the Arctic; and shifts in flower/plant blooming times.

harmful effects of global warming essay

Is it too late to prevent climate change?

Humans have caused major climate changes to happen already, and we have set in motion more changes still. However, if we stopped emitting greenhouse gases today, the rise in global temperatures would begin to flatten within a few years. Temperatures would then plateau but remain well-elevated for many, many centuries.

Discover More Topics From NASA

Explore Earth Science

harmful effects of global warming essay

Earth Science in Action

Earth Action

Earth Science Data

The sum of Earth's plants, on land and in the ocean, changes slightly from year to year as weather patterns shift.

Facts About Earth

harmful effects of global warming essay

Unbalanced: How Climate Change Is Shifting Earth’s Ecosystems

We can already see how climate change is impacting humans and wildlife. But what about the abiotic, or nonliving, parts of the environment?

Earth Science, Climatology

Melting Iceberg

Glaciers are disappearing, melting faster than they can be replenished, like this glacier located in Greenland. Melting is happening faster in Greenland and the rest of the Arctic, which is warming faster than anywhere else on Earth.

Photograph by Steve Allen

Glaciers are disappearing, melting faster than they can be replenished, like this glacier located in Greenland. Melting is happening faster in Greenland and the rest of the Arctic, which is warming faster than anywhere else on Earth.

Glaciers are melting, sea levels are rising, and storms are more intense. These are some of the visible impacts of global warming , caused by rising levels of carbon dioxide and other greenhouse gases that are due to warming in the atmosphere and ocean. In a 2018 report, the Intergovernmental Panel on Climate Change (IPCC) stated that the average global temperature has risen about 1ºC (1.8ºF) since pre-industrial times. If the current rate of warming continues, this number is expected to nearly double in a relatively short time, reaching 1.5ºC (2.7ºF) between 2030 and 2052. This could have devastating effects on ecosystems around the world, from tropical coral reefs to the icy Arctic Ocean. Why is such a small increase in global temperature causing such big problems for Earth’s ecosystems ? The Ocean Is Feeling the Heat More than 80 percent of global warming is absorbed by the ocean, which has a massive capacity to store and release heat. Elevated sea-surface temperatures are causing long-term damage to coral reefs. Corals are bleaching and dying. The IPCC report projects that up to 90 percent of coral reefs could disappear if the global warming reaches 1.5ºC (2.7ºF). Another reason corals are in trouble is because of ocean acidification. Higher carbon dioxide levels have shifted the chemistry of the ocean, making it more acidic, and corals and shelled sea creatures have trouble growing in acidic conditions. Sea Levels Are Rising When ocean water warms, it expands in volume. This is a major cause of the rise in sea levels, along with the water added to the ocean by the melting of land-based glaciers. The sea level has risen an average of 20 centimeters (8 inches) since the late 19th century, and research by scientists studying the last 25 years of satellite data found that the ocean water is rising faster and faster. If it continues at its current rate of acceleration, the rise in sea level by 2100 will be more than double current estimates. Sea level rise leads to the destruction of coastal wetlands, salt marshes, and mangrove swamps, as well as flooding and damage to aquatic ecosystems. Drought to Deluge: The Impacts of Shifting Temperature and Precipitation Temperature and precipitation are key ingredients of climate. A warmer climate means that more water evaporates from both the land and ocean, and a warmer atmosphere holds more of that water. Scientists have noticed that heavy rainfall events are increasing. Additionally, higher water temperature in streams, lakes, and reservoirs lead to lower levels of dissolved oxygen in the water, which impacts the survival and populations of fish and other aquatic life. Especially troubling are the extreme weather events that are happening more often around the world. Hurricanes are ramping up in intensity, particularly in the North Atlantic. The year 2017 was a busy one for Atlantic hurricanes. Hurricanes Harvey, Irma, and Maria unleashed their destructive power on Texas, Florida, and Puerto Rico. A group of scientists using high-resolution computer modeling determined that the main reason the 2017 hurricane season was so violent was due to warm sea-surface conditions in the North Atlantic. This led to a new way of predicting what to expect each year. The intensity of the Atlantic hurricane season depends on how much the tropical Atlantic warms in comparison to the rest of the global ocean. Meanwhile, in the western United States, the state of California has had record-setting drought conditions, which began in 2012. Researchers analyzing the history of California’s droughts found that the state is more likely to experience drought when low precipitation combines with warm weather conditions. Extended drought periods can lead to a higher fire risk. Today, large fires are five times more common and fire season is three months longer than it was 40 years ago. Besides the obvious loss of habitat for wildlife, new research has found that ecosystems burned out by a wildfire no longer regenerate and bounce back to life the way they used to. Melting Away: What Is Happening to the World’s Ice? Snow pack, sea ice, and glaciers are melting around the world. One of the most visible effects of climate change is the rapid disappearance of glaciers . Scientists from Glacier National Park in Montana, U.S., have documented the steady decline of the park’s iconic glaciers with photographs. Glaciers around the world are melting faster than snow and ice can replenish them. In fact, the Arctic is warming faster than any other place on Earth, at a rate of two to three times the global average. This has led to a 40 percent decrease in the minimum summer sea-ice cover since 1978. When ice melts in the ocean, fresher and less dense water is added to the North Atlantic, which could potentially disrupt a pattern of ocean circulation that is driven by the sinking of cold, salty water in the North Atlantic, known as thermohaline circulation . The Arctic ecosystem is especially vulnerable to global warming . Polar bears, narwhals, and walruses are all iconic species native to the Arctic , but as the ice melts, they may have to adapt to a new way of life, or risk dying out. In an interview published in the British newspaper, The Guardian , marine ecologist Tom Brown said, “The Arctic food chain relies on a stable sea ice platform and that is now disappearing, putting the region’s wildlife at risk.”

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Production Managers

Program specialists, last updated.

October 19, 2023

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

U.S. flag

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Education home
  • About NOAA Education
  • NOAA in your backyard: Alaska
  • NOAA in your backyard: Caribbean
  • NOAA in your backyard: Central
  • NOAA in your backyard: Great Lakes
  • NOAA in your backyard: Gulf of Mexico
  • NOAA in your backyard: Mid-Atlantic
  • NOAA in your backyard: Northeast
  • NOAA in your backyard: Northwest
  • NOAA in your backyard: Pacific Islands
  • NOAA in your backyard: Southeast
  • NOAA in your backyard: Southwest
  • Educational mailing lists
  • Jan-Mar 2024
  • Oct-Dec 2023
  • Jul-Sep 2023
  • Apr-Jun 2023
  • NOAA Sea to Sky: Education resource database
  • Ocean acidification
  • Ocean currents
  • Ocean floor features
  • Ocean pollution and marine debris
  • El Niño and La Niña
  • Space weather
  • Weather observations
  • Weather systems & patterns
  • Carbon cycle
  • Changing seasons

Climate change impacts

  • Climate data monitoring
  • Aquatic food webs
  • Coral reef ecosystems
  • Fisheries and seafood
  • Life in an estuary
  • Marine mammals
  • Sea turtles
  • Great Lakes ecoregion
  • Water cycle
  • Watersheds, flooding, and pollution
  • Data resources for educators
  • Education at home
  • Elementary resources
  • Hands-on science activities
  • Special topics
  • Conference resources
  • About the education resource collections
  • Conservation Service Corp Act Direct Hiring Authority
  • Finding a career at NOAA
  • Educator opportunities
  • Grants & networks
  • News and stories

Keep exploring

Find even more resources on climate change impacts in our searchable resource database.

CLEAN Collection offsite link

Sanctuaries resource collection: Climate change

Though we often think about human-induced climate change as something that will happen in the future, it is an ongoing process. Ecosystems and communities in the United States and around the world are being impacted today. 

A collage of typical climate and weather-related events: floods, heatwaves, drought, hurricanes, wildfires and loss of glacial ice.

A collage of typical climate and weather-related events: floods, heatwaves, drought, hurricanes, wildfires and loss of glacial ice. (Image credit: NOAA)

Global temperatures rose about 1.98°F offsite link (1.1°C) from 1901 to 2020, but climate change refers to more than an increase in temperature. It also includes sea level rise, changes in weather patterns like drought and flooding, and much more. Things that we depend upon and value — water, energy, transportation, wildlife, agriculture, ecosystems, and human health — are experiencing the effects of a changing climate.

A complex issue

The impacts of climate change on different sectors of society are interrelated. Drought can harm food production and human health. Flooding can lead to disease spread and damages to ecosystems and infrastructure. Human health issues can increase mortality, impact food availability, and limit worker productivity. Climate change impacts are seen throughout every aspect of the world we live in. However, climate change impacts are uneven across the country and the world — even within a single community, climate change impacts can differ between neighborhoods or individuals. Long-standing socioeconomic inequities can make  underserved groups, who often have the highest exposure to hazards and the fewest resources to respond, more vulnerable. 

The projections of a climate change-impacted future are not inevitable. Many of the problems and solutions offsite link are known to us now, and ongoing research continues to provide new ones.  Experts believe there is still time to avoid the most negative of outcomes by limiting warming offsite link   and reducing emissions to zero as quickly as possible. Reducing our emissions of greenhouse gases will require investment in new technology and infrastructure, which will spur job growth. Additionally, lowering emissions will lessen harmful impacts to human health, saving countless lives and billions of dollars in health-related expenses.

NOAA's Mauna Loa observatory is a premier research facility that has continuously monitored and collected atmospheric data since the 1950s. This photo, taken in 2019, shows the observatory on its perch at 11,000 feet elevation on Hawaii's tallest mountain, which enables sampling of "background" air that is free of local pollution.

Levels of the two most important anthropogenic greenhouse gases, carbon dioxide and methane, continued their unrelenting rise in 2020 despite the economic slowdown caused by the coronavirus pandemic response.

Our changing climate

We see climate change affecting our planet from pole to pole. NOAA monitors global climate data and here are some of the changes NOAA has recorded. You can explore more at the Global Climate Dashboard .

  • Global temperatures rose about 1.8°F (1°C) from 1901 to 2020.
  • Sea level rise has accelerated from 1.7 mm/year throughout most of the twentieth century to 3.2 mm/year since 1993.
  • Glaciers are shrinking: average thickness of 30 well-studied glaciers has decreased more than 60 feet since 1980.
  • The area covered by sea ice in the Arctic at the end of summer has shrunk by about 40% since 1979.
  • The amount of carbon dioxide in the atmosphere has risen by 25% since 1958, and by about 40% since the Industrial Revolution.
  • Snow is melting earlier compared to long-term averages.

Changes to water resources can have a big impact on our world and our lives.

Flooding is an increasing issue as our climate is changing. Compared to the beginning of the 20th century, there are both stronger and more frequent abnormally heavy precipitation events across most of the United States.

Conversely, drought is also becoming more common , particularly in the Western United States. Humans are using more water, especially for agriculture. Much like we sweat more when it is hot out, higher air temperatures cause plants to lose, or transpire , more water, meaning farmers must give them more water. Both highlight the need for more water in places where supplies are dwindling.

Snowpack is an important source of fresh water for many people. As the snow melts, fresh water becomes available for use, especially in regions like the Western United States where there is not much precipitation in warmer months. But as temperatures warm, there is less snow overall and snow begins to melt earlier in the year, meaning snowpack may not be a reliable source of water for the entire warm and dry seasons. 

A topographic map of Redlands Mesa on a table with several students' hands visible. One student indicates an area with a marker. The wind direction has been drawn on the map with an arrow, and students appear to be using toy fire trucks and cotton batting that resembles smoke in a planning exercise.

The Redlands Mesa area outside Hotchkiss, Colorado, is particularly at risk to wildfires, but with funding from NOAA’s Environmental Literacy Program, local high school students are taking action to tackle their community’s vulnerability to this hazard.

Our food supply depends on climate and weather conditions. Although farmers and researchers may be able to adapt some agricultural techniques and technologies or develop new ones, some changes will be difficult to manage. Increased temperatures, drought and water stress, diseases, and weather extremes create challenges for the farmers and ranchers who put food on our tables.

Human farm workers can suffer from heat-related health issues , like exhaustion, heatstroke, and heart attacks. Rising temperatures and heat stress can also harm livestock. 

Human health

Climate change is already impacting human health . Changes in weather and climate patterns can put lives at risk. Heat is one of the most deadly weather phenomena. As ocean temperatures rise, hurricanes are getting stronger and wetter , which can cause direct and indirect deaths . Dry conditions lead to more wildfires, which bring many health risks . Higher incidences of flooding can lead to the spread of waterborne diseases, injuries, and chemical hazards. As geographic ranges of mosquitoes and ticks expand, they can carry diseases to new locations.

The most vulnerable groups, including children, the elderly, people with preexisting health conditions, outdoor workers, people of color, and people with low income, are at an even higher risk because of the compounding factors from climate change. But public health groups can work with local communities to help people understand and build resilience to climate change health impacts.

An infographic showing climate-related health risks to communities of color, older adults, children, and low income communities. For full details, visit the Fourth National Climate Assessment, linked in the caption.

The environment

Climate change will continue to have a significant impact on ecosystems and organisms, though they are not impacted equally. The Arctic is one of the ecosystems most vulnerable to the effects of climate change, as it is warming at least twice the rate of the global average and melting land ice sheets offsite link and glaciers offsite link contribute dramatically to sea level rise around the globe.

Some living things are able to respond to climate change; some plants are blooming earlier and some species may expand their geographic range. But these changes are happening too fast for many other plants and animals as increasing temperatures and changing precipitation patterns stress ecosystems. Some invasive or nuisance species, like lionfish and ticks , may thrive in even more places because of climate change. 

Changes are also occurring in the ocean. The ocean absorbs about 30% of the carbon dioxide that is released into the atmosphere from the burning of fossil fuels. As a result, the water is becoming more acidic , affecting marine life. Sea levels are rising due to thermal expansion, in addition to melting ice sheets and glaciers, putting coastal areas at greater risk of erosion and storm surge.

The compounding effects of climate change are leading to many changes in ecosystems. Coral reefs are vulnerable to many effects of climate change: warming waters can lead to coral bleaching, stronger hurricanes can destroy reefs, and sea level rise can cause corals to be smothered by sediment. Coral reef ecosystems are home to thousands of species, which rely on healthy coral reefs to survive.

Malgorzata Gasienica-Bednarz, a high school student, talks about acid rain using the Science on a Sphere six-foot-diameter globe at the Museum of Science and Industry in November 2019.

Infrastructure

Physical infrastructure includes bridges, roads, ports, electrical grids, broadband internet, and other parts of our transportation and communication systems. It is often designed to be in use for years or decades, and many communities have infrastructure that was designed without future climate in mind. But even newer infrastructures can be vulnerable to climate change. 

Extreme weather events that bring heavy rains, floods, wind, snow, or temperature changes can stress existing structures and facilities. Increased temperatures require more indoor cooling, which can put stress on an energy grid. Sudden heavy rainfall can lead to flooding that shuts down highways and major business areas. 

Nearly 40% of the United States population lives in coastal counties, meaning millions of people will be impacted by sea level rise. Coastal infrastructure , such as roads, bridges, water supplies, and much more, is at risk. Sea level rise can also lead to coastal erosion and high-tide flooding . Some communities are projected to possibly end up at or below sea level by 2100 and will face decisions around managed retreat and climate adaptation. 

Many communities are not yet prepared to face climate-related threats. Even within a community, some groups are more vulnerable to these threats than others. Going forward, it is important for communities to invest in resilient infrastructure that will be able to withstand future climate risks. Researchers are studying current and future impacts of climate change on communities and can offer recommendations on best practices. Resilience education is vitally important for city planners, emergency managers, educators, communicators, and all other community members to prepare for climate change.

Flood zones will be easier to predict.

EDUCATION CONNECTION

Teaching about climate change can be a daunting challenge, but it is a critical field for students to learn about, as it affects many parts of society. The Essential Principles of Climate Literacy , developed by NOAA and other federal partners, are standards that create a framework for teaching climate. The Toolbox for Teaching Climate & Energy explores a learning process to help students engage in climate action in their own communities or on a global scale. For more educator support, NOAA offers professional development opportunities (including the Planet Stewards Program ) about climate and other topics.

Newsroom Post

Climate change: a threat to human wellbeing and health of the planet. taking action now can secure our future.

BERLIN, Feb 28 – Human-induced climate change is causing dangerous and widespread disruption in nature and affecting the lives of billions of people around the world, despite efforts to reduce the risks. People and ecosystems least able to cope are being hardest hit, said scientists in the latest Intergovernmental Panel on Climate Change (IPCC) report, released today.

“This report is a dire warning about the consequences of inaction,” said Hoesung Lee, Chair of the IPCC. “It shows that climate change is a grave and mounting threat to our wellbeing and a healthy planet. Our actions today will shape how people adapt and nature responds to increasing climate risks.”

The world faces unavoidable multiple climate hazards over the next two decades with global warming of 1.5°C (2.7°F). Even temporarily exceeding this warming level will result in additional severe impacts, some of which will be irreversible. Risks for society will increase, including to infrastructure and low-lying coastal settlements.

The Summary for Policymakers of the IPCC Working Group II report,  Climate Change 2022: Impacts, Adaptation and Vulnerability was approved on Sunday, February 27 2022, by 195 member governments of the IPCC, through a virtual approval session that was held over two weeks starting on February 14.

Urgent action required to deal with increasing risks

Increased heatwaves, droughts and floods are already exceeding plants’ and animals’ tolerance thresholds, driving mass mortalities in species such as trees and corals. These weather extremes are occurring simultaneously, causing cascading impacts that are increasingly difficult to manage. They have exposed millions of people to acute food and water insecurity, especially in Africa, Asia, Central and South America, on Small Islands and in the Arctic.

To avoid mounting loss of life, biodiversity and infrastructure, ambitious, accelerated action is required to adapt to climate change, at the same time as making rapid, deep cuts in greenhouse gas emissions. So far, progress on adaptation is uneven and there are increasing gaps between action taken and what is needed to deal with the increasing risks, the new report finds. These gaps are largest among lower-income populations. 

The Working Group II report is the second instalment of the IPCC’s Sixth Assessment Report (AR6), which will be completed this year.

“This report recognizes the interdependence of climate, biodiversity and people and integrates natural, social and economic sciences more strongly than earlier IPCC assessments,” said Hoesung Lee. “It emphasizes the urgency of immediate and more ambitious action to address climate risks. Half measures are no longer an option.”

Safeguarding and strengthening nature is key to securing a liveable future

There are options to adapt to a changing climate. This report provides new insights into nature’s potential not only to reduce climate risks but also to improve people’s lives.

“Healthy ecosystems are more resilient to climate change and provide life-critical services such as food and clean water”, said IPCC Working Group II Co-Chair Hans-Otto Pörtner. “By restoring degraded ecosystems and effectively and equitably conserving 30 to 50 per cent of Earth’s land, freshwater and ocean habitats, society can benefit from nature’s capacity to absorb and store carbon, and we can accelerate progress towards sustainable development, but adequate finance and political support are essential.”

Scientists point out that climate change interacts with global trends such as unsustainable use of natural resources, growing urbanization, social inequalities, losses and damages from extreme events and a pandemic, jeopardizing future development.

“Our assessment clearly shows that tackling all these different challenges involves everyone – governments, the private sector, civil society – working together to prioritize risk reduction, as well as equity and justice, in decision-making and investment,” said IPCC Working Group II Co-Chair Debra Roberts.

“In this way, different interests, values and world views can be reconciled. By bringing together scientific and technological know-how as well as Indigenous and local knowledge, solutions will be more effective. Failure to achieve climate resilient and sustainable development will result in a sub-optimal future for people and nature.”

Cities: Hotspots of impacts and risks, but also a crucial part of the solution

This report provides a detailed assessment of climate change impacts, risks and adaptation in cities, where more than half the world’s population lives. People’s health, lives and livelihoods, as well as property and critical infrastructure, including energy and transportation systems, are being increasingly adversely affected by hazards from heatwaves, storms, drought and flooding as well as slow-onset changes, including sea level rise.

“Together, growing urbanization and climate change create complex risks, especially for those cities that already experience poorly planned urban growth, high levels of poverty and unemployment, and a lack of basic services,” Debra Roberts said.

“But cities also provide opportunities for climate action – green buildings, reliable supplies of clean water and renewable energy, and sustainable transport systems that connect urban and rural areas can all lead to a more inclusive, fairer society.”

There is increasing evidence of adaptation that has caused unintended consequences, for example destroying nature, putting peoples’ lives at risk or increasing greenhouse gas emissions. This can be avoided by involving everyone in planning, attention to equity and justice, and drawing on Indigenous and local knowledge.

A narrowing window for action

Climate change is a global challenge that requires local solutions and that’s why the Working Group II contribution to the IPCC’s Sixth Assessment Report (AR6) provides extensive regional information to enable Climate Resilient Development.

The report clearly states Climate Resilient Development is already challenging at current warming levels. It will become more limited if global warming exceeds 1.5°C (2.7°F). In some regions it will be impossible if global warming exceeds 2°C (3.6°F). This key finding underlines the urgency for climate action, focusing on equity and justice. Adequate funding, technology transfer, political commitment and partnership lead to more effective climate change adaptation and emissions reductions.

“The scientific evidence is unequivocal: climate change is a threat to human wellbeing and the health of the planet. Any further delay in concerted global action will miss a brief and rapidly closing window to secure a liveable future,” said Hans-Otto Pörtner.

For more information, please contact:

IPCC Press Office, Email: [email protected]   IPCC Working Group II:  Sina Löschke,  Komila Nabiyeva: [email protected]

Notes for Editors

Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change

The Working Group II report examines the impacts of climate change on nature and people around the globe. It explores future impacts at different levels of warming and the resulting risks and offers options to strengthen nature’s and society’s resilience to ongoing climate change, to fight hunger, poverty, and inequality and keep Earth a place worth living on – for current as well as for future generations. 

Working Group II introduces several new components in its latest report: One is a special section on climate change impacts, risks and options to act for cities and settlements by the sea, tropical forests, mountains, biodiversity hotspots, dryland and deserts, the Mediterranean as well as the polar regions. Another is an atlas that will present data and findings on observed and projected climate change impacts and risks from global to regional scales, thus offering even more insights for decision makers.

The Summary for Policymakers of the Working Group II contribution to the Sixth Assessment Report (AR6) as well as additional materials and information are available at https://www.ipcc.ch/report/ar6/wg2/

Note : Originally scheduled for release in September 2021, the report was delayed for several months by the COVID-19 pandemic, as work in the scientific community including the IPCC shifted online. This is the second time that the IPCC has conducted a virtual approval session for one of its reports.

AR6 Working Group II in numbers

270 authors from 67 countries

  • 47 – coordinating authors
  • 184 – lead authors
  • 39 – review editors
  • 675 – contributing authors

Over 34,000 cited references

A total of 62,418 expert and government review comments

(First Order Draft 16,348; Second Order Draft 40,293; Final Government Distribution: 5,777)

More information about the Sixth Assessment Report can be found  here .

Additional media resources

Assets available after the embargo is lifted on Media Essentials website .

Press conference recording, collection of sound bites from WGII authors, link to presentation slides, B-roll of approval session, link to launch Trello board including press release and video trailer in UN languages, a social media pack.

The website includes  outreach materials  such as videos about the IPCC and video recordings from  outreach events  conducted as webinars or live-streamed events.

Most videos published by the IPCC can be found on our  YouTube  channel. Credit for artwork

About the IPCC

The Intergovernmental Panel on Climate Change (IPCC) is the UN body for assessing the science related to climate change. It was established by the United Nations Environment Programme (UNEP) and the World Meteorological Organization (WMO) in 1988 to provide political leaders with periodic scientific assessments concerning climate change, its implications and risks, as well as to put forward adaptation and mitigation strategies. In the same year the UN General Assembly endorsed the action by the WMO and UNEP in jointly establishing the IPCC. It has 195 member states.

Thousands of people from all over the world contribute to the work of the IPCC. For the assessment reports, IPCC scientists volunteer their time to assess the thousands of scientific papers published each year to provide a comprehensive summary of what is known about the drivers of climate change, its impacts and future risks, and how adaptation and mitigation can reduce those risks.

The IPCC has three working groups:  Working Group I , dealing with the physical science basis of climate change;  Working Group II , dealing with impacts, adaptation and vulnerability; and  Working Group III , dealing with the mitigation of climate change. It also has a  Task Force on National Greenhouse Gas Inventories  that develops methodologies for measuring emissions and removals. As part of the IPCC, a Task Group on Data Support for Climate Change Assessments (TG-Data) provides guidance to the Data Distribution Centre (DDC) on curation, traceability, stability, availability and transparency of data and scenarios related to the reports of the IPCC.

IPCC assessments provide governments, at all levels, with scientific information that they can use to develop climate policies. IPCC assessments are a key input into the international negotiations to tackle climate change. IPCC reports are drafted and reviewed in several stages, thus guaranteeing objectivity and transparency. An IPCC assessment report consists of the contributions of the three working groups and a Synthesis Report. The Synthesis Report integrates the findings of the three working group reports and of any special reports prepared in that assessment cycle.

About the Sixth Assessment Cycle

At its 41st Session in February 2015, the IPCC decided to produce a Sixth Assessment Report (AR6). At its 42nd Session in October 2015 it elected a new Bureau that would oversee the work on this report and the Special Reports to be produced in the assessment cycle.

Global Warming of 1.5°C , an IPCC special report on the impacts of global warming of 1.5 degrees Celsius above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty  was launched in October 2018.

Climate Change and Land , an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems  was launched in August 2019, and the  Special Report on the Ocean and Cryosphere in a Changing Climate  was released in September 2019.

In May 2019 the IPCC released the  2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories , an update to the methodology used by governments to estimate their greenhouse gas emissions and removals.

In August 2021 the IPCC released the Working Group I contribution to the AR6, Climate Change 2021, the Physical Science Basis

The Working Group III contribution to the AR6 is scheduled for early April 2022.

The Synthesis Report of the Sixth Assessment Report will be completed in the second half of 2022.

For more information go to  www.ipcc.ch

Related Content

Remarks by the ipcc chair during the press conference to present the working group ii contribution to the sixth assessment report.

Monday, 28 February 2022 Distinguished representatives of the media, WMO Secretary-General Petteri, UNEP Executive Director Andersen, We have just heard …

February 2022

Fifty-fifth session of the ipcc (ipcc-55) and twelfth session of working group ii (wgii-12), february 14, 2022, working group report, ar6 climate change 2022: impacts, adaptation and vulnerability.

UN logo

Search the United Nations

  • What Is Climate Change
  • Myth Busters
  • Renewable Energy
  • Finance & Justice
  • Initiatives
  • Sustainable Development Goals
  • Paris Agreement
  • Climate Ambition Summit 2023
  • Climate Conferences
  • Press Material
  • Communications Tips

harmful effects of global warming essay

Causes and Effects of Climate Change

Fossil fuels – coal, oil and gas – are by far the largest contributor to global climate change, accounting for over 75 per cent of global greenhouse gas emissions and nearly 90 per cent of all carbon dioxide emissions. As greenhouse gas emissions blanket the Earth, they trap the sun’s heat. This leads to global warming and climate change. The world is now warming faster than at any point in recorded history. Warmer temperatures over time are changing weather patterns and disrupting the usual balance of nature. This poses many risks to human beings and all other forms of life on Earth. 

Image of a lush winding wetlands

Empowering women and restoring wetlands go hand in hand

Environmentalist and Women Changemaker in the World of Wetlands Cécile Ndjebet says women are crucial for sustainable environmental conservation.

Three boys stand on roof watching the sunset

wikiHow teams up with Verified to empower people with climate information

A woman working in the field points at something out of frame

Sacred plant helps forge a climate-friendly future in Paraguay

Facts and figures.

  • What is climate change?
  • Causes and effects
  • Myth busters

Cutting emissions

  • Explaining net zero
  • High-level expert group on net zero
  • Checklists for credibility of net-zero pledges
  • Greenwashing
  • What you can do

Clean energy

  • Renewable energy – key to a safer future
  • What is renewable energy
  • Five ways to speed up the energy transition
  • Why invest in renewable energy
  • Clean energy stories
  • A just transition

Adapting to climate change

  • Climate adaptation
  • Early warnings for all
  • Youth voices

Financing climate action

  • Finance and justice
  • Loss and damage
  • $100 billion commitment
  • Why finance climate action
  • Biodiversity
  • Human Security

International cooperation

  • What are Nationally Determined Contributions
  • Acceleration Agenda
  • Climate Ambition Summit
  • Climate conferences (COPs)
  • Youth Advisory Group
  • Action initiatives
  • Secretary-General’s speeches
  • Press material
  • Fact sheets
  • Communications tips

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

Global warming illustration

global warming summary

Learn about the causes and effects of global warming.

harmful effects of global warming essay

global warming , Increase in the global average surface temperature resulting from enhancement of the greenhouse effect, primarily by air pollution . In 2007 the UN Intergovernmental Panel on Climate Change forecast that by 2100 global average surface temperatures would increase 3.2–7.2 °F (1.8–4.0 °C), depending on a range of scenarios for greenhouse gas emissions, and stated that it was now 90 percent certain that most of the warming observed over the previous half century could be attributed to greenhouse gas emissions produced by human activities (i.e., industrial processes and transportation). Many scientists predict that such an increase in temperature would cause polar ice caps and mountain glaciers to melt rapidly, significantly raising the levels of coastal waters, and would produce new patterns and extremes of drought and rainfall, seriously disrupting food production in certain regions. Other scientists maintain that such predictions are overstated. The 1992 Earth Summit and the 1997 Kyoto Protocol to the United Nations Framework Convention on Climate Change attempted to address the issue of global warming, but in both cases the efforts were hindered by conflicting national economic agendas and disputes between developed and developing nations over the cost and consequences of reducing emissions of greenhouse gases.

harmful effects of global warming essay

Lisa Hupp/USFWS

Arctic Match Live Now!

For a limited time, all gifts are being matched to stop Big Oil from blocking a new once-in-a-lifetime opportunity to protect the Arctic.

Global Warming 101

Everything you wanted to know about our changing climate but were too afraid to ask.

Pedestrians use umbrellas and protective clothing for shade in Beijing, China

Temperatures in Beijing rose above 104 degrees Fahrenheit on July 6, 2023.

Jia Tianyong/China News Service/VCG via Getty Images

A headshot of Jeff Turrentine

  • Share this page block

What is global warming?

What causes global warming, how is global warming linked to extreme weather, what are the other effects of global warming, where does the united states stand in terms of global-warming contributors, is the united states doing anything to prevent global warming, is global warming too big a problem for me to help tackle.

A: Since the Industrial Revolution, the global annual temperature has increased in total by a little more than 1 degree Celsius, or about 2 degrees Fahrenheit. Between 1880—the year that accurate recordkeeping began—and 1980, it rose on average by 0.07 degrees Celsius (0.13 degrees Fahrenheit) every 10 years. Since 1981, however, the rate of increase has more than doubled: For the last 40 years, we’ve seen the global annual temperature rise by 0.18 degrees Celsius, or 0.32 degrees Fahrenheit, per decade.

The result? A planet that has never been hotter . Nine of the 10 warmest years since 1880 have occurred since 2005—and the 5 warmest years on record have all occurred since 2015. Climate change deniers have argued that there has been a “pause” or a “slowdown” in rising global temperatures, but numerous studies, including a 2018 paper published in the journal Environmental Research Letters , have disproved this claim. The impacts of global warming are already harming people around the world.

Now climate scientists have concluded that we must limit global warming to 1.5 degrees Celsius by 2040 if we are to avoid a future in which everyday life around the world is marked by its worst, most devastating effects: the extreme droughts, wildfires, floods, tropical storms, and other disasters that we refer to collectively as climate change . These effects are felt by all people in one way or another but are experienced most acutely by the underprivileged, the economically marginalized, and people of color, for whom climate change is often a key driver of poverty, displacement, hunger, and social unrest.

A: Global warming occurs when carbon dioxide (CO 2 ) and other air pollutants collect in the atmosphere and absorb sunlight and solar radiation that have bounced off the earth’s surface. Normally this radiation would escape into space, but these pollutants, which can last for years to centuries in the atmosphere, trap the heat and cause the planet to get hotter. These heat-trapping pollutants—specifically carbon dioxide, methane, nitrous oxide, water vapor, and synthetic fluorinated gases—are known as greenhouse gases, and their impact is called the greenhouse effect.

Though natural cycles and fluctuations have caused the earth’s climate to change several times over the last 800,000 years, our current era of global warming is directly attributable to human activity—specifically to our burning of fossil fuels such as coal, oil, gasoline, and natural gas, which results in the greenhouse effect. In the United States, the largest source of greenhouse gases is transportation (29 percent), followed closely by electricity production (28 percent) and industrial activity (22 percent). Learn about the natural and human causes of climate change .

Curbing dangerous climate change requires very deep cuts in emissions, as well as the use of alternatives to fossil fuels worldwide. The good news is that countries around the globe have formally committed—as part of the 2015 Paris Climate Agreement —to lower their emissions by setting new standards and crafting new policies to meet or even exceed those standards. The not-so-good news is that we’re not working fast enough. To avoid the worst impacts of climate change, scientists tell us that we need to reduce global carbon emissions by as much as 40 percent by 2030. For that to happen, the global community must take immediate, concrete steps: to decarbonize electricity generation by equitably transitioning from fossil fuel–based production to renewable energy sources like wind and solar; to electrify our cars and trucks; and to maximize energy efficiency in our buildings, appliances, and industries.

A: Scientists agree that the earth’s rising temperatures are fueling longer and hotter heat waves , more frequent droughts , heavier rainfall , and more powerful hurricanes .

In 2015, for example, scientists concluded that a lengthy drought in California—the state’s worst water shortage in 1,200 years —had been intensified by 15 to 20 percent by global warming. They also said the odds of similar droughts happening in the future had roughly doubled over the past century. And in 2016, the National Academies of Science, Engineering, and Medicine announced that we can now confidently attribute some extreme weather events, like heat waves, droughts, and heavy precipitation, directly to climate change.

The earth’s ocean temperatures are getting warmer, too—which means that tropical storms can pick up more energy. In other words, global warming has the ability to turn a category 3 storm into a more dangerous category 4 storm. In fact, scientists have found that the frequency of North Atlantic hurricanes has increased since the early 1980s, as has the number of storms that reach categories 4 and 5. The 2020 Atlantic hurricane season included a record-breaking 30 tropical storms, 6 major hurricanes, and 13 hurricanes altogether. With increased intensity come increased damage and death. The United States saw an unprecedented 22 weather and climate disasters that caused at least a billion dollars’ worth of damage in 2020, but, according to NOAA, 2017 was the costliest on record and among the deadliest as well: Taken together, that year's tropical storms (including Hurricanes Harvey, Irma, and Maria) caused nearly $300 billion in damage and led to more than 3,300 fatalities.

The impacts of global warming are being felt everywhere. Extreme heat waves have caused tens of thousands of deaths around the world in recent years. And in an alarming sign of events to come, Antarctica has lost nearly four trillion metric tons of ice since the 1990s. The rate of loss could speed up if we keep burning fossil fuels at our current pace, some experts say, causing sea levels to rise several meters in the next 50 to 150 years and wreaking havoc on coastal communities worldwide.

A: Each year scientists learn more about the consequences of global warming , and each year we also gain new evidence of its devastating impact on people and the planet. As the heat waves, droughts, and floods associated with climate change become more frequent and more intense, communities suffer and death tolls rise. If we’re unable to reduce our emissions, scientists believe that climate change could lead to the deaths of more than 250,000 people around the globe every year and force 100 million people into poverty by 2030.

Global warming is already taking a toll on the United States. And if we aren’t able to get a handle on our emissions, here’s just a smattering of what we can look forward to:

  • Disappearing glaciers, early snowmelt, and severe droughts will cause more dramatic water shortages and continue to increase the risk of wildfires in the American West.
  • Rising sea levels will lead to even more coastal flooding on the Eastern Seaboard, especially in Florida, and in other areas such as the Gulf of Mexico.
  • Forests, farms, and cities will face troublesome new pests , heat waves, heavy downpours, and increased flooding . All of these can damage or destroy agriculture and fisheries.
  • Disruption of habitats such as coral reefs and alpine meadows could drive many plant and animal species to extinction.
  • Allergies, asthma, and infectious disease outbreaks will become more common due to increased growth of pollen-producing ragweed , higher levels of air pollution , and the spread of conditions favorable to pathogens and mosquitoes.

Though everyone is affected by climate change, not everyone is affected equally. Indigenous people, people of color, and the economically marginalized are typically hit the hardest. Inequities built into our housing , health care , and labor systems make these communities more vulnerable to the worst impacts of climate change—even though these same communities have done the least to contribute to it.

A: In recent years, China has taken the lead in global-warming pollution , producing about 26 percent of all CO2 emissions. The United States comes in second. Despite making up just 4 percent of the world’s population, our nation produces a sobering 13 percent of all global CO2 emissions—nearly as much as the European Union and India (third and fourth place) combined. And America is still number one, by far, in cumulative emissions over the past 150 years. As a top contributor to global warming, the United States has an obligation to help propel the world to a cleaner, safer, and more equitable future. Our responsibility matters to other countries, and it should matter to us, too.

A: We’ve started. But in order to avoid the worsening effects of climate change, we need to do a lot more—together with other countries—to reduce our dependence on fossil fuels and transition to clean energy sources.

Under the administration of President Donald Trump (a man who falsely referred to global warming as a “hoax”), the United States withdrew from the Paris Climate Agreement, rolled back or eliminated dozens of clean air protections, and opened up federally managed lands, including culturally sacred national monuments, to fossil fuel development. Although President Biden has pledged to get the country back on track, years of inaction during and before the Trump administration—and our increased understanding of global warming’s serious impacts—mean we must accelerate our efforts to reduce greenhouse gas emissions.

Despite the lack of cooperation from the Trump administration, local and state governments made great strides during this period through efforts like the American Cities Climate Challenge and ongoing collaborations like the Regional Greenhouse Gas Initiative . Meanwhile, industry and business leaders have been working with the public sector, creating and adopting new clean-energy technologies and increasing energy efficiency in buildings, appliances, and industrial processes. 

Today the American automotive industry is finding new ways to produce cars and trucks that are more fuel efficient and is committing itself to putting more and more zero-emission electric vehicles on the road. Developers, cities, and community advocates are coming together to make sure that new affordable housing is built with efficiency in mind , reducing energy consumption and lowering electric and heating bills for residents. And renewable energy continues to surge as the costs associated with its production and distribution keep falling. In 2020 renewable energy sources such as wind and solar provided more electricity than coal for the very first time in U.S. history.

President Biden has made action on global warming a high priority. On his first day in office, he recommitted the United States to the Paris Climate Agreement, sending the world community a strong signal that we were determined to join other nations in cutting our carbon pollution to support the shared goal of preventing the average global temperature from rising more than 1.5 degrees Celsius above preindustrial levels. (Scientists say we must stay below a 2-degree increase to avoid catastrophic climate impacts.) And significantly, the president has assembled a climate team of experts and advocates who have been tasked with pursuing action both abroad and at home while furthering the cause of environmental justice and investing in nature-based solutions.

A: No! While we can’t win the fight without large-scale government action at the national level , we also can’t do it without the help of individuals who are willing to use their voices, hold government and industry leaders to account, and make changes in their daily habits.

Wondering how you can be a part of the fight against global warming? Reduce your own carbon footprint by taking a few easy steps: Make conserving energy a part of your daily routine and your decisions as a consumer. When you shop for new appliances like refrigerators, washers, and dryers, look for products with the government’s ENERGY STAR ® label; they meet a higher standard for energy efficiency than the minimum federal requirements. When you buy a car, look for one with the highest gas mileage and lowest emissions. You can also reduce your emissions by taking public transportation or carpooling when possible.

And while new federal and state standards are a step in the right direction, much more needs to be done. Voice your support of climate-friendly and climate change preparedness policies, and tell your representatives that equitably transitioning from dirty fossil fuels to clean power should be a top priority—because it’s vital to building healthy, more secure communities.

You don’t have to go it alone, either. Movements across the country are showing how climate action can build community , be led by those on the front lines of its impacts, and create a future that’s equitable and just for all .

This story was originally published on March 11, 2016 and has been updated with new information and links.

This NRDC.org story is available for online republication by news media outlets or nonprofits under these conditions: The writer(s) must be credited with a byline; you must note prominently that the story was originally published by NRDC.org and link to the original; the story cannot be edited (beyond simple things such as grammar); you can’t resell the story in any form or grant republishing rights to other outlets; you can’t republish our material wholesale or automatically—you need to select stories individually; you can’t republish the photos or graphics on our site without specific permission; you should drop us a note to let us know when you’ve used one of our stories.

Related Stories

A blurry image of a line of people wading through floodwaters from Tropical Storm Harvey in Beaumont Place, Houston, Texas, 2017

1.5 Degrees of Global Warming—Are We There Yet?

Protesters stand outside P&G headquarters with signs reading, "Charmin: Stop flushing our forests!"

When Customers and Investors Demand Corporate Sustainability

A ship with four large white domes moves through open water

Liquefied Natural Gas 101

When you sign up, you’ll become a member of NRDC’s Activist Network. We will keep you informed with the latest alerts and progress reports.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • 28 February 2022

Climate change is hitting the planet faster than scientists originally thought

  • Jeff Tollefson

You can also search for this author in PubMed   Google Scholar

The negative impacts of climate change are mounting much faster than scientists predicted less than a decade ago, according to the latest report from a United Nations climate panel . Many impacts are unavoidable and will hit the world’s most vulnerable populations hardest, it warns — but collective action from governments to both curb greenhouse-gas emissions and prepare communities to live with global warming could yet avert the worst outcomes.

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 51 print issues and online access

185,98 € per year

only 3,65 € per issue

Rent or buy this article

Prices vary by article type

Prices may be subject to local taxes which are calculated during checkout

doi: https://doi.org/10.1038/d41586-022-00585-7

Quotes from the report authors have been edited for length and clarity.

Reprints and permissions

Related Articles

harmful effects of global warming essay

  • Climate change
  • Climate sciences

The time to act is now: the world’s highest court must weigh in strongly on climate and nature

The time to act is now: the world’s highest court must weigh in strongly on climate and nature

World View 08 AUG 24

Coral giants sound the alarm for the Great Barrier Reef

Coral giants sound the alarm for the Great Barrier Reef

News & Views 07 AUG 24

Great Barrier Reef’s temperature soars to 400-year high

Great Barrier Reef’s temperature soars to 400-year high

News 07 AUG 24

Deepest-ever samples of rock from Earth’s mantle unveiled

Deepest-ever samples of rock from Earth’s mantle unveiled

News 08 AUG 24

Recruitment of Talent Positions at Shengjing Hospital of China Medical University

Call for top experts and scholars in the field of science and technology.

Shenyang, Liaoning, China

Shengjing Hospital of China Medical University

harmful effects of global warming essay

The Recruitment of Fuyao University of Science and Technology

This recruitment of Fuyao University Technologyof Science andUcovers 7 departments including the 6 Schools and the Faculty of Fundamental Disciplines.

Fuzhou, Fujian (CN)

Fuzhou FuYao Institute for Advanced Study

harmful effects of global warming essay

Educational Consultant

You will build and maintain strong relationships with local representatives, key distributors, schools, Ministries of Education, etc.

Riyadh - hybrid working model

Springer Nature Ltd

harmful effects of global warming essay

Senior Marketing Manager – Journal Awareness

Job Title: Senior Marketing Manager – Journal Awareness Location(s): London, UK - Hybrid Working Model Closing date: 25th August 2024             A...

London (Central), London (Greater) (GB)

harmful effects of global warming essay

Faculty Positions& Postdoctoral Research Fellow, School of Optical and Electronic Information, HUST

Job Opportunities: Leading talents, young talents, overseas outstanding young scholars, postdoctoral researchers.

Wuhan, Hubei, China

School of Optical and Electronic Information, Huazhong University of Science and Technology

harmful effects of global warming essay

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Int J Occup Environ Med
  • v.8(1); 2017 Jan

Logo of ijoem

Global Warming and Its Health Impact

Since the mid-19 th century, human activities have increased greenhouse gases such as carbon dioxide, methane, and nitrous oxide in the Earth's atmosphere that resulted in increased average temperature. The effects of rising temperature include soil degradation, loss of productivity of agricultural land, desertification, loss of biodiversity, degradation of ecosystems, reduced fresh-water resources, acidification of the oceans, and the disruption and depletion of stratospheric ozone. All these have an impact on human health, causing non-communicable diseases such as injuries during natural disasters, malnutrition during famine, and increased mortality during heat waves due to complications in chronically ill patients. Direct exposure to natural disasters has also an impact on mental health and, although too complex to be quantified, a link has even been established between climate and civil violence.

Over time, climate change can reduce agricultural resources through reduced availability of water, alterations and shrinking arable land, increased pollution, accumulation of toxic substances in the food chain, and creation of habitats suitable to the transmission of human and animal pathogens. People living in low-income countries are particularly vulnerable.

Climate change scenarios include a change in distribution of infectious diseases with warming and changes in outbreaks associated with weather extreme events. After floods, increased cases of leptospirosis, campylobacter infections and cryptosporidiosis are reported. Global warming affects water heating, rising the transmission of water-borne pathogens. Pathogens transmitted by vectors are particularly sensitive to climate change because they spend a good part of their life cycle in a cold-blooded host invertebrate whose temperature is similar to the environment. A warmer climate presents more favorable conditions for the survival and the completion of the life cycle of the vector, going as far as to speed it up as in the case of mosquitoes. Diseases transmitted by mosquitoes include some of the most widespread worldwide illnesses such as malaria and viral diseases. Tick-borne diseases have increased in the past years in cold regions, because rising temperatures accelerate the cycle of development, the production of eggs, and the density and distribution of the tick population. The areas of presence of ticks and diseases that they can transmit have increased, both in terms of geographical extension than in altitude. In the next years the engagement of the health sector would be working to develop prevention and adaptation programs in order to reduce the costs and burden of climate change.

Introduction

In the last decade, the interest in the effect of climate change on human health has increased. The impact of Homo sapiens and his activities on the Earth's complex ecosystem have started since the beginning of farming, but it is only with the industrial revolution in the 18 th century that the changes produced by human activities on planet Earth have been accelerating exponentially. Precisely, because of the role played by Homo sapiens in changing the ecosystem in order to ensure his survival and his development, the actual geological era, which follows the Holocene, is called the Anthropocene. 1

The Fifth Assessment Report of IPCC (Intergovernmental Panel n Climate Change), finalized in November 2014 confirms that human activities have produced since the mid-19 th century, an increase in greenhouse gases such as carbon dioxide, methane, and nitrous oxide in the Earth's atmosphere and an increase in average temperature without comparison in human history. The Earth's temperature has been relatively constant over many centuries ago, meanwhile in the last two centuries the changes registered are unprecedented on time scales ranging from decades to millennia. The rate of change in climate is faster now than in any other period in the past thousand years.

Weather and Climate

Two key concepts in climate science are “weather” and “climate.” Weather refers to the conditions of the atmosphere at a certain place and time with reference to temperature, pressure, humidity, wind, and other key parameters (meteorological elements), the presence of clouds, precipitation and the presence of special phenomena, such as thunderstorms, dust storms, tornados and others. Climate is defined as the average weather, or as the statistical description in terms of the mean and variability of relevant quantities over a period of time ranging from months to thousands or millions of years. 2

Temperature

The global average surface temperature has increased by 0.6 °C since the late 1950's and snow cover and ice extent have diminished. An average rise of 10–20 cm in the sea level has been reported and the temperature of the oceans has increased. 3

The fourth Assessment Report (AR4) projected changes in climate until 2100 foresee including higher maximum temperature and more hot days, and higher minimum temperature and fewer cold days, as virtually certain; increase in the length and intensity in warm spells, hot waves, and precipitation, as very likely; and droughts or dryness, changes in intensity, frequency, and duration of tropical cyclone activity, and increase in extreme sea level, as likely, excluding tsunami. 2 , 4

Effects of Global Warming

The effects of rising temperature include soil degradation, loss of productivity of agricultural land and desertification, loss of biodiversity, degradation of ecosystems, reduced fresh-water resources, acidification of oceans, and the disruption and depletion of stratospheric ozone. 5

A great attention has been given to the relationship between climate change and rising risk of infectious diseases, mostly to the vector-borne infections. However, non-communicable diseases can also heavily affect human health.

The increase in average temperature has consequences that occur acutely—such as during natural disasters and extreme events like floods, hurricanes, droughts, heat waves—or it can occur over time through reduced availability of water, drying up the soil, alterations and shrinking arable land, increased pollution, and creation of habitats favorable to the transmission of human and animal pathogens, either directly or via insect vectors.

Populations living in delta regions, low lying small island states, and many arid regions where drought and availability of water are already problematic, are at risk of suffering the effects of global warming. 6 People living in low-income countries, disposing of less technological resources either to protect themselves against extreme events are particularly vulnerable.

Climate change and increase in greenhouse gases can be considered universal, while land use changes have only local impacts. However, despite they occur locally, they have also a feed-back to the global climate and bio-geochemistry. 7

Agriculture and Water Resources

The effect of temperature on agriculture is linked to the availability of water and food production, which can be threatened by prolonged periods of drought or by the excessive rainfall. The agricultural sector employs 70% of water resources, representing the largest user of fresh water. During the last century, irrigated areas have risen fivefold. For 2025 forecast shows that 64% of the world's population will live in water-stressed basins. 8

According to AR4, the variation in the amount and intensity of rainfall will have an overall negative impact on agriculture. Indeed, in areas where precipitation decreases, the availability of total water resources will be reduced, while in areas where an increase in precipitation is expected, the variability and intensity of rainfall could have a negative impact on the seasonal distribution of rainfall and raise the risk of flood and water pollution.

Rising temperature is not the only cause of soil aridity; exploitation of the environment, deforestation, and loss of biodiversity are also important contributing factors. It is estimated that a 2.5 °C increase in global temperature above the pre-industrial level may produce major biodiversity losses in both endemic plants and animals; 41%–51% of endemic plants in southern Africa would be lost, and so do between 13% and 80% of various fauna in the same region. Globally, 20%–30% of all plant and animal species assessed so far would be at high risk of extinction with such a temperature rise. 4

Higher temperatures may also facilitate the introduction of new pathogens, vectors, or hosts that result in increasing need of pesticides and fertilizers in agriculture. These toxic substances accumulate in the food chain, pollute ground water resources, and could be easily spread through the air. Risks from many pathogens, particulate and particle-associated contaminants could thus significantly increase human exposures to pathogens and chemicals in agricultural and even in temperate regions ( Table 1 ). 9

Table 1: Effects of climate change on human health
Natural disasters and extreme events
Direct: traumatic deaths and injuries, mental illness
Indirect: pollution, infections, mental illness
Droughts
Direct: malnutrition, under-nutrition, impaired childhood development
Indirect: civil violence
Heat waves
Complications for chronically ill patients
Reduced availability of water
Conflicts
Drying up the soil, alterations and shrinking arable land
Malnutrition
Pollution
Chronic illness, toxic substances in the food chain
Habitats suitable to pathogens
Water-borne diseases, vector-borne diseases

Effect of Extreme Events

An extreme weather event is one that is rare at a particular place and/or time of year. A single extreme event cannot generally be directly attributed to anthropogenic influence, although the change in likelihood for the event to occur has been determined for some events by accounting for observed changes in climate. 2

Unlike geophysical disasters whose causes have not been influenced by human action, hydro-meteorological and climate-related events are the result of the burning of fossil fuels and deforestation. Since 1950, the frequency, intensity, spatial extent, and duration of these events have changed and projections show that they continue to increase with climate change. 10

Even in temperate regions, the climate forecasting models indicate that the total rainfall will decrease but will tend to increase their intensity. 11 When the climate system acquires more energy from higher average air temperatures and the latent heat of increased water vapor, the frequency of extreme weather events (storms, hurricanes, rain-related floods, droughts, etc ) is expected to increase. 2

In 2012, about 32 million people fled their homes because of catastrophes. The higher burden of natural disasters is endured by people living in low-income countries because they are directly affected by environmental degradation and they have less chance to defend themselves against the threat of their immediate environment and health. 12

Direct Exposure of Extreme Weather Events

The potential health impacts of extreme weather events include both direct effects, such as traumatic deaths, and indirect effects, such as illnesses associated with ecologic or social disruption. 13

The consequences in the immediate term are an increased mortality due to injuries, while afterwards there could be an effect on water quality, which could be contaminated by pathogens or chemicals. Floods have already been demonstrated to enhance the contamination of water bodies by pesticides and are followed by outbreaks of infectious diseases. 14

The effect of drought is manifested in an immediate way on the populations of the poorest countries. The loss of crops or livestock has an immediate consequence on the nutritional status of the population, causing malnutrition, under-nutrition, and compromised childhood development due to declines in local agriculture. Recurrent famine due to drought led to widespread loss of livestock, population displacement, and malnutrition in the Horn of Africa. In 2000, after three years of drought, famine has placed an estimated 10 million persons at risk of starvation. Malnutrition and measles were reported to be important causes of mortality among people aged <14 years. 15

Impact on Mental Health and Conflicts

There is an increased burden of psychological diseases and injuries related to natural disasters potentially wide but under-examined, underestimated and not adequately monitored. The mental health situation may be directly connected to the event, as in post-traumatic stress disorder (PTSD) or become chronic. 12 Rubonis and Bickmann reported an increase of approximately 17% in the global rate of psychopathology during disasters. They affirmed that psychological morbidity tends to affect 30%–40% of the disaster population within the first year, with a persistent burden of disease expected to remain chronic. 16 PTSD does not only affect victims of disasters but also has a prevalence of 10%–20% among rescue workers. 17

Another aspect related to the impact the climate change can have on communities is linked to the onset of conflicts. Without interventions designed to protect the most fragile ecosystems, desertification threatens the economies based on subsistence agriculture. This can generate conflicts regarding the access to water resources, and can increase tension between populations of farmers and nomadic herders. Statistical studies have linked climate and civil violence. Regression models have been applied to identify relationships between measures of civil conflict and climate variables, such as rainfall and temperature. Burke, examining the period 1981–2002 in sub-Saharan Africa, found a relationship between the annual incidence of civil conflict resulting in at least 1000 deaths and warmer temperatures in the same and preceding years. However, although climate change could be seen as a risk of civil violence, a quantitative model could also consider other drives to explain the origin of conflicts. 18

The damage to agriculture could indirectly affect distant countries from the concerned regions. The loss of about one-third of the grain produced due to the extreme heat and fires during the summer 2010 in western Russia, has increased the price of the wheat worldwide. In fact, in the Russian Federation the flour prices were increased by 20%, and finally urban populations in low-income countries like Pakistan and Egypt, were challenged. 19

Effects of Heat Waves

Heat waves lead to an excess mortality, even in developed countries, because mortality generally increases at temperatures both above and below an optimum value. In cold areas the increase in mortality is more closely related to cold season 20 because of the epidemic spread of air-borne viral infections ( Table 2 ) 21 - 26 and secondary bacterial infections and cardiovascular complications. Low temperatures cause cardiovascular and respiratory alterations including bronchoconstriction, and reduction in mucociliary defense and other immunological reactions. These conditions make people more receptive to air-borne pathogens. Transmission of infections is also favored by staying in closed crowded spaces, which is not uncommon during cold seasons.

Table 2: Main air-borne viral infections and seasonal distribution
CoronavirusMore often in winter and spring (December-May)
Parainfluenza virusesVary in their seasonal epidemiology by type
Respiratory syncytial virusOctober-January
MetapneumovirusLate winter and early spring (peak in March)
InfluenzaAlmost exclusively in the winter (November-March in the northern hemisphere, May-September in the southern hemisphere)

Populations residing in colder climates are more sensitive to heat and heat waves. It was estimated that the heat wave that occurred in Europe, especially France, during August 2003 caused an excess mortality of 14800 deaths. 27 Patients with chronic diseases such as hypertension, heart disease, diabetes, and obesity are more vulnerable to excessive temperatures and at risk of complications. 28 - 30 Beginning with each heat wave period and slightly during its course, a 14% increase in the risk of out-of-hospital cardiac arrest has been reported. 31 Patients suffering from asthma are more hospitalized during extreme heat and precipitation events. It has been hypothesized that thunderstorm events or periods of heavy rainfall and intense wind can trigger the release of fungal spores that are carried by wind, resulting in increased exposure to these allergens. 32 - 35 Another event reported during hot season is the rise in the incidence of urolithiasis. This is believed to be attributed the physiological link between high heat exposure, sweat function, dehydration, and kidney function, with a consequent apparent increase in kidney stone incidence in hotter climate. 29 , 36

An external file that holds a picture, illustration, etc.
Object name is ijoem-8-7-g001.jpg

Near the polar ice cap at 81° North of Svalbard (Andrew Shiva, CC BY-SA 4.0)

An external file that holds a picture, illustration, etc.
Object name is ijoem-8-7-g002.jpg

Parched earth, typical of a drought (Atmospheric Research, CSIRO, CC BY 3.0)

An external file that holds a picture, illustration, etc.
Object name is ijoem-8-7-g003.jpg

Satellite image of Hurricane Isabel about 650 km North of Puerto Rico on September 14, 2003 (Jacques Descloitres, MODIS Rapid Response Team, NASA/GSFC)

El Niño

El Niño Southern Oscillation is a climate event that originates in the Pacific Ocean but has wide-ranging consequences for weather around the world. Globally, it is linked to an increased impact of natural disasters and is especially associated with droughts and floods and with transmission of infectious disease, water-borne and vector-borne diseases, 37 particularly malaria. 38 , 39 Although cholera outbreaks occur in Burundi, Rwanda, Democratic Republic of Congo, Tanzania, Uganda, and Kenya almost every year since 1977, in African Great Lakes Region (AGLR) the incidence of cholera greatly increases during years of El Niño warm events and decreases or remains stable between these periods. 40

El Niño events can produce significant abnormalities in atmospheric general circulations and weather conditions. El Niño events cause changes in sea surface temperature (SST) in the Pacific Ocean, impact the Walker Circulation, and displace the convective area. These changes in atmospheric circulation cause abnormalities in the monsoon system and moisture fields in eastern Asia.

As El Niño has an influence on rainfall and wind speed, it can affect the persistence or moving polluting dust. The 2015 El Niño has had significant effects on air pollution in eastern China, especially in the region including the capital city of Beijing where aerosol pollution was significantly enhanced. 41 The relationship between air pollution and asthma has been well-established. Air pollution is made up of gases and particulate matters that can be transported into the alveoli depending on their size. Particulate matters can produce damage to the whole respiratory apparatus. Exposure to these agents can cause acute pulmonary diseases such as chronic obstructive pulmonary disease (COPD), asthma, and if continues for a long time, it can activate cellular mediators leading to pulmonary fibrosis. 42

Finally, in rural setting, a neglected effect of warm temperature is the increased exposure to snakebites. Snakes are ectothermic organisms whose distribution, movement, and behaviors change as a function of weather fluctuations. In Costa Rica, high numbers of snakebites occur during the cold and hot phases of El Niño. Like other tropical diseases, snakebites occur more frequently in poor settings, thus reflecting the general vulnerability of impoverished human populations to the adverse effects of climate change. 43

Climate Change and Infectious Diseases

Climate mainly affects the range of infectious diseases, whereas weather affects the timing and intensity of outbreaks. Climate change scenarios include a change in the distribution of infectious diseases with warming and changes in outbreaks associated with weather extremes. 44 Statistical models are used to estimate the global burden of some infectious diseases as a result of climate change. According to the models, by 2030, 10% more diarrheal diseases are expected, affecting primarily the young children.

If global temperature increases by 2–3 °C, as it is expected to, the population at risk for malaria could increase by 3%–5%. 45

Infectious Diseases during Extreme Events

Floods not only have direct effects but also increase the risk of microbiological water pollution. Excess cases of leptospirosis and campylobacter enteritis have been reported after flooding in the Czech Republic 46 and in coastal areas of Maryland during extreme precipitation events 47 . Similarly, an outbreak of cryptosporidiosis began six weeks after the peak of an extensive river flooding in Germany. 48

Global warming also affects the water heating and transmission of water-borne pathogens, through the establishment of a more suitable environment for bacterial growth. The higher sea surface temperature and sea level has resulted in rising water-borne infectious and toxin-related illnesses such as cholera and shellfish poisoning. 44

Proliferation of micro-organisms such as Vibrio vulnificus and V. cholerae non-O1/O139, 49 and infection of wounds and sepsis affecting bathers have been reported as consequence of water temperatures above the average in the Baltic Sea and the North Sea during the hot summer of 2006. 50

Vector-borne Diseases and Mosquitoes

The transmission of infectious diseases through vectors is more complex, particularly when humans or livestock, in the case of diseases of veterinary interest, are not the only reservoir. The key elements in the epidemiology of vector-borne diseases include the ecology and behavior of the host, the ecology and behavior of the carrier, and the level of immunity of population.

Pathogens transmitted by vectors are particularly sensitive to climate change because they spend a good part of their life cycle in an ectothermic invertebrate host whose temperature is similar to the environment. 51 A warmer climate presents a more favorable condition for the survival and completion of the life cycle of the vector, going as far as to speed it up as in the case of mosquitoes.

Comparing the maturation of mosquitoes in huts in forest areas and in deforested areas, in which there was a difference of a few degrees, has allowed to estimate the percentage of insects that are passed by the larval form to the adult form (from 65% to 82%) and the reduction of the period required for the development, which passed from 9 to 8 days, in warmer areas. 52

Mosquitoes are found worldwide, except in regions permanently covered by ice. There are about 3500 species of mosquitoes, almost three-quarters of which are present in tropical and subtropical wetlands. Mosquitoes typical of temperate regions have had to develop strategies to survive the winter, as well as pathogens that can be transmitted. In tropical regions, similarly, adaptations were needed to survive the unfavorable times of prolonged drought. In both cases, these adaptive mechanisms have affected the seasonality of transmission. 53

Rising temperature has allowed the extension of the area of distribution of certain diseases. Diseases transmitted by mosquitoes include some of the most widespread illness worldwide. Some of them are caused by parasites, such as Plasmodium spp , the agent of malaria, the main parasitic disease, causing 214 million of new cases in 2015. 54

Temperature affects each stage of mosquitoes' lifecycle. 55 , 56 There is a minimum and maximum temperature threshold above and below which the development and survival of the vector and the parasite are not possible. Above a certain temperature anopheles mosquito vectors of malaria, cannot survive; 57 their life cycle is so fast that does not allow the development of Plasmodium within their salivary glands. The temperature is a variable that affects development of both the vector population and the parasite within the vector; meanwhile the availability of water and moisture affects the vector only. 58 In recent decades, outbreaks of malaria have been reported from many mountainous regions of Kenya, Uganda, and Rwanda, 58 but a high degree of temporal and spatial variation in the climate of East Africa suggests further that claimed associations between local malaria resurgence and regional changes in climate are overly simplistic. Increases in malaria have been attributed to migration, breakdown in both health service provision and vector control operations, and deforestation. Economic, social, and political factors can therefore, explain recent resurgence in malaria rather than climate change. 59 Models have been elaborated to predict in the next years the distribution of malaria. They forecast an extension of areas of endemic malaria and a shift in the affected areas.

Patterns considering Anopheles gambiae vector complex species estimate that climate change effects on African malaria vectors are shifting their distributional potential from West to East and South. Although it is likely a reduction of the malaria burden, these epidemiological changes will pose novel public health problems in areas where it has not previously been common. 60

The reintroduction of malaria in previously endemic areas of Europe and in temperate regions is theoretically possible. In case of the reappearance of the vector, the human carriers of gametocytes, the forms of the parasite transmissible to the mosquito, would also be present in adequate numbers and for a sufficient period to support the transmission. 61 , 62 That is why in southern Europe even though the vector circulates, a limited number of subjects were involved during outbreaks. 63 - 65

Mosquitoes can also transmit viral infections to humans and other vertebrates. Regarded as a typical of tropical or subtropical regions, these diseases and their vectors have begun to be reported in temperate regions. In recent decades, epidemics with autochthonous transmission of dengue fever and chikungunya, both carried by the mosquito Aedes albopictus , have been described in Europe and the USA. 66 These outbreaks were introduced by travelers from endemic areas, but the presence of a vector has allowed the transmission to local population. 67 , 68 Although generally considered a secondary vector of dengue fever, A. albopictus is also able to transmit other viruses including yellow fever. It was introduced in Europe in the 1970's and now it is present in at least 12 states and could go until reach even Scandinavia. 69

Recently, Zika virus has emerged as a “public health emergency of international concern,” according to World Health Organization. Whether the risk of outbreaks or autochthonous cases of Zika virus infections during the summer season in Europe is possible due to the presence of Aedes , is not yet established. 70

For these viruses, which are limited to humans, vector control measures have allowed to contain the spread of the disease. Conversely, a virus such as the West Nile virus, which has a large reservoir constituted by wild birds, could easily become endemic. 71 After the first outbreak reported in Europe in the South of France, and in the USA in the city of New York, West Nile virus is now firmly established in these areas. 72 Their diffusion is supported by mild winters, springs and dry summers, heat waves early in the season and wet fall. 73

Vector-borne Diseases and Ticks

Ticks are responsible for the transmission of both viruses and bacteria. Rising temperature accelerates the cycle of development, the production of eggs, and the density and distribution of their population. 74 , 75

The areas of presence of ticks and diseases that can be transmitted have increased in terms of geographical extension and in altitude. It is possible that the rising temperature could already lead to change in the distribution of the population of Ixodes ricinus , vector of viral infections such as tick-borne encephalitis and Lyme disease in Europe.

The increased incidence of tick-borne encephalitis has also been linked to milder and shorter winters and the consequent extension of the period of tick activity. 76 - 79

In addition to climate change, among the leading causes of increased transmission of tick-borne diseases the abandoning of agricultural lands would also be considered, which has allowed the proliferation of rodents reservoir, and the establishment of ecological niches suitable to ticks in urban parks ( Table 3 ). 80

Table 3: Main vector-borne diseases
. (spotted fever group) Tick: Rodents, dogs, tick
(Lyme disease) Tick Small mammals, birds, reptiles
Tick: Goats, sheep, cattle, migratory birds
West Nile virus Mosquitoes: Wild rodents, migratory birds, horses
Rift valley virus Mosquitoes: Cattle
Dengue virus Mosquitoes: Monkeys, humans
Yellow fever virus Mosquitoes: Monkeys, humans
Chikungunya virus Mosquitoes: Humans
Tick-borne encephalitis Tick: Small mammals, birds, reptiles
Crimea-Congo hemorrhagic fever virus Tick: Ovines, cattle, tick
Zika virus Mosquitoes: Humans, primates
. (Malaria) Mosquitoes: Humans
. Flebotomi: Dogs, foxes, rodents
Mosquitoes: Dogs

The global changes that we are currently experiencing have never happened before. They include climate change and variability, change of composition of the atmosphere, use of the earth's surface for expansion of agricultural lands and deforestation. Other changes include an extension of the inhabited rural areas, urbanization, globalization of trade and transports, displacement of populations, diffusion of new plant species, spread of human and animal diseases, and improvements in conditions of life and diffusion of advanced technologies worldwide. 81

Climate change represents one of the main environmental and health equity challenges of our time because the burden of climate-sensitive diseases is the greatest for the poorest populations. 82 Many of the health impacts of climate are a particular threat to poor people in low- and middle-income countries. For example, the mortality rate derived from vector-borne diseases is almost 300 times greater in developing nations than in developed countries, posing as a significant cause of death, disease burden and health inequity, as brake on socioeconomic development, and as a strain on health services. 83

In urban setting, the local climate conditions, where people live and work, create most of the direct human health hazards, such as those due to the urban-heat-island effect. Therefore, a more indirect health effects is often associated with global or large-scale regional climate change. Like other effects of rising temperature, the consequences of global warming are also worse in low-income countries where urbanization have occurred rapidly and without planning. 84

In the next years, in order to contain the global warming, technologies that reduce greenhouse emissions and the consumption of water resources would be needed. A constant need to ensure access to food and availability of protein to the growing world population through agricultural techniques that increase the productivity without depleting the soil would be experienced. Finally, it is important not to forget the most directly and indirectly exposures to damages and results of climate change.

The engagement of the health sector would deal with the increasing pollution-related diseases, to extreme weather events, and would develop knowledge and skills in local prevention/adaptation programs, in order to reduce the costs and burden of the consequences of climate change. 85 Health system needs to strengthen primary health care, develop preventive programs, put special attention towards the vulnerable communities and regions, encourage community participation in grass root planning, emergency preparedness, and make capacity to forecast future health risks. 86

To prevent the spread of infectious and vector-borne diseases, it would be necessary to establish an integrated notification network of veterinary, entomological and human survey, with particular attention to avoid the introduction of new human and animal pathogens. 87

Health professionals everywhere have a responsibility to put health at the heart of climate change negotiations. Firstly, because climate change already has a major adverse impact on the health of human populations. Secondly, because reducing greenhouse gas emissions has unrivalled opportunities for improving public health. 88

Conflict of Interest:

None declared.

Cite this article as: Rossati A. Global warming and its health impact. Int J Occup Environ Med 2017;8:7-20. doi: 10.15171/ijoem.2017.963

Causes of global warming, explained

Human activity is driving climate change, including global temperature rise.

The average temperature of the Earth is rising at nearly twice the rate it was 50 years ago. This rapid warming trend cannot be explained by natural cycles alone, scientists have concluded. The only way to explain the pattern is to include the effect of greenhouse gases (GHGs) emitted by humans.

Current levels of the greenhouse gases carbon dioxide, methane, and nitrous oxide in our atmosphere are higher than at any point over the past 800,000 years , and their ability to trap heat is changing our climate in multiple ways .

IPCC conclusions

To come to a scientific conclusion on climate change and what to do about it, the United Nations in 1988 formed a group called the Intergovernmental Panel on Climate Change , or IPCC. The IPCC meets every few years to review the latest scientific findings and write a report summarizing all that is known about global warming. Each report represents a consensus, or agreement, among hundreds of leading scientists.

One of the first things the IPCC concluded is that there are several greenhouse gases responsible for warming, and humans emit them in a variety of ways. Most come from the combustion of fossil fuels in cars, buildings, factories, and power plants. The gas responsible for the most warming is carbon dioxide, or CO2. Other contributors include methane released from landfills, natural gas and petroleum industries, and agriculture (especially from the digestive systems of grazing animals); nitrous oxide from fertilizers; gases used for refrigeration and industrial processes; and the loss of forests that would otherwise store CO2.

a melting iceberg

Gaseous abilities

Different greenhouse gases have very different heat-trapping abilities. Some of them can trap more heat than an equivalent amount of CO2. A molecule of methane doesn't hang around the atmosphere as long as a molecule of carbon dioxide will, but it is at least 84 times more potent over two decades. Nitrous oxide is 264 times more powerful than CO2.

Other gases, such as chlorofluorocarbons, or CFCs—which have been banned in much of the world because they also degrade the ozone layer—have heat-trapping potential thousands of times greater than CO2. But because their emissions are much lower than CO2 , none of these gases trap as much heat in the atmosphere as CO2 does.

When those gases that humans are adding to Earth's atmosphere trap heat, it’s called the "greenhouse effect." The gases let light through but then keep much of the heat that radiates from the surface from escaping back into space, like the glass walls of a greenhouse. The more greenhouse gases in the atmosphere, the more dramatic the effect, and the more warming that happens.

Climate change continues

Despite global efforts to address climate change, including the landmark 2015 Paris climate agreement , carbon dioxide emissions from fossil fuels continue to rise, hitting record levels in 2018 .

Many people think of global warming and climate change as synonyms, but scientists prefer to use “climate change” when describing the complex shifts now affecting our planet’s weather and climate systems. Climate change encompasses not only rising average temperatures but also extreme weather events, shifting wildlife populations and and habitats, rising seas , and a range of other impacts.

Read next: Global Warming Effects

Related Topics

  • CLIMATE CHANGE
  • ENVIRONMENT AND CONSERVATION
  • AIR POLLUTION

You May Also Like

harmful effects of global warming essay

Another weapon to fight climate change? Put carbon back where we found it

harmful effects of global warming essay

How global warming is disrupting life on Earth

harmful effects of global warming essay

Are there real ways to fight climate change? Yes.

harmful effects of global warming essay

What is the ozone layer, and why does it matter?

harmful effects of global warming essay

The U.S. ‘warming hole’—a climate anomaly explained

  • Photography
  • Environment

History & Culture

  • History & Culture
  • History Magazine
  • Paid Content
  • Destination Guide
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

Can we slow or even reverse global warming?

Yes.  While we cannot stop global warming overnight, we can slow the rate and limit the amount of global warming by reducing human emissions of heat-trapping gases and soot (“black carbon”). 

If all human emissions of heat-trapping gases were to stop today, Earth’s temperature would continue to rise for a few decades as ocean currents bring excess heat stored in the deep ocean back to the surface.  Once this excess heat radiated out to space, Earth’s temperature would stabilize. Experts think the additional warming from this “hidden” heat are unlikely to exceed 0.9° Fahrenheit (0.5°Celsius). With no further human influence, natural processes would begin to slowly remove the excess carbon dioxide from the atmosphere, and global temperatures would gradually begin to decline.

Map of ocean heat trends from 1993-2020

Change in heat content in the upper 2,300 feet (700 meters) of the ocean from 1993-2020. Between 1993–2019, heat content rose by up to 6 Watts per square meter in parts of the ocean (dark orange). Some areas lost heat (blue), but overall, the ocean gained more heat than it lost. The changes in areas covered with the gray shading were not statistically significant. NOAA Climate.gov image, based on data from NCEI.

It’s true that without dramatic action in the next couple of decades, we are unlikely to keep global warming in this century below 2.7° Fahrenheit (1.5° Celsius) compared to pre-industrial temperatures—a threshold that experts say offers a lower risk of serious negative impacts. But the more we overshoot that threshold, the more serious and widespread the negative impacts will be, which means that it is never “too late” to take action.

In response to a request from the U.S. Congress, the U.S. National Academy of Sciences published a series of peer-reviewed reports, titled  America's Climate Choices , to provide authoritative analyses to inform and guide responses to climate change across the nation. Relevant to this question, the NAS report titled  Limiting the Magnitude of Future Climate Change  explains policies that could be adopted to slow or even reverse global warming. The report says, "Meeting internationally discussed targets for limiting atmospheric greenhouse gas concentrations and associated increases in global average temperatures will require a major departure from business as usual in how the world uses and produces energy."

Photo collage of alternative energy sources

Transitioning to energy sources that do not emit greenhouse gases, such as solar, wind, biofuels, and nuclear, can slow the pace of climate change, though these energy sources face hurdles ranging from manufacturing capacity to debates about where to install some facilities. Images courtesy Energy.gov.

Alternative methods to slow or reduce global warming have been proposed that are, collectively, known as "climate engineering" or "geoengineering." Some geoengineering proposals involve cooling Earth's surface by injecting reflective particles into the upper atmosphere to scatter and reflect sunlight back to space. Other proposals involve seeding the oceans with iron to stimulate large-scale phytoplankton blooms, thereby drawing down carbon dioxide out of the atmosphere through photosynthesis. Such methods could work, in principle, but many climate scientists oppose undertaking geoengineering until we have a much better understanding of the possible side effects. Additionally, there are unresolved legal and ethical issues surrounding geoengineering.

Given these concerns, the  American Meteorological Society published a position paper  (readopted in January 2013) in which it said: "...research to date has not determined whether there are large-scale geoengineering approaches that would produce significant benefits, or whether those benefits would substantially outweigh the detriments. Indeed, geoengineering must be viewed with caution because manipulating the Earth system has considerable potential to trigger adverse and unpredictable consequences."

Martinich, J., B.J. DeAngelo, D. Diaz, B. Ekwurzel, G. Franco, C. Frisch, J. McFarland, and B. O’Neill. (2018). Reducing Risks Through Emissions Mitigation. In  Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II  [Reidmiller, D.R., C.W. Avery, D.R. Easterling, K.E. Kunkel, K.L.M. Lewis, T.K. Maycock, and B.C. Stewart (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, pp. 1346–1386. doi:  10.7930/NCA4.2018.CH29 .

Allen, M.R., O.P. Dube, W. Solecki, F. Aragón-Durand, W. Cramer, S. Humphreys, M. Kainuma, J. Kala, N. Mahowald, Y. Mulugetta, R. Perez, M.Wairiu, and K. Zickfeld (2018). Framing and Context. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. In Press.

We value your feedback

Help us improve our content

Related Content

News & features, natural variability in earth’s reflectiveness would limit our ability to detect effects of climate engineering, climate science 101: ethics and issues surrounding geo-engineering to mitigate climate change, what's the difference between global warming and climate change, maps & data, climate forcing, ocean heat content - seasonal difference from average, ocean heat content - yearly difference from average, teaching climate, toolbox for teaching climate & energy, imatternow campaign, climate youth engagement, climate resilience toolkit, climate change 2023 - ar6 synthesis report, food production, international food security.

  • News, Stories & Speeches
  • Get Involved
  • Structure and leadership
  • Committee of Permanent Representatives
  • UN Environment Assembly
  • Funding and partnerships
  • Policies and strategies
  • Evaluation Office
  • Secretariats and Conventions

A man crouches down with a sapling.

  • Asia and the Pacific
  • Latin America and the Caribbean
  • New York Office
  • North America
  • Climate action
  • Nature action
  • Chemicals and pollution action
  • Digital Transformations
  • Disasters and conflicts
  • Environment under review
  • Environmental rights and governance
  • Extractives
  • Fresh Water
  • Green economy
  • Ocean, seas and coasts
  • Resource efficiency
  • Sustainable Development Goals
  • Youth, education and environment
  • Publications & data

harmful effects of global warming essay

1. Spread the word

Encourage your friends, family and co-workers to reduce their carbon pollution. Join a global movement like  Count Us In, which aims to inspire 1 billion people to take practical steps and challenge their leaders to act more boldly on climate. Organizers of the platform say that if 1 billion people took action, they could reduce as much as 20 per cent of global carbon emissions. Or you could sign up to the UN’s  #ActNow campaign on climate change and sustainability and add your voice to this critical global debate.

Young women at a climate change protest.

2. Keep up the political pressure

Lobby local politicians and businesses to support efforts to cut emissions and reduce carbon pollution.  #ActNow Speak Up  has sections on political pressure and corporate action - and Count Us In also has  some handy tips  for how to do this. Pick an environmental issue you care about, decide on a specific request for change and then try to arrange a meeting with your local representative. It might seem intimidating but your voice deserves to be heard. If humanity is to succeed in tackling the climate emergency, politicians must be part of the solution. It’s up to all of us to keep up with the pressure. 

Two people riding bikes.

3. Transform your transport

Transport accounts for around a quarter of all greenhouse gas emissions and across the world, many governments are implementing policies to decarbonize travel. You can get a head start: leave your car at home and walk or cycle whenever possible. If the distances are too great, choose public transport, preferably electric options. If you must drive, offer to carpool with others so that fewer cars are on the road. Get ahead of the curve and buy an electric car. Reduce the number of long-haul flights you take. 

Houses with solar panels on their roofs.

4. Rein in your power use

If you can, switch to a zero-carbon or renewable energy provider. Install solar panels on your roof. Be more efficient: turn your heating down a degree or two, if possible. Switch off appliances and lights when you are not using them and better yet buy the most efficient products in the first place (hint: this will save you money!). Insulate your loft or roof: you’ll be warmer in the winter, cooler in the summer and save some money too. 

A vegetarian dish.

5. Tweak your diet

Eat more plant-based meals – your body and the planet will thank you. Today, around 60 per cent of the world’s agricultural land is used for livestock grazing and people in many countries are consuming more animal-sourced food than is healthy. Plant-rich diets can help reduce chronic illnesses, such as heart disease, stroke, diabetes and cancer.

A woman holds strawberries in her hands.

The climate emergency demands action from all of us. We need to get to net zero greenhouse gas emissions by 2050 and everyone has a role to play.

6. Shop local and buy sustainable

To reduce your food’s carbon footprint, buy local and seasonal foods. You’ll be helping small businesses and farms in your area and reducing fossil fuel emissions associated with transport and cold chain storage. Sustainable agriculture uses up to 56 per cent less energy, creates 64 per cent fewer emissions and allows for greater levels of biodiversity than conventional farming. Go one step further and try growing your own fruit, vegetables and herbs. You can plant them in a garden, on a balcony or even on a window sill. Set up a community garden in your neighbourhood to get others involved. 

A rotten banana.

7. Don’t waste food

One-third of all food produced is either lost or wasted. According to UNEP’s  Food Waste Index Report 2021 , people globally waste 1 billion tonnes of food each year, which accounts for around 8-10 per cent of global greenhouse gas emissions. Avoid waste by only buying what you need. Take advantage of every edible part of the foods you purchase. Measure portion sizes of rice and other staples before cooking them, store food correctly (use your freezer if you have one), be creative with leftovers, share extras with your friends and neighbours and contribute to a local food-sharing scheme. Make compost out of inedible remnants and use it to fertilize your garden. Composting is one of the best options for managing organic waste while also reducing environmental impacts.

 A woman sews.

8. Dress (climate) smart

The fashion industry accounts for 8-10 per cent of global carbon emissions – more than all international flights and maritime shipping combined – and ‘fast fashion’ has created a throwaway culture that sees clothes quickly end up in landfills. But we can change this. Buy fewer new clothes and wear them longer. Seek out sustainable labels and use rental services for special occasions rather than buying new items that will only be worn once. Recycle pre-loved clothes and repair when necessary.

An overhead view of a forest.

9. Plant trees  

Every year approximately 12 million hectares of forest are destroyed and this deforestation, together with agriculture and other land use changes, is responsible for roughly 25 per cent of global greenhouse gas emissions. We can all play a part in reversing this trend by planting trees, either individually or as part of a collective. For example, the Plant-for-the-Planet initiative allows people to sponsor tree-planting around the world.

Check out this UNEP guide to see what else you can do as part of the UN Decade on Ecosystem Restoration , a global drive to halt the degradation of land and oceans, protect biodiversity, and rebuild ecosystems. 

Wind turbines at sunset.

10. Focus on planet-friendly investments

Individuals can also spur change through their savings and investments by choosing financial institutions that do not invest in carbon-polluting industries. #ActNow Speak Up  has a section on money and so does  Count Us In . This sends a clear signal to the market and already many financial institutions are offering more ethical investments, allowing you to use your money to support causes you believe in and avoid those you don’t. You can ask your financial institution about their responsible banking policies and find out how they rank in independent research. 

UNEP is at the front in support of the Paris Agreement goal of keeping the global temperature rise well below 2°C, and aiming - to be safe - for 1.5°C, compared to pre-industrial levels. To do this, UNEP has developed a Six-Sector Solution . The Six Sector Solution is a roadmap to reducing emissions across sectors in line with the Paris Agreement commitments and in pursuit of climate stability. The six sectors identified are Energy; Industry; Agriculture & Food; Forests & Land Use; Transport; and Buildings & Cities.

  • Clean fuels
  • Energy Efficiency
  • Sustainable Development

harmful effects of global warming essay

Further Resources

  • 7 climate action highlights to remember before COP26
  • Climate Action Note - data you need to know
  • Emissions Gap Report 2021
  • Food Waste Index 2021
  • Act Now: the UN campaign for individual action
  • Count Us In
  • Food Loss and Waste Website

Related Content

City Kiev, Ukraine

Related Sustainable Development Goals

harmful effects of global warming essay

© 2024 UNEP Terms of Use Privacy   Report Project Concern Report Scam Contact Us

What are the effects of global warming?

The effects of global warming will be far-reaching and often devastating, scientists have warned.

A woman looks at wildfires tearing through a forest in the region of Chefchaouen in northern Morocco on Aug. 15, 2021. One of the effects of global warming will be more heat waves in some areas, a risk factor for wildfires.

  • Temperature extremes
  • Extreme weather

Sea levels and ocean acidification

Plants and animals, social effects.

  • Further reading

Additional resources

Bibliography.

The effects of global warming can be seen and felt across the planet. Global warming , the gradual heating of Earth's surface, oceans and atmosphere, is caused by human activity, primarily the burning of fossil fuels that pump carbon dioxide (CO2), methane and other greenhouse gases into the atmosphere.

Already, the consequences of global warming are measurable and visible.

"We can observe this happening in real time in many places," Josef Werne, a professor of geology and environmental science at the University of Pittsburgh, told Live Science. "Ice is melting in both polar ice caps and mountain glaciers. Lakes around the world, including Lake Superior, are warming rapidly — in some cases faster than the surrounding environment. Animals are changing migration patterns and plants are changing the dates of activity," such as trees budding their leaves earlier in the spring and dropping them later in the fall.

Here is an in-depth look at the ongoing effects of global warming.

Global warming increases average temperatures and temperature extremes

A graph of 2022 year-to-date anomalies compared to the ten warmest years on record

One of the most immediate and obvious consequences of global warming is the increase in temperatures around the world. The average global temperature has increased by about 1.4 degrees Fahrenheit (0.8 degrees Celsius) over the past 100 years, according to the National Oceanic and Atmospheric Administration (NOAA).

Since record keeping began in 1895, the hottest year on record worldwide was 2016, according to NOAA and NASA data . That year Earth's surface temperature was 1.78 degrees F (0.99 degrees C) warmer than the average across the entire 20th century. Before 2016, 2015 was the warmest year on record, globally. And before 2015? Yep, 2014. In fact, all 10 of the warmest years on record have occurred since 2005, which tied with 2013 as the 10th-warmest year on record, according to NOAA’s Global Climate Report 2021 . Rounding out the top 6 hottest years on record across the globe are (in order of hottest to not as hot): 2020, 2019, 2015, 2017 and 2021.

For the contiguous United States and Alaska, 2016 was the second-warmest year on record and the 20th consecutive year that the annual average surface temperature exceeded the 122-year average since record keeping began, according to NOAA . Shattered heat records in the U.S. are increasingly becoming the norm: June 2021, for example, saw the warmest temperatures on record for that month for 15.2%of the contiguous U.S. That's the largest extent of record warm temperatures ever recorded in the country, according to the National Centers for Environmental Information .

Global warming increases extreme weather events

Hurricane Ian, a Category 4 storm, reaches Florida, Sept. 26, 2022, as seen from the International Space Station.

As global average temperatures warm, weather patterns are changing. An immediate consequence of global warming is extreme weather. 

These extremes come in a lot of different flavors. Paradoxically, one effect of climate change can be colder-than-normal winters in some areas.

Changes in climate can cause the polar jet stream — the boundary between the cold North Pole air and the warm equatorial air — to migrate south, bringing with it cold, Arctic air. This is why some states can have a sudden cold snap or colder-than-normal winter, even during the long-term trend of global warming, Werne explained.

Werne received his doctorate in Geological Sciences at Northwestern University in 2000 with an emphasis in Biogeochemistry. He was a postdoctoral research scientist at the Royal Netherlands Institute for Sea Research from 2000 to 2002 and on the faculty of the Large Lakes Observatory and Department of Chemistry and Biochemistry (assistant/associate professor) at the University of Minnesota Duluth, before joining the department in 2012. Werne spent a year in Perth, Australia, as a visiting senior fellow at the Institute for Advanced Studies of the University of Western Australia, as well as a visiting scientist in the Western Australia Organic and Isotope Geochemistry Centre at Curtin University.

"Climate is, by definition, the long-term average of weather, over many years. One cold (or warm) year or season has little to do with overall climate. It is when those cold (or warm) years become more and more regular that we start to recognize it as a change in climate rather than simply an anomalous year of weather," he said. Global warming is also changing other extreme weather. According to the Geophysical Fluid Dynamics Laboratory of NOAA , hurricanes are likely to become more intense, on average, in a warming world. Most computer models suggest that hurricane frequency will stay about the same (or even decrease), but those storms that do form will have the capacity to drop more rain due to the fact that warmer air holds more moisture.

"And even if they become less frequent globally, hurricanes could still become more frequent in some particular areas," said atmospheric scientist Adam Sobel, author of " Storm Surge: Hurricane Sandy, Our Changing Climate, and Extreme Weather of the Past and Future " (HarperWave, 2014). "Additionally, scientists are confident that hurricanes will become more intense due to climate change." This is because hurricanes get their energy from the temperature difference between the warm tropical ocean and the cold upper atmosphere. Global warming increases that temperature difference. "Since the most damage by far comes from the most intense hurricanes — such as typhoon Haiyan in the Philippines in 2013 — this means that hurricanes could become overall more destructive," said Sobel, a Columbia University professor in the departments of Earth and Environmental Sciences, and Applied Physics and Applied Mathematics. (Hurricanes are called typhoons in the western North Pacific, and they're called cyclones in the South Pacific and Indian oceans.) What's more, hurricanes of the future will be hitting shorelines that are already prone to flooding due to the sea-level rise caused by climate change. This means that any given storm will likely cause more damage than it would have in a world without global warming.

Lightning strikes light up the sky in Montevideo, Uruguay on Feb. 20, 2022.

Lightning is another weather feature that is being affected by global warming. According to a 2014 study , a 50% increase in the number of lightning strikes within the United States is expected by 2100 if global temperatures continue to rise. The researchers of the study found a 12% increase in lightning activity for every 1.8 degree F (1 degree C) of warming in the atmosphere. NOAA established the U.S. Climate Extremes Index (CEI) in 1996 to track extreme weather events. The number of extreme weather events that are among the most unusual in the historical record, according to the CEI, has been rising over the last four decades. Scientists project that extreme weather events, such as heat waves, droughts , blizzards and rainstorms will continue to occur more often and with greater intensity due to global warming, according to Climate Central . Climate models forecast that global warming will cause climate patterns worldwide to experience significant changes. These changes will likely include major shifts in wind patterns, annual precipitation and seasonal temperatures variations. These impacts vary by location and geography. For example, according to the U.S. Environmental Protection Agency (EPA) , the eastern United States has been trending wetter over time, while the West – and particularly the Southwest – have become increasingly dry. Because high levels of greenhouse gases are likely to remain in the atmosphere for many years, these changes are expected to last for several decades or longer, according to the EPA.

Global warming melts ice

In this aerial view, icebergs and meltwater are seen in front of the retreating Russell Glacier on Sept. 8, 2021 near Kangerlussuaq, Greenland.

One of the primary manifestations of climate change so far is melt. North America, Europe and Asia have all seen a trend toward less snow cover between 1960 and 2015, according to 2016 research published in the journal Current Climate Change Reports. According to the National Snow and Ice Data Center, there is now 10% less permafrost , or permanently frozen ground, in the Northern Hemisphere than there was in the early 1900s. The thawing of permafrost can cause landslides and other sudden land collapses . It can also release long-buried microbes, as in a 2016 case when a cache of buried reindeer carcasses thawed and caused an outbreak of anthrax . One of the most dramatic effects of global warming is the reduction in Arctic sea ice. Sea ice hit record-low extents in both the fall and winter of 2015 and 2016, meaning that at the time when the ice is supposed to be at its peak, it was lagging. The melt means there is less thick sea ice that persists for multiple years. That means less heat is reflected back into the atmosphere by the shiny surface of the ice and more is absorbed by the comparatively darker ocean, creating a feedback loop that causes even more melt, according to NASA's Operation IceBridge . Glacial retreat, too, is an obvious effect of global warming. Only 25 glaciers bigger than 25 acres are now found in Montana's Glacier National Park, where about 150 glaciers were once found, according to the U.S. Geological Survey. A similar trend is seen in glacial areas worldwide. According to a 2016 study in the journal Nature Geoscience, there is a 99% likelihood that this rapid retreat is due to human-caused climate change. Some glaciers retreated up to 15 times as much as they would have without global warming, those researchers found.

view of major bleaching on the coral reefs of the Society Islands on May 9, 2019 in Moorea, French Polynesia

In general, as ice melts, sea levels rise. According to a 2021 report by the World Meteorological Organization , the pace of sea level rise doubled from 0.08 inches (2.1 millimeters) per year between 1993 and 2002 to 0.17 inches (4.4 mm) per year between 2013 and 2021. 

Melting polar ice in the Arctic and Antarctic regions, coupled with melting ice sheets and glaciers across Greenland, North America, South America, Europe and Asia, are expected to raise sea levels significantly. Global sea levels have risen about 8 inches since 1870, according to the EPA, and the rate of increase is expected to accelerate in the coming years. If current trends continue, many coastal areas, where roughly half of the Earth's human population lives, will be inundated.

Researchers project that by 2100, average sea levels will be 2.3 feet (.7 meters) higher in New York City, 2.9 feet (0.88 m) higher at Hampton Roads, Virginia, and 3.5 feet (1.06 m) higher at Galveston, Texas, the EPA reports. According to an IPCC report , if greenhouse gas emissions remain unchecked, global sea levels could rise by as much as 3 feet (0.9 meters) by 2100. That estimate is an increase from the estimated 0.9 to 2.7 feet (0.3 to 0.8 meters) that was predicted in the 2007 IPCC report for future sea-level rise.

Sea level isn't the only thing changing for the oceans due to global warming. As levels of CO2 increase, the oceans absorb some of that gas, which increases the acidity of seawater. Werne explains it this way: "When you dissolved CO2 in water, you get carbonic acid. This is the same exact thing that happens in cans of soda. When you pop the top on a can of Dr Pepper, the pH is 2 — quite acidic."  

Since the Industrial Revolution began in the early 1700s, the acidity of the oceans has increased about 25 percent, according to the EPA. "This is a problem in the oceans, in large part, because many marine organisms make shells out of calcium carbonate (think corals, oysters), and their shells dissolve in acid solution," said Werne. "So as we add more and more CO2 to the ocean, it gets more and more acidic, dissolving more and more shells of sea creatures. It goes without saying that this is not good for their health."

If current ocean acidification trends continue, coral reefs are expected to become increasingly rare in areas where they are now common, including most U.S. waters, the EPA reports. In 2016 and 2017, portions of the Great Barrier Reef in Australia were hit with bleaching , a phenomenon in which coral eject their symbiotic algae. Bleaching is a sign of stress from too-warm waters, unbalanced pH or pollution ; coral can recover from bleaching, but back-to-back episodes make recovery less likely.

Caribou running through shallow water, Arctic National Wildlife Refuge, Alaska, USA

The effects of global warming on Earth's ecosystems are expected to be significant and widespread. Many species of plants and animals are already moving their range northward or to higher altitudes as a result of warming temperatures, according to a report from the National Academy of Sciences.

"They are not just moving north, they are moving from the equator toward the poles. They are quite simply following the range of comfortable temperatures, which is migrating to the poles as the global average temperature warms," Werne said. Ultimately, he said, this becomes a problem when the rate of climate change velocity (how fast a region changes put into a spatial term) is faster than the rate that many organisms can migrate. Because of this, many animals may not be able to compete in the new climate regime and may go extinct.

Additionally, migratory birds and insects are now arriving in their summer feeding and nesting grounds several days or weeks earlier than they did in the 20th century, according to the EPA.

Warmer temperatures will also expand the range of many disease-causing pathogens that were once confined to tropical and subtropical areas, killing off plant and animal species that formerly were protected from disease.

In addition, animals that live in the polar regions are facing an existential threat. In the Arctic, the decline in sea ice and changes in ice melt threaten particularly ice-dependent species, such as narwhals ( Monodon monoceros ), polar bears ( Ursus maritimus ) and walruses ( Odobenus rosmarus ), the World Wildlife Fund (WWF) noted. Animals in the Antarctic also face serious challenges — in Oct. 2022 the U.S. Fish and Wildlife Service declared emperor penguins (Aptenodytes forsteri) as endangered due to the threat of climate change. 

A 2020 study published in the journal Proceedings of the National Academy of Sciences suggested that 1 in every 3 species of plant and animal are at risk of extinction by 2070 due to climate change.

A farmer inspects a field cracked due to drought on August 26, 2022 in Neijiang, Sichuan Province of China

As dramatic as the effects of climate change are expected to be on the natural world, the projected changes to human society may be even more devastating.

Agricultural systems will likely be dealt a crippling blow. Though growing seasons in some areas will expand, the combined impacts of drought, severe weather, lack of accumulated snowmelt, greater number and diversity of pests, lower groundwater tables and a loss of arable land could cause severe crop failures and livestock shortages worldwide.

North Carolina State University also notes that carbon dioxide is affecting plant growth. Though CO2 can increase the growth of plants, the plants may become less nutritious.

This loss of food security may, in turn, create havoc in international food markets and could spark famines, food riots, political instability and civil unrest worldwide, according to a number of analyses from sources as diverse as the U.S Department of Defense, the Center for American Progress and the Woodrow Wilson International Center for Scholars.

In addition to less nutritious food, the effect of global warming on human health is also expected to be serious. The American Medical Association has reported an increase in mosquito-borne diseases like malaria and dengue fever, as well as a rise in cases of chronic conditions like asthma, most likely as a direct result of global warming. The 2016 outbreak of Zika virus , a mosquito-borne illness, highlighted the dangers of climate change. The disease causes devastating birth defects in fetuses when pregnant women are infected, and climate change could make higher-latitude areas habitable for the mosquitoes that spread the disease, experts said. Longer, hotter summers could also lead to the spread of tick-borne illnesses .

Further reading on the impacts of global warming

Many governments and agencies keep up-to-date information on climate change research and statistics online. The most comprehensive and in-depth global reports are produced by the Intergovernmental Panel on Climate Change (IPCC), which released its Sixth Assessment Report on the science of climate change in 2021.

— 8 ominous climate milestones reached in 2021

— Ignoring climate change will lead to 'untold suffering,' scientist panel warns

— Earth's lower atmosphere is expanding due to climate change

For a historical look at the effects of climate change on Earth (and how modern warming compares), read Peter Brannen's " The Ends of the Earth: Volcanic Apocalypses, Lethal Oceans, and Our Quest to Understand Earth’s Past Mass Extinctions " (Ecco, 2017).

For more on the potential impacts of climate change in urban environments, the freely available book chapter Climate Change and its Impacts in the book " Climate Change Resilience in the Urban Environment " (IOP Publishing, 2017) covers the challenges that lay ahead for human populations.

Finally, for a psychological deep-dive on why all of this bad news is hard to take in, try " Don't Even Think About It: Why Our Brains Are Wired to Ignore Climate Change " (Bloomsbury USA, 2015) by climate activist and communicator George Marshall.

  • This NASA page includes a series of visualizations that illustrate how some of Earth's key climate indicators —  sea ice, sea level, global temperature and carbon dioxide — are changing over time.
  • This NOAA sea-level rise learning module includes educational videos, background for teachers, learning objectives and more.
  • ClimateBrief has gathered 10 of the best climate change videos on YouTube. 
  • EPA: Climate Change: Basic Information  
  • NASA: Global Climate Change
  • NOAA: Climate News and Data

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Earth is wobbling and days are getting longer — and humans are to blame

Scientists say they can now forecast El Niño Southern Oscillation years in advance

Why do only some animals have periods?

Most Popular

  • 2 Newly discovered asteroid larger than the Great Pyramid of Giza will zoom between Earth and the moon on Saturday
  • 3 China opens Chang'e 6 return capsule containing samples from moon's far side
  • 4 Neanderthals cared for 6-year-old with Down syndrome, fossil find reveals
  • 5 Space photo of the week: James Webb telescope gives the 'Pillars of Creation' a stunning 3D makeover
  • 2 2,000 years ago, a bridge in Switzerland collapsed on top of Celtic sacrifice victims, new study suggests
  • 3 Self-healing 'living skin' can make robots more humanlike — and it looks just as creepy as you'd expect
  • 4 Tasselled wobbegong: The master of disguise that can eat a shark almost as big as itself
  • 5 This robot could leap higher than the Statue of Liberty — if we ever build it properly

harmful effects of global warming essay

How we know humans are causing warming: A brief history of climate science | Fact check

The claim: no one has shown that human co2 emissions drive global warming.

An Oct. 3 Facebook video ( direct link , archive link ) shows Ian Plimer, a skeptic of human-driven climate change, speaking at the Australian Conservative Political Action Conference in 2022.

"Game over. We are dealing with a fraud," the video is captioned. "Geologist, Professor Ian Plimer, exposes the monumental fraud that is 'human-induced global warming' in just two minutes: 'No one has ever shown that human emissions of carbon dioxide drive global warming … And if it could be shown, then you would have to show that the 97% of emissions which are natural, do not drive global warming.'"

The post was shared more than 3,000 times in two months.

More from the USA TODAY Fact-Check Team:

  • Guidelines: How we identify, research and rate claims
  • Newsletter: Sign up for Checking the Facts; truth delivered daily to your inbox
  • Facebook: Like our page to get our latest debunks throughout the day

Our rating: False

More than a century of experimental and observational research by generations of scientists shows that modern global warming is driven by greenhouse gases emitted by human activity. Scientists know that natural CO2 emissions are not driving modern global warming because they are reabsorbed by natural "carbon sinks." However, additional emissions by humans have resulted in excess greenhouse gas accumulation in the atmosphere − driving global warming.

Multiple lines of evidence and decades of research show humans are causing climate change

Human CO2 emissions have warmed the planet by amplifying Earth's " greenhouse effect " − the process by which greenhouse gases slow the release of heat into space. Scientists determined this through a lengthy process , which included establishing that CO2 is a greenhouse gas, determining that both CO2 and temperatures are increasing, determining that the increase in atmospheric CO2 is due to human behavior and using this knowledge to accurately predict future warming.

In the mid-1800s, scientists Eunice Foote and John Tyndall experimentally demonstrated that CO2 is a greenhouse gas. These gases warm the planet by absorbing radiation otherwise destined for space.

After absorbing this radiation, CO2 molecules release their own radiation − some of which makes its way into space. But some of it also gets directed laterally to be absorbed by other CO2 molecules or back down to the Earth, effectively trapping warmth in the lower atmosphere.

Scientists have repeatedly confirmed the existence of this physical process.

"The theory and mathematics of radiation passing through gases are clearly defined,"  Michael Roman , a planetary scientist at the University of Leicester, previously told USA TODAY . The greenhouse effect has "been verified by laboratory experiments and meteorological observations."

Can we count on renewable energy? Four ways wind, solar and water can power the US

Researchers have also shown that Earth's atmospheric CO2 concentrations are rising. For instance, in 1938, British engineer Guy Callendar determined that concentrations were increasing by analyzing historical records .

Two decades later, in 1958, geochemist Charles Keeling began daily measurements of atmospheric CO2 concentrations at the Mauna Loa station in Hawaii. Ongoing station measurements show that CO2 concentrations have increased by more than 100 ppm since then, rising to 420 ppm.

Callendar also reported that Earth's temperature had warmed, a finding that has been subsequently verified by multiple independent climate agencies based on global temperature sensors and satellite data. Modern scientists have also documented the consequences of this warming , which include glacial and polar ice melt , sea level rise − due to both ice melt and the expansion of warming seawater − and an increase in the frequency of certain extreme weather events, such as heat waves .

Based on the physics of the greenhouse effect and other processes, a certain amount of warming should result from a given increase in atmospheric greenhouse gas concentrations on Earth. And this is what scientists have observed.

"The  amount of warming  we see matches what we expect based on the  increased CO2  we've added," Josh Willis , a NASA climate scientist, previously told USA TODAY . "The timing of the warming matches the timing of the CO2 increase caused by people. Not only that, the timing of  global sea level rise  matches the CO2 increase." 

Successful predictions show climate science is sound

Scientists have successfully leveraged their understanding of greenhouse gas and climate physics to predict future warming far in advance.

For instance, in the 1970s, scientists at oil giant ExxonMobil predicted decades of CO2-driven global warming before it occurred .

Harvard University historian of science Naomi Oreskes co-authored a 2023 analysis of ExxonMobil data from that time, reporting in the paper that "63 to 83% of the climate projections reported by ExxonMobil scientists were accurate in predicting subsequent global warming."

In an email to USA TODAY, she called the Facebook post's claim "preposterous."

Past independent academic and government projections have also been relatively accurate, according to a 2017 Carbon Brief analysis of eight "prominent" climate models published between 1973 and 2013.

"Climate models published since 1973 have generally been quite skillful in projecting future warming," wrote Zeke Hausfather , the author of the analysis, who was working as a research scientist at Berkeley Earth at the time. "While some were too low and some too high, they all show outcomes reasonably close to what has actually occurred, especially when discrepancies between predicted and actual CO2 concentrations and other climate forcings are taken into account."

Past scientists also used their understanding of greenhouse gas and climate physics to predict that, while Earth's lower atmosphere would warm as CO2 levels increase, the stratosphere − an atmospheric layer roughly between 6 and 30 miles above the Earth's surface − would cool.

This stratospheric cooling , caused in part by the increased retention of radiation in the lower atmosphere, has since been documented by researchers using weather balloon and satellite measurements.

In addition to demonstrating that CO2 has increased and warmed the lower atmosphere, scientists have also confirmed that the excess CO2 in the atmosphere is due to human emissions.

One clue is that "the accumulation in the atmosphere matches the amount we've added through burning fossil fuels," Hausfather previously told USA TODAY.

Additionally, modern atmospheric CO2 contains a disproportionately high amount of a certain type of carbon − the type found in fossil fuels.

"There are many different 'fingerprints' that have been clearly identified by scientists as evidence that industrial pollution is the cause of recent global heating," Dargan Frierson , an atmospheric scientist at the University of Washington, told USA TODAY in an email. "This is not exactly a 'whodunit' situation. The evidence is overwhelming that fossil fuel burning is the culprit."

Natural CO2 emissions reabsorbed in 'carbon sinks,' humans tipped the scale

The post also implies that if natural CO2 emissions dwarf human emissions, then human CO2 cannot be the driver of climate change. That is wrong.

Currently, around 95% of annual CO2 emissions are natural, according to the 2022 Global Carbon Budget . This is similar to the figure in the post.

However, Earth's ecological systems reabsorb natural emissions in “carbon sinks,” such as forests , as part of Earth's carbon cycle , Gavin Schmidt , a NASA climate scientist, told USA TODAY.

Excess CO2 emissions are accumulating in the atmosphere because Earth's natural carbon sinks do not have the capacity to absorb all of the extra CO2 that humans emit, he said.

After decades of accumulation, atmospheric CO2 levels have increased by 50% since pre-industrial times, rising to levels unprecedented in hundreds of thousands of years, according to the National Oceanic and Atmospheric Administration.

Fact check : Humans are responsible for a significant amount of CO2 in the atmosphere

USA TODAY reached out to Plimer and the Facebook user who shared the post for comment but did not immediately receive a response.

Climate Feedback also debunked the claim.

Our fact-check sources:

  • Mark Zelinka , Dec. 4, Email exchange with USA TODAY
  • Dargan Frierson , Dec. 13, Email exchange with USA TODAY
  • Naomi Oreskes , Dec. 15, Email exchange with USA TODAY
  • Gavin Schmidt , June 7, Email exchange with USA TODAY
  • USA TODAY, Jan. 20, Fact check: Global warming caused by greenhouse gas emissions, not mysterious ocean warming
  • USA TODAY, Dec. 5, 2021, Fact check: Human-generated CO2, not water vapor, drives climate change
  • USA TODAY, Nov. 1, False claim 'climate crisis hoax' statement signed by thousands of scientists | Fact check
  • USA TODAY, June 26, Humans are responsible for a significant amount of CO2 in the atmosphere | Fact check
  • USA TODAY, Jan. 10, Fact check: Global temperatures and atmospheric CO2 levels are correlated, contrary to claim
  • USA TODAY, Nov. 29, Global warming is from human activity, not sea volcanos or El Niño | Fact check
  • USA TODAY, Feb. 27, Fact check: Carbon dioxide has an effect on the climate, contrary to post
  • USA TODAY, Nov. 28, Fact check: Earth's warming well documented, other planets' climate data limited
  • Australian Department of Climate Change, Energy and the Environment and Water, accessed Nov. 26, Understanding climate change
  • The Conversation, July 21, 2020,  John Tyndall: the forgotten co-founder of climate science
  • NASA Vital Signs of the Planet, March 25, 2021, Direct Observations Confirm That Humans Are Throwing Earth's Energy Budget off Balance
  • NASA Vital Signs of the Planet, accessed Dec. 15,  Causes
  • NASA Vital Signs of the Planet, accessed Dec. 15,  Global temperature
  • NASA Vital Signs of the Planet, accessed Dec. 15,  Carbon dioxide
  • NASA Vital Signs of the Planet, accessed Dec. 15,  Ocean warming
  • NASA Vital Signs of the Planet, accessed Dec. 15,  Ice sheets
  • NASA Vital Signs of the Planet, accessed Dec. 15,  Sea level
  • NASA Earth Observatory, accessed Dec. 15, World of Change: Global Temperatures
  • Environmental Protection Agency, July 2022,  Climate Change Indicators: Heat Waves
  • Environmental Protection Agency, accessed Nov. 26, Climate Change Indicators: Weather and Climate
  • NOAA, Oct. 12, 2022, How do we know the build-up of carbon dioxide in the atmosphere is caused by humans?
  • NOAA, May 12, Climate Change: Atmospheric Carbon Dioxide
  • University Corporation for Atmospheric Research, accessed Dec. 12, History of Climate Change Interactive Timeline
  • University Corporation for Atmospheric Research, accessed Dec. 15, The Stratosphere
  • Carbon Brief, April 28, 2021, Melting glaciers drove ‘21% of sea level rise’ over past two decades
  • Carbon Brief, Oct. 5, 2017, Analysis: How well have climate models projected global warming?
  • BBC, April 26, 2013, Guy Stewart Callendar: Global warming discovery marked
  • Wired, Jan. 23, 2018, Meet the Amateur Scientist Who Discovered Climate Change
  • The Harvard Gazette, Jan. 12, Exxon disputed climate findings for years. Its scientists knew better
  • Science, Jan. 13, Assessing ExxonMobil’s global warming projections
  • National Geographic, accessed Dec. 17, Carbon Sources and Sinks
  • Global Carbon Project, 2022,  Global Carbon Budget 2022
  • PNAS, May 8, Exceptional stratospheric contribution to human fingerprints on atmospheric temperature
  • University of California Los Angeles, Aug. 21, Stratospheric cooling: The concerning flip side of global warming
  • World Resources Institute, Jan. 21, 2021, Forests Absorb Twice As Much Carbon As They Emit Each Year

Thank you for supporting our journalism. You can subscribe to our print edition, ad-free app or e-newspaper here .

USA TODAY is a verified signatory of the International Fact-Checking Network, which requires a demonstrated commitment to nonpartisanship, fairness and transparency. Our fact-check work is supported in part by a grant from Meta .

  • Share full article

Advertisement

Subscriber-only Newsletter

Climate Forward

Tropical storm debby highlights the southeast’s climate vulnerabilities.

The region faces a confluence of factors, including the fastest sea level rise in the country, increasingly humid temperatures and extreme rainfall.

A person looks at a flooded street, with a stop sign nearly submerged in water.

By David Gelles

With Tropical Storm Debby unleashing a weeklong deluge along parts of the Eastern Seaboard, I’ve been thinking about an area of the country that isn’t always top of mind when it comes to the most severe effects of climate change.

Sure, the West has droughts and fires. Yes, the Midwest has floods and violent winds. And it’s true, the Northeast is experiencing intensifying humidity and sea level rise.

But the 11 Southeastern states are uniquely susceptible to much of that and more.

This week has laid bare the region’s vulnerability. Debby exploded from a whisper of a tropical disturbance into a soaking, slow-moving hurricane in a matter of days. The result has been neighborhoods underwater in Sarasota, Fla., tornadoes in North Carolina and extensive floods in areas from the Florida Panhandle to central Virginia.

“When you look at, like, the variety of different stressors that climate change brings, the Southeast experiences each and every one of them,” said Jeremy Hoffman, the director of climate justice at Groundwork USA, a nonprofit organization that works to fortify low-income areas. “And most of the time, it’s the most intense version of the expected change.”

The fastest rate of sea level rise in the United States is happening in the Southeast . Norfolk, Va., is experiencing the most rapidly rising seas on the East Coast, a phenomenon that threatens not only the city’s residents and businesses, but also the Navy’s vast operations in the area.

Hoffman called sea level rise a “background stressor” that exacerbated the other damaging effects of climate change. Rising seas make it that much easier for floods to occur, and they contribute to erosion that is threatening some seaside communities . The overpumping of groundwater is making things worse, as land along the East Coast slumps into the ocean .

We are having trouble retrieving the article content.

Please enable JavaScript in your browser settings.

Thank you for your patience while we verify access. If you are in Reader mode please exit and  log into  your Times account, or  subscribe  for all of The Times.

Thank you for your patience while we verify access.

Already a subscriber?  Log in .

Want all of The Times?  Subscribe .

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

remotesensing-logo

Article Menu

  • Subscribe SciFeed
  • Recommended Articles
  • Author Biographies
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Quantifying carbon use efficiency: unraveling the impact of climate change and ecological engineering on vegetation in the three rivers source region.

harmful effects of global warming essay

1. Introduction

2. materials and methods, 2.1. data collection, 2.2. analysis methods, 2.2.1. estimation of carbon use efficiency.

  • CUE represents the carbon use efficiency of vegetation.
  • NPP denotes the net primary productivity of vegetation, measured in g C/m 2 .
  • GPP stands for the gross primary productivity of vegetation, quantified in g C/m 2 .
  • Ra signifies the vegetation autotrophic respiration, expressed in g C/m 2 .

2.2.2. Sen’s Slope Estimator and Mann–Kendall Test

2.2.3. pearson correlation analysis, 2.2.4. residual analysis, 3.1. spatial distribution and change of cue, 3.2. carbon allocation and interannual spatial distribution characteristics of vegetation parameters, 3.3. spatial correlation analysis of cue and climate variability, 3.4. impact of vegetation types and elevation changes on cue, 3.5. contribution of climate change and ecological engineering to cue, 4. discussion, 4.1. effects of vegetation on cue, 4.2. influence of climatic factors on cue dynamics, 4.3. ecological engineering’s impact on cue, 4.4. uncertainty, 5. conclusions, author contributions, data availability statement, conflicts of interest.

  • Valentini, R.; Matteucci, G.; Dolman, A.; Schulze, E.; Rebmann, C.; Moors, E.; Granier, A.; Gross, P.; Jensen, N.; Pilegaard, K.; et al. Respiration as the main determinant of carbon balance in European forests. Nature 2000 , 404 , 861–865. [ Google Scholar ] [ CrossRef ]
  • Gifford, R. Plant respiration in productivity models: Conceptualisation, representation and issues for global terrestrial carbon-cycle research. Funct. Plant Biol. 2003 , 30 , 171–186. [ Google Scholar ] [ CrossRef ]
  • Manzoni, S.; Taylor, P.; Richter, A.; Porporato, A.; Ågren, G. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 2012 , 196 , 79–91. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Campioli, M.; Vicca, S.; Luyssaert, S.; Bilcke, J.; Ceschia, E.; Chapin, F.; Ciais, P.; Fernández-Martínez, M.; Malhi, Y.; Obersteiner, M.; et al. Biomass production efficiency controlled by management in temperate and boreal ecosystems. Nat. Geosci. 2015 , 8 , 843–846. [ Google Scholar ] [ CrossRef ]
  • Falkowski, P.; Scholes, R.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Högberg, P.; Linder, A.; et al. The global carbon cycle: A test of our knowledge of earth as a system. Science 2000 , 290 , 291–296. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • IPCC. Climate Change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change ; Stocker, T., Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., et al., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 33–115. [ Google Scholar ]
  • Ise, T.; Litton, C.; Giardina, C.; Ito, A. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP. J. Geophys. Res. Biogeosciences 2010 , 115 , G04025. [ Google Scholar ] [ CrossRef ]
  • Schimel, D.; Pavlick, R.; Fisher, J.; Asner, G.; Saatchi, S.; Townsend, P.; Miller, C.; Frankenberg, C.; Hibbard, K.; Cox, P. Observing terrestrial ecosystems and the carbon cycle from space. Glob. Change Biol. 2015 , 21 , 1762–1776. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X.; et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018 , 115 , 4039–4044. [ Google Scholar ] [ CrossRef ]
  • Hou, J.; Du, L.; Liu, K.; Hu, Y.; Zhu, Y. Characteristics of vegetation activity and its responses to climate change in desert/grassland biome transition zones in the last 30 years based on GIMMS3g. Theor. Appl. Climatol. 2019 , 136 , 915–928. [ Google Scholar ] [ CrossRef ]
  • Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.; Fuch, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019 , 2 , 122–129. [ Google Scholar ] [ CrossRef ]
  • Gifford, R. The global carbon cycle: A viewpoint on the missing sink. Funct. Plant Biol. 1994 , 21 , 1–15. [ Google Scholar ] [ CrossRef ]
  • Gifford, R. Whole plant respiration and photosynthesis of wheat under increased CO 2 concentration and temperature: Long-term vs. short-term distinctions for modelling. Glob. Chang. Biol. 1995 , 1 , 385–396. [ Google Scholar ] [ CrossRef ]
  • Dewar, R.; Medlyn, B.; Mcmurtrie, R. A mechanistic analysis of light and carbon use efficiencies. Plant Cell Environ. 1998 , 21 , 573–588. [ Google Scholar ] [ CrossRef ]
  • Medlyn, B.; Dewar, R. Comment on the article by R.H. Waring, J.J. Landsberg and M. Williams relating net primary production to gross primary production. Tree Physiol. 1999 , 19 , 137–138. [ Google Scholar ] [ CrossRef ]
  • De Lucia, E.; Drake, J.; Thomas, R.; Gonzalez-Meler, M. Forest carbon use efficiency: Is respiration a constant fraction of gross primary production? Glob. Chang. Biol. 2007 , 13 , 1157–1167. [ Google Scholar ] [ CrossRef ]
  • Ryan, M.; Lavigne, M.; Gower, S. Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J. Geophys. Res. Atmos. 1997 , 102 , 28871–28883. [ Google Scholar ] [ CrossRef ]
  • Amthor, J. The McCree–de Wit–Penning de Vries–Thornley respiration paradigms: 30 years later. Ann. Bot. 2000 , 86 , 1–20. [ Google Scholar ] [ CrossRef ]
  • Cheng, W.; Sims, D.; Luo, Y.; Coleman, J.; Johnson, D. Photosynthesis, respiration, and net primary production of sunflower stands in ambient and elevated atmospheric CO 2 concentrations: An invariant NPP: GPP ratio? Glob. Change Biol. 2000 , 6 , 931–941. [ Google Scholar ] [ CrossRef ]
  • Giardina, C.; Ryan, M.; Binkley, D.; Fownes, J. Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest. Glob. Change Biol. 2003 , 9 , 1438–1450. [ Google Scholar ] [ CrossRef ]
  • Yang, Y.; Wang, Z.; Li, J.; Gang, C.; Zhang, Y.; Odeh, I.; Qi, J. Assessing the spatiotemporal dynamic of global grassland carbon use efficiency in response to climate change from 2000 to 2013. Acta Oecologica 2017 , 81 , 22–31. [ Google Scholar ] [ CrossRef ]
  • Chen, Z.; Yu, G. Spatial variations and controls of carbon use efficiency in China’s terrestrial ecosystems. Sci. Rep. 2019 , 9 , 19516. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Law, B.; Turner, D.; Campbell, J.; Sun, O.; Van Tuyl, S.; Ritts, W.; Cohen, W. Disturbance and climate effects on carbon stocks and fluxes across Western Oregon USA. Glob. Chang. Biol. 2004 , 10 , 1429–1444. [ Google Scholar ] [ CrossRef ]
  • Metcalfe, D.; Meir, P.; Aragão, L.; Lobo-do-Vale, R.; Galbraith, D.; Fisher, R.; Chaves, M.; Maroco, J.; Costa, A.; Almeida, S.; et al. Shifts in plant respiration and carbon use efficiency at a large-scale drought experiment in the eastern Amazon. New Phytol. 2010 , 187 , 608–621. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • He, Y.; Piao, S.; Li, X.; Chen, A.; Qin, D. Global patterns of vegetation carbon use efficiency and their climate drivers deduced from MODIS satellite data and process-based models. Agric. For. Meteorol. 2018 , 256 , 150–158. [ Google Scholar ] [ CrossRef ]
  • Du, L.; Gong, F.; Zeng, Y.; Ma, L.; Qiao, C.; Wu, H. Carbon use efficiency of terrestrial ecosystems in desert/grassland biome transition zone: A case in Ningxia province, northwest China. Ecol. Indic. 2020 , 120 , 106971. [ Google Scholar ] [ CrossRef ]
  • Van Rooyen, N.; Van Rooyen, M.; Theron, G.; Grobbelaar, N. The vegetation of the Roodeplaat Dam Nature Reserve. VI. Photosynthesis and transpiration in woody plants with special reference to an evergreen tree Olea europaea subsp. africana. South Afr. J. Bot. 1986 , 52 , 301–308. [ Google Scholar ] [ CrossRef ]
  • Boegh, E.; Soegaard, H.; Broge, N.; Hasager, C.; Jensen, N.; Schelde, K.; Thomsen, A. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sens. Environ. 2002 , 81 , 179–193. [ Google Scholar ] [ CrossRef ]
  • Shao, Q.; Cao, W.; Fan, J.; Huang, L.; Xu, X. Effects of an ecological conservation and restoration project in the Three-River Source Region, China. J. Geogr. Sci. 2017 , 27 , 183–204. [ Google Scholar ] [ CrossRef ]
  • Tang, X.; Liu, D.; Song, K.; Munger, J.; Zhang, B.; Wang, Z. A new model of net ecosystem carbon exchange for the deciduous-dominated forest by integrating MODIS and flux data. Ecol. Eng. 2011 , 37 , 1567–1571. [ Google Scholar ] [ CrossRef ]
  • Fu, G.; Sun, W.; Yu, C.; Zhang, X.; Shen, Z.; Li, Y.; Yang, P.; Zhou, N. Clip** alters the response of biomass production to experimental warming: A case study in an alpine meadow on the Tibetan Plateau, China. J. Mt. Sci. 2015 , 12 , 935–942. [ Google Scholar ] [ CrossRef ]
  • Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019 , 11 , 1931–1946. [ Google Scholar ] [ CrossRef ]
  • Zhang, Y.; Kong, D.; Gan, R.; Chiew, F.; McVicar, T.; Zhang, Q.; Yang, Y. Coupled estimation of 500m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 2019 , 222 , 165–182. [ Google Scholar ] [ CrossRef ]
  • Akihiko, I. Constraining size-dependence of vegetation respiration rates. Sci. Rep. 2020 , 10 , 4304. [ Google Scholar ]
  • Hirsch, R.; Slack, J.; Smith, R. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 1982 , 18 , 107–121. [ Google Scholar ] [ CrossRef ]
  • Mann, H. Non-parametric tests against trend. Econometrica 1945 , 13 , 245–259. [ Google Scholar ] [ CrossRef ]
  • Kendall, M. Rank Correlation Measures. In Charles Griffin , 4th ed.; Charles Griffin: London, UK, 1975. [ Google Scholar ]
  • Zhang, Y.; Kang, S.; Ward, E.; Ding, R.; Zhang, X.; Zheng, R. Evapotranspiration components determined by sap flow and microlysimetry techniques of a vineyard in northwest china: Dynamics and influential factors. Agric. Water Manag. 2011 , 98 , 1207–1214. [ Google Scholar ] [ CrossRef ]
  • Nooni, I.; Wang, G.; Hagan, D.; Lu, J.; Ullah, W.; Li, S. Evapotranspiration and its Components in the Nile River Basin Based on Long-Term Satellite Assimilation Product. Water 2019 , 11 , 1400. [ Google Scholar ] [ CrossRef ]
  • Tong, S.; Zhang, J.; Bao, Y.; Lai, Q.; Lian, X.; Li, N.; Bao, Y. Analyzing vegetation dynamic trend on the Mongolian Plateau based on the Hurst exponent and influencing factors from 1982–2013. J. Geogr. Sci. 2018 , 28 , 595–610. [ Google Scholar ] [ CrossRef ]
  • Partal, T.; Kahya, E. Trend analysis in Turkish precipitation data. Hydrol. Process. Int. J. 2006 , 20 , 2011–2026. [ Google Scholar ] [ CrossRef ]
  • Xia, J.; Yi, G.; Zhang, T.; Zhou, X.; Miao, J.; Bie, X. Interannual variation in the start of vegetation growing season and its response to climate change in the Qinghai–Tibet Plateau derived from MODIS data during 2001 to 2016. J. Appl. Remote Sens. 2019 , 13 , 048506. [ Google Scholar ] [ CrossRef ]
  • Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 2004 , 57 , 535–554. [ Google Scholar ] [ CrossRef ]
  • Wessels, K.; Prince, S.; Malherbe, J.; Small, J.; Frost, P.; VanZyl, D. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J. Arid Environ. 2007 , 68 , 271–297. [ Google Scholar ] [ CrossRef ]
  • Zhang, M.; Li, X.; Wang, H.; Deng, F.; Li, X.; Mi, X. Effects of converting natural grasslands into planted grasslands on ecosystem respiration: A case study in Inner Mongolia, China. J. Arid Land 2017 , 9 , 38–50. [ Google Scholar ] [ CrossRef ]
  • Fang, Q.; Wang, G.; Liu, T.; Xue, B.; Yinglan, A. Controls of carbon flux in a semi-arid grassland ecosystem experiencing wetland loss: Vegetation patterns and environmental variables. Agric. For. Meteorol. 2018 , 259 , 196–210. [ Google Scholar ] [ CrossRef ]
  • Yang, C.; Li, G.; Yan, L.; Wu, J.; Li, J.; Liu, S.; Lu, Y. Effects of different vegetation types on ecosystem respiration in semiarid Loess Hilly Region, Central Gansu Province, China. Ecol. Indic. 2022 , 145 , 109683. [ Google Scholar ] [ CrossRef ]
  • Yu, G.; Zhu, X.; Fu, Y.; He, H.; Wang, Q.; Wen, X.; Li, X.; Zhang, M.; Zhang, L.; Su, W.; et al. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Glob. Chang. Biol. 2013 , 19 , 798–810. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Chen, Z.; Yu, G.; Ge, J.; Sun, X.; Hirano, T.; Saigusa, N.; Wang, Q.; Zhu, X.; Zhang, Y.; Zhang, J.; et al. Temperature and precipitation control of the spatial variation of terrestrial ecosystem carbon exchange in the Asian region. Agric. For. Meteorol. 2013 , 182 , 266–276. [ Google Scholar ] [ CrossRef ]
  • Wei, S.; Yi, C.; Fang, W.; Hendrey, G. A global study of GPP focusing on light-use efficiency in a random forest regression model. Ecosphere 2017 , 8 , e01724. [ Google Scholar ] [ CrossRef ]
  • Zhang, Y.; Xu, M.; Chen, H.; Adams, J. Global pattern of NPP to GPP ratio derived from MODIS data: Effects of ecosystem type, geographical location and climate. Glob. Ecol. Biogeogr. 2009 , 18 , 280–290. [ Google Scholar ] [ CrossRef ]
  • Potter, C.; Randerson, J.; Field, C.; Matson, P.; Vitousek, P.; Mooney, H.; Klooster, S. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993 , 7 , 811–841. [ Google Scholar ] [ CrossRef ]
  • Malhi, Y. The productivity, metabolism and carbon cycle of tropical forest vegetation. J. Ecol. 2012 , 100 , 65–75. [ Google Scholar ] [ CrossRef ]
  • Atkin, O.; Evans, J.; Ball, M.; Lambers, H.; Pons, T. Leaf respiration of snow gum in the light and dark. Interactions between temperature and irradiance. Plant Physiol. 2000 , 122 , 915–924. [ Google Scholar ] [ CrossRef ]
  • Bolstad, P.; Reich, P.; Lee, T. Rapid temperature acclimation of leaf respiration rates in Quercus alba and Quercus rubra. Tree Physiol. 2003 , 23 , 969–976. [ Google Scholar ] [ CrossRef ]
  • Piao, S.; Friedlingstein, P.; Ciais, P.; Viovy, N.; Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 2007 , 21 , GB3018. [ Google Scholar ] [ CrossRef ]
  • Piao, S.; Luyssaert, S.; Ciais, P.; Janssens, I.; Chen, A.; Cao, C.; Fang, J.; Friedlingstein, P.; Luo, Y.; Wang, S. Forest annual carbon cost: A global-scale analysis of autotrophic respiration. Ecology 2010 , 91 , 652–661. [ Google Scholar ] [ CrossRef ]
  • Kwon, Y.; Larsen, C. Effects of forest type and environmental factors on forest carbon use efficiency assessed using MODIS and FIA data across the eastern USA. Int. J. Remote Sens. 2013 , 34 , 8425–8448. [ Google Scholar ] [ CrossRef ]
  • Chambers, J.; Tribuzy, E.; Toledo, L.; Crispim, B.; Higuchi, N.; Santos, J.; Araújo, A.; Kruijt, B.; Nobre, A.; Trumbore, S. Respiration from a tropical forest ecosystem: Partitioning of sources and low carbon use efficiency. Ecol. Appl. 2004 , 14 , 72–88. [ Google Scholar ] [ CrossRef ]
  • Alfieri, J.; Xiao, X.; Niyogi, D.; Pielke Sr, R.; Chen, F.; LeMone, M. Satellite-based modeling of transpiration from the grasslands in the Southern Great Plains, USA. Glob. Planet. Chang. 2009 , 67 , 78–86. [ Google Scholar ] [ CrossRef ]
  • Monteith, J. Does transpiration limit the growth of vegetation or vice versa? J. Hydrol. 1988 , 100 , 57–68. [ Google Scholar ] [ CrossRef ]
  • Law, B.; Falge, E.; Gu, L.; Baldocchi, D.; Bakwin, P.; Berbigier, P.; Davis, K.; Dolman, A.J.; Falk, M.; Fuentes, J.; et al. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric. For. Meteorol. 2002 , 113 , 97–120. [ Google Scholar ] [ CrossRef ]
  • Berry, S.; Roderick, M. Gross primary productivity and transpiration flux of the Australian vegetation from 1788 to 1988 AD: Effects of CO 2 and land use change. Glob. Chang. Biol. 2004 , 10 , 1884–1898. [ Google Scholar ] [ CrossRef ]
  • Vesala, T.; Suni, T.; Rannik, Ü.; Keronen, P.; Markkanen, T.; Sevanto, S.; Grönholm, T.; Smolander, S.; Kulmala, H.; Ojansuu, R.; et al. Effect of thinning on surface fluxes in a boreal forest. Glob. Biogeochem. Cycles 2005 , 19 , GB2001. [ Google Scholar ] [ CrossRef ]
  • Jardine, K.; Cobello, L.; Teixeira, L.; East, M.; Levine, S.; Gimenez, B.; Robles, E.; Spanner, G.; Koven, C.; Xu, C.; et al. Stem respiration and growth in a central Amazon rainforest. Trees 2022 , 36 , 991–1004. [ Google Scholar ] [ CrossRef ]
  • Tong, X.; Brandt, M.; Yue, Y.; Horion, S.; Wang, K.; Keersmaecker, W.; Tian, F.; Schurgers, G.; Xiao, X.; Luo, Y.; et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 2018 , 1 , 44–50. [ Google Scholar ] [ CrossRef ]
  • Peng, D.; Zhang, B.; Wu, C.; Huete, A.; Gonsamo, A.; Lei, L.; Ponce-Campos, G.; Liu, X.; Wu, Y. Country-level net primary production distribution and response to drought and land cover change. Sci. Total Environ. 2017 , 574 , 65–77. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Wu, L.; Wang, S.; Bai, X.; Tian, Y.; Luo, G.; Wang, J.; Li, Q.; Chen, F.; Deng, Y.; Yang, Y.; et al. Climate change weakens the positive effect of human activities on karst vegetation productivity restoration in southern China. Ecol. Indic. 2020 , 115 , 106392. [ Google Scholar ] [ CrossRef ]

Click here to enlarge figure

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Luo, Y.; Duan, H.; Pan, J.; Gao, X.; Chen, J.; Wu, S.; Tan, D. Quantifying Carbon Use Efficiency: Unraveling the Impact of Climate Change and Ecological Engineering on Vegetation in the Three Rivers Source Region. Remote Sens. 2024 , 16 , 2909. https://doi.org/10.3390/rs16162909

Luo Y, Duan H, Pan J, Gao X, Chen J, Wu S, Tan D. Quantifying Carbon Use Efficiency: Unraveling the Impact of Climate Change and Ecological Engineering on Vegetation in the Three Rivers Source Region. Remote Sensing . 2024; 16(16):2909. https://doi.org/10.3390/rs16162909

Luo, Yixia, Hengyi Duan, Jing Pan, Xue Gao, Jilong Chen, Shengjun Wu, and Daming Tan. 2024. "Quantifying Carbon Use Efficiency: Unraveling the Impact of Climate Change and Ecological Engineering on Vegetation in the Three Rivers Source Region" Remote Sensing 16, no. 16: 2909. https://doi.org/10.3390/rs16162909

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

IMAGES

  1. Essay on Global Warming with Samples (150

    harmful effects of global warming essay

  2. ≫ Effects and Causes of Global Warming and Climate Change Free Essay

    harmful effects of global warming essay

  3. Write A Short Essay On Global Warming

    harmful effects of global warming essay

  4. Issue of Global Warming Argumentative Essay on Samploon.com

    harmful effects of global warming essay

  5. 138 Global Warming Essay Topics & Ideas

    harmful effects of global warming essay

  6. ≫ Global Climate Change Free Essay Sample on Samploon.com

    harmful effects of global warming essay

COMMENTS

  1. Essay on Effects of Global Warming for Students

    The Effect of Global Warming. The impact that global warming is causing on earth is extremely serious. There are many hazardous effects that will happen in the future if global warming continues. It includes melting of polar ice caps, leading to an increase in sea level drowning coastlines and slowly submerging continents.

  2. How will global warming harm human health and well-being?

    Extreme heat and poor air quality increase complications from underlying heart and respiratory conditions like asthma, renal failure, and pre-term birth, and as temperatures rise, there will be more heat-related illness and deaths in both urban and rural areas. Americans will be exposed to more frequent and/or intense extreme weather and ...

  3. Global warming

    Modern global warming is the result of an increase in magnitude of the so-called greenhouse effect, a warming of Earth's surface and lower atmosphere caused by the presence of water vapour, carbon dioxide, methane, nitrous oxides, and other greenhouse gases. In 2014 the IPCC first reported that concentrations of carbon dioxide, methane, and ...

  4. What are the effects of global warming?

    This warming reduces critical ice habitat and it disrupts the flow of the jet stream, creating more unpredictable weather patterns around the globe. ( Learn more about the jet stream.) A warmer ...

  5. 10 Climate Change Impacts That Will Affect Us All

    Here are 10 of them. 1. Damage to your home. Floods, the most common and deadly natural disasters in the U.S., will likely be exacerbated and intensified by sea level rise and extreme weather. Heavy precipitation is projected to increase throughout the century to potentially three times the historical average.

  6. Effects of Climate Change

    As global warming continues to both exacerbate sea level rise and extreme weather, our nation's floodplains are expected to grow by approximately 45 percent by 2100. In 2022, deadly flooding in ...

  7. Effects

    The effects of human-caused global warming are happening now, are irreversible for people alive today, and will worsen as long as humans add greenhouse gases to the atmosphere. En español. Takeaways. We already see effects scientists predicted, such as the loss of sea ice, melting glaciers and ice sheets, sea level rise, and more intense heat ...

  8. Unbalanced: How Climate Change Is Shifting Earth's Ecosystems

    Glaciers are melting, sea levels are rising, and storms are more intense. These are some of the visible impacts of global warming, caused by rising levels of carbon dioxide and other greenhouse gases that are due to warming in the atmosphere and ocean. In a 2018 report, the Intergovernmental Panel on Climate Change (IPCC) stated that the average global temperature has risen about 1ºC (1.8ºF ...

  9. Climate change impacts

    Global temperatures rose about 1.98°F offsite link (1.1°C) from 1901 to 2020, but climate change refers to more than an increase in temperature. It also includes sea level rise, changes in weather patterns like drought and flooding, and much more. Things that we depend upon and value — water, energy, transportation, wildlife, agriculture, ecosystems, and human health — are experiencing ...

  10. Climate change: a threat to human wellbeing and health of the ...

    The world faces unavoidable multiple climate hazards over the next two decades with global warming of 1.5°C (2.7°F). Even temporarily exceeding this warming level will result in additional severe impacts, some of which will be irreversible. Risks for society will increase, including to infrastructure and low-lying coastal settlements.

  11. Consequences and Effects of Global Warming -- What is the Impact?

    Ground-level ozone is the main component of smog, and the hotter things get, the more of it we have. Dirtier air is linked to higher hospital admission rates and higher death rates for asthmatics ...

  12. Causes and Effects of Climate Change

    Fossil fuels - coal, oil and gas - are by far the largest contributor to global climate change, accounting for over 75 per cent of global greenhouse gas emissions and nearly 90 per cent ...

  13. Causes and effects of global warming

    global warming, Increase in the global average surface temperature resulting from enhancement of the greenhouse effect, primarily by air pollution.In 2007 the UN Intergovernmental Panel on Climate Change forecast that by 2100 global average surface temperatures would increase 3.2-7.2 °F (1.8-4.0 °C), depending on a range of scenarios for greenhouse gas emissions, and stated that it was ...

  14. Global Warming 101

    A: Global warming occurs when carbon dioxide (CO 2) and other air pollutants collect in the atmosphere and absorb sunlight and solar radiation that have bounced off the earth's surface. Normally ...

  15. Globalization, Climate Change, and Human Health

    Most of the global warming since 1950 (an increase of 0.7°C) has been the result of human activity. 32 Annual global emissions of carbon dioxide have increased over the past decade, as have the ...

  16. Climate change is hitting the planet faster than scientists ...

    The negative impacts of climate change are ... extreme global warming could lead to the release of excess carbon emissions, which would in turn drive further warming — a self-perpetuating cycle ...

  17. Humans are causing global warming

    Today's climate change is driven by human activities. Scientists know that the warming climate is caused by human activities because: They understand how heat-trapping gases like carbon dioxide work in the atmosphere. They know why those gases are increasing in the atmosphere. They have ruled out other possible explanations.

  18. Global Warming and Its Health Impact

    Like other effects of rising temperature, the consequences of global warming are also worse in low-income countries where urbanization have occurred rapidly and without planning. 84. In the next years, in order to contain the global warming, technologies that reduce greenhouse emissions and the consumption of water resources would be needed.

  19. Causes of global warming, facts and information

    Most come from the combustion of fossil fuels in cars, buildings, factories, and power plants. The gas responsible for the most warming is carbon dioxide, or CO2. Other contributors include ...

  20. Can we slow or even reverse global warming?

    Published October 12, 2022. Yes. While we cannot stop global warming overnight, we can slow the rate and limit the amount of global warming by reducing human emissions of heat-trapping gases and soot ("black carbon"). If all human emissions of heat-trapping gases were to stop today, Earth's temperature would continue to rise for a few ...

  21. 10 ways you can help fight the climate crisis

    Here are 10 ways you can be part of the climate solution: 1. Spread the word. Encourage your friends, family and co-workers to reduce their carbon pollution. Join a global movement like Count Us In, which aims to inspire 1 billion people to take practical steps and challenge their leaders to act more boldly on climate.

  22. What are the effects of global warming?

    The effects of global warming can be seen and felt across the planet. Global warming, the gradual heating of Earth's surface, oceans and atmosphere, is caused by human activity, primarily the ...

  23. Effects of Global Warming Essay in English

    This has caused increased flooding, drought, and extreme weather events. In addition, global warming has also caused a loss of biodiversity, as some species are unable to adapt to the changing climate. Global warming has become an increasingly important environmental issue in recent years. The effects of global warming are far-reaching and can ...

  24. Is global warming caused by humans? Evidence says yes

    The claim: No one has shown that human CO2 emissions drive global warming. An Oct. 3 Facebook video (direct link, archive link) shows Ian Plimer, a skeptic of human-driven climate change, speaking ...

  25. Tropical Storm Debby Highlights the Southeast's Climate Vulnerabilities

    COP29 Host: In Azerbaijan, the petrostate that is hosting this year's global climate summit, the causes and effects of climate change are on vivid display. Risky Plan to Cool Earth: A scientist ...

  26. Remote Sensing

    Carbon use efficiency (CUE) was identified as a pivotal parameter for elucidating the carbon cycle within ecosystems. It signified the efficiency with which light energy was transformed into organic matter by vegetation. In light of the challenges posed by global warming, it was deemed essential to gain a comprehensive understanding of the fluctuations and determinants of CUE. Despite the ...