Exploring Experimental Research: Methodologies, Designs, and Applications Across Disciplines

  • SSRN Electronic Journal

Sereyrath Em at The National University of Cheasim Kamchaymear

  • The National University of Cheasim Kamchaymear

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

Rachid Ejjami

  • Khaoula Boussalham

Kimleng Hing

  • COMPUT COMMUN REV

Anastasius Gavras

  • Debbie Rohwer

Sokhom Chan

  • Sorakrich Maneewan
  • Ravinder Koul
  • Int J Contemp Hospit Manag

Anna Mattila

  • J EXP ANAL BEHAV
  • Alan E. Kazdin
  • Jimmie Leppink
  • Keith Morrison
  • Louis Cohen
  • Lawrence Manion
  • ACCOUNT ORG SOC
  • Wim A. Van der Stede
  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up
  • Privacy Policy

Research Method

Home » Experimental Design – Types, Methods, Guide

Experimental Design – Types, Methods, Guide

Table of Contents

Experimental Research Design

Experimental Design

Experimental design is a process of planning and conducting scientific experiments to investigate a hypothesis or research question. It involves carefully designing an experiment that can test the hypothesis, and controlling for other variables that may influence the results.

Experimental design typically includes identifying the variables that will be manipulated or measured, defining the sample or population to be studied, selecting an appropriate method of sampling, choosing a method for data collection and analysis, and determining the appropriate statistical tests to use.

Types of Experimental Design

Here are the different types of experimental design:

Completely Randomized Design

In this design, participants are randomly assigned to one of two or more groups, and each group is exposed to a different treatment or condition.

Randomized Block Design

This design involves dividing participants into blocks based on a specific characteristic, such as age or gender, and then randomly assigning participants within each block to one of two or more treatment groups.

Factorial Design

In a factorial design, participants are randomly assigned to one of several groups, each of which receives a different combination of two or more independent variables.

Repeated Measures Design

In this design, each participant is exposed to all of the different treatments or conditions, either in a random order or in a predetermined order.

Crossover Design

This design involves randomly assigning participants to one of two or more treatment groups, with each group receiving one treatment during the first phase of the study and then switching to a different treatment during the second phase.

Split-plot Design

In this design, the researcher manipulates one or more variables at different levels and uses a randomized block design to control for other variables.

Nested Design

This design involves grouping participants within larger units, such as schools or households, and then randomly assigning these units to different treatment groups.

Laboratory Experiment

Laboratory experiments are conducted under controlled conditions, which allows for greater precision and accuracy. However, because laboratory conditions are not always representative of real-world conditions, the results of these experiments may not be generalizable to the population at large.

Field Experiment

Field experiments are conducted in naturalistic settings and allow for more realistic observations. However, because field experiments are not as controlled as laboratory experiments, they may be subject to more sources of error.

Experimental Design Methods

Experimental design methods refer to the techniques and procedures used to design and conduct experiments in scientific research. Here are some common experimental design methods:

Randomization

This involves randomly assigning participants to different groups or treatments to ensure that any observed differences between groups are due to the treatment and not to other factors.

Control Group

The use of a control group is an important experimental design method that involves having a group of participants that do not receive the treatment or intervention being studied. The control group is used as a baseline to compare the effects of the treatment group.

Blinding involves keeping participants, researchers, or both unaware of which treatment group participants are in, in order to reduce the risk of bias in the results.

Counterbalancing

This involves systematically varying the order in which participants receive treatments or interventions in order to control for order effects.

Replication

Replication involves conducting the same experiment with different samples or under different conditions to increase the reliability and validity of the results.

This experimental design method involves manipulating multiple independent variables simultaneously to investigate their combined effects on the dependent variable.

This involves dividing participants into subgroups or blocks based on specific characteristics, such as age or gender, in order to reduce the risk of confounding variables.

Data Collection Method

Experimental design data collection methods are techniques and procedures used to collect data in experimental research. Here are some common experimental design data collection methods:

Direct Observation

This method involves observing and recording the behavior or phenomenon of interest in real time. It may involve the use of structured or unstructured observation, and may be conducted in a laboratory or naturalistic setting.

Self-report Measures

Self-report measures involve asking participants to report their thoughts, feelings, or behaviors using questionnaires, surveys, or interviews. These measures may be administered in person or online.

Behavioral Measures

Behavioral measures involve measuring participants’ behavior directly, such as through reaction time tasks or performance tests. These measures may be administered using specialized equipment or software.

Physiological Measures

Physiological measures involve measuring participants’ physiological responses, such as heart rate, blood pressure, or brain activity, using specialized equipment. These measures may be invasive or non-invasive, and may be administered in a laboratory or clinical setting.

Archival Data

Archival data involves using existing records or data, such as medical records, administrative records, or historical documents, as a source of information. These data may be collected from public or private sources.

Computerized Measures

Computerized measures involve using software or computer programs to collect data on participants’ behavior or responses. These measures may include reaction time tasks, cognitive tests, or other types of computer-based assessments.

Video Recording

Video recording involves recording participants’ behavior or interactions using cameras or other recording equipment. This method can be used to capture detailed information about participants’ behavior or to analyze social interactions.

Data Analysis Method

Experimental design data analysis methods refer to the statistical techniques and procedures used to analyze data collected in experimental research. Here are some common experimental design data analysis methods:

Descriptive Statistics

Descriptive statistics are used to summarize and describe the data collected in the study. This includes measures such as mean, median, mode, range, and standard deviation.

Inferential Statistics

Inferential statistics are used to make inferences or generalizations about a larger population based on the data collected in the study. This includes hypothesis testing and estimation.

Analysis of Variance (ANOVA)

ANOVA is a statistical technique used to compare means across two or more groups in order to determine whether there are significant differences between the groups. There are several types of ANOVA, including one-way ANOVA, two-way ANOVA, and repeated measures ANOVA.

Regression Analysis

Regression analysis is used to model the relationship between two or more variables in order to determine the strength and direction of the relationship. There are several types of regression analysis, including linear regression, logistic regression, and multiple regression.

Factor Analysis

Factor analysis is used to identify underlying factors or dimensions in a set of variables. This can be used to reduce the complexity of the data and identify patterns in the data.

Structural Equation Modeling (SEM)

SEM is a statistical technique used to model complex relationships between variables. It can be used to test complex theories and models of causality.

Cluster Analysis

Cluster analysis is used to group similar cases or observations together based on similarities or differences in their characteristics.

Time Series Analysis

Time series analysis is used to analyze data collected over time in order to identify trends, patterns, or changes in the data.

Multilevel Modeling

Multilevel modeling is used to analyze data that is nested within multiple levels, such as students nested within schools or employees nested within companies.

Applications of Experimental Design 

Experimental design is a versatile research methodology that can be applied in many fields. Here are some applications of experimental design:

  • Medical Research: Experimental design is commonly used to test new treatments or medications for various medical conditions. This includes clinical trials to evaluate the safety and effectiveness of new drugs or medical devices.
  • Agriculture : Experimental design is used to test new crop varieties, fertilizers, and other agricultural practices. This includes randomized field trials to evaluate the effects of different treatments on crop yield, quality, and pest resistance.
  • Environmental science: Experimental design is used to study the effects of environmental factors, such as pollution or climate change, on ecosystems and wildlife. This includes controlled experiments to study the effects of pollutants on plant growth or animal behavior.
  • Psychology : Experimental design is used to study human behavior and cognitive processes. This includes experiments to test the effects of different interventions, such as therapy or medication, on mental health outcomes.
  • Engineering : Experimental design is used to test new materials, designs, and manufacturing processes in engineering applications. This includes laboratory experiments to test the strength and durability of new materials, or field experiments to test the performance of new technologies.
  • Education : Experimental design is used to evaluate the effectiveness of teaching methods, educational interventions, and programs. This includes randomized controlled trials to compare different teaching methods or evaluate the impact of educational programs on student outcomes.
  • Marketing : Experimental design is used to test the effectiveness of marketing campaigns, pricing strategies, and product designs. This includes experiments to test the impact of different marketing messages or pricing schemes on consumer behavior.

Examples of Experimental Design 

Here are some examples of experimental design in different fields:

  • Example in Medical research : A study that investigates the effectiveness of a new drug treatment for a particular condition. Patients are randomly assigned to either a treatment group or a control group, with the treatment group receiving the new drug and the control group receiving a placebo. The outcomes, such as improvement in symptoms or side effects, are measured and compared between the two groups.
  • Example in Education research: A study that examines the impact of a new teaching method on student learning outcomes. Students are randomly assigned to either a group that receives the new teaching method or a group that receives the traditional teaching method. Student achievement is measured before and after the intervention, and the results are compared between the two groups.
  • Example in Environmental science: A study that tests the effectiveness of a new method for reducing pollution in a river. Two sections of the river are selected, with one section treated with the new method and the other section left untreated. The water quality is measured before and after the intervention, and the results are compared between the two sections.
  • Example in Marketing research: A study that investigates the impact of a new advertising campaign on consumer behavior. Participants are randomly assigned to either a group that is exposed to the new campaign or a group that is not. Their behavior, such as purchasing or product awareness, is measured and compared between the two groups.
  • Example in Social psychology: A study that examines the effect of a new social intervention on reducing prejudice towards a marginalized group. Participants are randomly assigned to either a group that receives the intervention or a control group that does not. Their attitudes and behavior towards the marginalized group are measured before and after the intervention, and the results are compared between the two groups.

When to use Experimental Research Design 

Experimental research design should be used when a researcher wants to establish a cause-and-effect relationship between variables. It is particularly useful when studying the impact of an intervention or treatment on a particular outcome.

Here are some situations where experimental research design may be appropriate:

  • When studying the effects of a new drug or medical treatment: Experimental research design is commonly used in medical research to test the effectiveness and safety of new drugs or medical treatments. By randomly assigning patients to treatment and control groups, researchers can determine whether the treatment is effective in improving health outcomes.
  • When evaluating the effectiveness of an educational intervention: An experimental research design can be used to evaluate the impact of a new teaching method or educational program on student learning outcomes. By randomly assigning students to treatment and control groups, researchers can determine whether the intervention is effective in improving academic performance.
  • When testing the effectiveness of a marketing campaign: An experimental research design can be used to test the effectiveness of different marketing messages or strategies. By randomly assigning participants to treatment and control groups, researchers can determine whether the marketing campaign is effective in changing consumer behavior.
  • When studying the effects of an environmental intervention: Experimental research design can be used to study the impact of environmental interventions, such as pollution reduction programs or conservation efforts. By randomly assigning locations or areas to treatment and control groups, researchers can determine whether the intervention is effective in improving environmental outcomes.
  • When testing the effects of a new technology: An experimental research design can be used to test the effectiveness and safety of new technologies or engineering designs. By randomly assigning participants or locations to treatment and control groups, researchers can determine whether the new technology is effective in achieving its intended purpose.

How to Conduct Experimental Research

Here are the steps to conduct Experimental Research:

  • Identify a Research Question : Start by identifying a research question that you want to answer through the experiment. The question should be clear, specific, and testable.
  • Develop a Hypothesis: Based on your research question, develop a hypothesis that predicts the relationship between the independent and dependent variables. The hypothesis should be clear and testable.
  • Design the Experiment : Determine the type of experimental design you will use, such as a between-subjects design or a within-subjects design. Also, decide on the experimental conditions, such as the number of independent variables, the levels of the independent variable, and the dependent variable to be measured.
  • Select Participants: Select the participants who will take part in the experiment. They should be representative of the population you are interested in studying.
  • Randomly Assign Participants to Groups: If you are using a between-subjects design, randomly assign participants to groups to control for individual differences.
  • Conduct the Experiment : Conduct the experiment by manipulating the independent variable(s) and measuring the dependent variable(s) across the different conditions.
  • Analyze the Data: Analyze the data using appropriate statistical methods to determine if there is a significant effect of the independent variable(s) on the dependent variable(s).
  • Draw Conclusions: Based on the data analysis, draw conclusions about the relationship between the independent and dependent variables. If the results support the hypothesis, then it is accepted. If the results do not support the hypothesis, then it is rejected.
  • Communicate the Results: Finally, communicate the results of the experiment through a research report or presentation. Include the purpose of the study, the methods used, the results obtained, and the conclusions drawn.

Purpose of Experimental Design 

The purpose of experimental design is to control and manipulate one or more independent variables to determine their effect on a dependent variable. Experimental design allows researchers to systematically investigate causal relationships between variables, and to establish cause-and-effect relationships between the independent and dependent variables. Through experimental design, researchers can test hypotheses and make inferences about the population from which the sample was drawn.

Experimental design provides a structured approach to designing and conducting experiments, ensuring that the results are reliable and valid. By carefully controlling for extraneous variables that may affect the outcome of the study, experimental design allows researchers to isolate the effect of the independent variable(s) on the dependent variable(s), and to minimize the influence of other factors that may confound the results.

Experimental design also allows researchers to generalize their findings to the larger population from which the sample was drawn. By randomly selecting participants and using statistical techniques to analyze the data, researchers can make inferences about the larger population with a high degree of confidence.

Overall, the purpose of experimental design is to provide a rigorous, systematic, and scientific method for testing hypotheses and establishing cause-and-effect relationships between variables. Experimental design is a powerful tool for advancing scientific knowledge and informing evidence-based practice in various fields, including psychology, biology, medicine, engineering, and social sciences.

Advantages of Experimental Design 

Experimental design offers several advantages in research. Here are some of the main advantages:

  • Control over extraneous variables: Experimental design allows researchers to control for extraneous variables that may affect the outcome of the study. By manipulating the independent variable and holding all other variables constant, researchers can isolate the effect of the independent variable on the dependent variable.
  • Establishing causality: Experimental design allows researchers to establish causality by manipulating the independent variable and observing its effect on the dependent variable. This allows researchers to determine whether changes in the independent variable cause changes in the dependent variable.
  • Replication : Experimental design allows researchers to replicate their experiments to ensure that the findings are consistent and reliable. Replication is important for establishing the validity and generalizability of the findings.
  • Random assignment: Experimental design often involves randomly assigning participants to conditions. This helps to ensure that individual differences between participants are evenly distributed across conditions, which increases the internal validity of the study.
  • Precision : Experimental design allows researchers to measure variables with precision, which can increase the accuracy and reliability of the data.
  • Generalizability : If the study is well-designed, experimental design can increase the generalizability of the findings. By controlling for extraneous variables and using random assignment, researchers can increase the likelihood that the findings will apply to other populations and contexts.

Limitations of Experimental Design

Experimental design has some limitations that researchers should be aware of. Here are some of the main limitations:

  • Artificiality : Experimental design often involves creating artificial situations that may not reflect real-world situations. This can limit the external validity of the findings, or the extent to which the findings can be generalized to real-world settings.
  • Ethical concerns: Some experimental designs may raise ethical concerns, particularly if they involve manipulating variables that could cause harm to participants or if they involve deception.
  • Participant bias : Participants in experimental studies may modify their behavior in response to the experiment, which can lead to participant bias.
  • Limited generalizability: The conditions of the experiment may not reflect the complexities of real-world situations. As a result, the findings may not be applicable to all populations and contexts.
  • Cost and time : Experimental design can be expensive and time-consuming, particularly if the experiment requires specialized equipment or if the sample size is large.
  • Researcher bias : Researchers may unintentionally bias the results of the experiment if they have expectations or preferences for certain outcomes.
  • Lack of feasibility : Experimental design may not be feasible in some cases, particularly if the research question involves variables that cannot be manipulated or controlled.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

One-to-One Interview in Research

One-to-One Interview – Methods and Guide

Survey Research

Survey Research – Types, Methods, Examples

Phenomenology

Phenomenology – Methods, Examples and Guide

Descriptive Research Design

Descriptive Research Design – Types, Methods and...

Exploratory Research

Exploratory Research – Types, Methods and...

Explanatory Research

Explanatory Research – Types, Methods, Guide

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • A Quick Guide to Experimental Design | 5 Steps & Examples

A Quick Guide to Experimental Design | 5 Steps & Examples

Published on 11 April 2022 by Rebecca Bevans . Revised on 5 December 2022.

Experiments are used to study causal relationships . You manipulate one or more independent variables and measure their effect on one or more dependent variables.

Experimental design means creating a set of procedures to systematically test a hypothesis . A good experimental design requires a strong understanding of the system you are studying. 

There are five key steps in designing an experiment:

  • Consider your variables and how they are related
  • Write a specific, testable hypothesis
  • Design experimental treatments to manipulate your independent variable
  • Assign subjects to groups, either between-subjects or within-subjects
  • Plan how you will measure your dependent variable

For valid conclusions, you also need to select a representative sample and control any  extraneous variables that might influence your results. If if random assignment of participants to control and treatment groups is impossible, unethical, or highly difficult, consider an observational study instead.

Table of contents

Step 1: define your variables, step 2: write your hypothesis, step 3: design your experimental treatments, step 4: assign your subjects to treatment groups, step 5: measure your dependent variable, frequently asked questions about experimental design.

You should begin with a specific research question . We will work with two research question examples, one from health sciences and one from ecology:

To translate your research question into an experimental hypothesis, you need to define the main variables and make predictions about how they are related.

Start by simply listing the independent and dependent variables .

Research question Independent variable Dependent variable
Phone use and sleep Minutes of phone use before sleep Hours of sleep per night
Temperature and soil respiration Air temperature just above the soil surface CO2 respired from soil

Then you need to think about possible extraneous and confounding variables and consider how you might control  them in your experiment.

Extraneous variable How to control
Phone use and sleep in sleep patterns among individuals. measure the average difference between sleep with phone use and sleep without phone use rather than the average amount of sleep per treatment group.
Temperature and soil respiration also affects respiration, and moisture can decrease with increasing temperature. monitor soil moisture and add water to make sure that soil moisture is consistent across all treatment plots.

Finally, you can put these variables together into a diagram. Use arrows to show the possible relationships between variables and include signs to show the expected direction of the relationships.

Diagram of the relationship between variables in a sleep experiment

Here we predict that increasing temperature will increase soil respiration and decrease soil moisture, while decreasing soil moisture will lead to decreased soil respiration.

Prevent plagiarism, run a free check.

Now that you have a strong conceptual understanding of the system you are studying, you should be able to write a specific, testable hypothesis that addresses your research question.

Null hypothesis (H ) Alternate hypothesis (H )
Phone use and sleep Phone use before sleep does not correlate with the amount of sleep a person gets. Increasing phone use before sleep leads to a decrease in sleep.
Temperature and soil respiration Air temperature does not correlate with soil respiration. Increased air temperature leads to increased soil respiration.

The next steps will describe how to design a controlled experiment . In a controlled experiment, you must be able to:

  • Systematically and precisely manipulate the independent variable(s).
  • Precisely measure the dependent variable(s).
  • Control any potential confounding variables.

If your study system doesn’t match these criteria, there are other types of research you can use to answer your research question.

How you manipulate the independent variable can affect the experiment’s external validity – that is, the extent to which the results can be generalised and applied to the broader world.

First, you may need to decide how widely to vary your independent variable.

  • just slightly above the natural range for your study region.
  • over a wider range of temperatures to mimic future warming.
  • over an extreme range that is beyond any possible natural variation.

Second, you may need to choose how finely to vary your independent variable. Sometimes this choice is made for you by your experimental system, but often you will need to decide, and this will affect how much you can infer from your results.

  • a categorical variable : either as binary (yes/no) or as levels of a factor (no phone use, low phone use, high phone use).
  • a continuous variable (minutes of phone use measured every night).

How you apply your experimental treatments to your test subjects is crucial for obtaining valid and reliable results.

First, you need to consider the study size : how many individuals will be included in the experiment? In general, the more subjects you include, the greater your experiment’s statistical power , which determines how much confidence you can have in your results.

Then you need to randomly assign your subjects to treatment groups . Each group receives a different level of the treatment (e.g. no phone use, low phone use, high phone use).

You should also include a control group , which receives no treatment. The control group tells us what would have happened to your test subjects without any experimental intervention.

When assigning your subjects to groups, there are two main choices you need to make:

  • A completely randomised design vs a randomised block design .
  • A between-subjects design vs a within-subjects design .

Randomisation

An experiment can be completely randomised or randomised within blocks (aka strata):

  • In a completely randomised design , every subject is assigned to a treatment group at random.
  • In a randomised block design (aka stratified random design), subjects are first grouped according to a characteristic they share, and then randomly assigned to treatments within those groups.
Completely randomised design Randomised block design
Phone use and sleep Subjects are all randomly assigned a level of phone use using a random number generator. Subjects are first grouped by age, and then phone use treatments are randomly assigned within these groups.
Temperature and soil respiration Warming treatments are assigned to soil plots at random by using a number generator to generate map coordinates within the study area. Soils are first grouped by average rainfall, and then treatment plots are randomly assigned within these groups.

Sometimes randomisation isn’t practical or ethical , so researchers create partially-random or even non-random designs. An experimental design where treatments aren’t randomly assigned is called a quasi-experimental design .

Between-subjects vs within-subjects

In a between-subjects design (also known as an independent measures design or classic ANOVA design), individuals receive only one of the possible levels of an experimental treatment.

In medical or social research, you might also use matched pairs within your between-subjects design to make sure that each treatment group contains the same variety of test subjects in the same proportions.

In a within-subjects design (also known as a repeated measures design), every individual receives each of the experimental treatments consecutively, and their responses to each treatment are measured.

Within-subjects or repeated measures can also refer to an experimental design where an effect emerges over time, and individual responses are measured over time in order to measure this effect as it emerges.

Counterbalancing (randomising or reversing the order of treatments among subjects) is often used in within-subjects designs to ensure that the order of treatment application doesn’t influence the results of the experiment.

Between-subjects (independent measures) design Within-subjects (repeated measures) design
Phone use and sleep Subjects are randomly assigned a level of phone use (none, low, or high) and follow that level of phone use throughout the experiment. Subjects are assigned consecutively to zero, low, and high levels of phone use throughout the experiment, and the order in which they follow these treatments is randomised.
Temperature and soil respiration Warming treatments are assigned to soil plots at random and the soils are kept at this temperature throughout the experiment. Every plot receives each warming treatment (1, 3, 5, 8, and 10C above ambient temperatures) consecutively over the course of the experiment, and the order in which they receive these treatments is randomised.

Finally, you need to decide how you’ll collect data on your dependent variable outcomes. You should aim for reliable and valid measurements that minimise bias or error.

Some variables, like temperature, can be objectively measured with scientific instruments. Others may need to be operationalised to turn them into measurable observations.

  • Ask participants to record what time they go to sleep and get up each day.
  • Ask participants to wear a sleep tracker.

How precisely you measure your dependent variable also affects the kinds of statistical analysis you can use on your data.

Experiments are always context-dependent, and a good experimental design will take into account all of the unique considerations of your study system to produce information that is both valid and relevant to your research question.

Experimental designs are a set of procedures that you plan in order to examine the relationship between variables that interest you.

To design a successful experiment, first identify:

  • A testable hypothesis
  • One or more independent variables that you will manipulate
  • One or more dependent variables that you will measure

When designing the experiment, first decide:

  • How your variable(s) will be manipulated
  • How you will control for any potential confounding or lurking variables
  • How many subjects you will include
  • How you will assign treatments to your subjects

The key difference between observational studies and experiments is that, done correctly, an observational study will never influence the responses or behaviours of participants. Experimental designs will have a treatment condition applied to at least a portion of participants.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word ‘between’ means that you’re comparing different conditions between groups, while the word ‘within’ means you’re comparing different conditions within the same group.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bevans, R. (2022, December 05). A Quick Guide to Experimental Design | 5 Steps & Examples. Scribbr. Retrieved 18 September 2024, from https://www.scribbr.co.uk/research-methods/guide-to-experimental-design/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Enago Academy

Experimental Research Design — 6 mistakes you should never make!

' src=

Since school days’ students perform scientific experiments that provide results that define and prove the laws and theorems in science. These experiments are laid on a strong foundation of experimental research designs.

An experimental research design helps researchers execute their research objectives with more clarity and transparency.

In this article, we will not only discuss the key aspects of experimental research designs but also the issues to avoid and problems to resolve while designing your research study.

Table of Contents

What Is Experimental Research Design?

Experimental research design is a framework of protocols and procedures created to conduct experimental research with a scientific approach using two sets of variables. Herein, the first set of variables acts as a constant, used to measure the differences of the second set. The best example of experimental research methods is quantitative research .

Experimental research helps a researcher gather the necessary data for making better research decisions and determining the facts of a research study.

When Can a Researcher Conduct Experimental Research?

A researcher can conduct experimental research in the following situations —

  • When time is an important factor in establishing a relationship between the cause and effect.
  • When there is an invariable or never-changing behavior between the cause and effect.
  • Finally, when the researcher wishes to understand the importance of the cause and effect.

Importance of Experimental Research Design

To publish significant results, choosing a quality research design forms the foundation to build the research study. Moreover, effective research design helps establish quality decision-making procedures, structures the research to lead to easier data analysis, and addresses the main research question. Therefore, it is essential to cater undivided attention and time to create an experimental research design before beginning the practical experiment.

By creating a research design, a researcher is also giving oneself time to organize the research, set up relevant boundaries for the study, and increase the reliability of the results. Through all these efforts, one could also avoid inconclusive results. If any part of the research design is flawed, it will reflect on the quality of the results derived.

Types of Experimental Research Designs

Based on the methods used to collect data in experimental studies, the experimental research designs are of three primary types:

1. Pre-experimental Research Design

A research study could conduct pre-experimental research design when a group or many groups are under observation after implementing factors of cause and effect of the research. The pre-experimental design will help researchers understand whether further investigation is necessary for the groups under observation.

Pre-experimental research is of three types —

  • One-shot Case Study Research Design
  • One-group Pretest-posttest Research Design
  • Static-group Comparison

2. True Experimental Research Design

A true experimental research design relies on statistical analysis to prove or disprove a researcher’s hypothesis. It is one of the most accurate forms of research because it provides specific scientific evidence. Furthermore, out of all the types of experimental designs, only a true experimental design can establish a cause-effect relationship within a group. However, in a true experiment, a researcher must satisfy these three factors —

  • There is a control group that is not subjected to changes and an experimental group that will experience the changed variables
  • A variable that can be manipulated by the researcher
  • Random distribution of the variables

This type of experimental research is commonly observed in the physical sciences.

3. Quasi-experimental Research Design

The word “Quasi” means similarity. A quasi-experimental design is similar to a true experimental design. However, the difference between the two is the assignment of the control group. In this research design, an independent variable is manipulated, but the participants of a group are not randomly assigned. This type of research design is used in field settings where random assignment is either irrelevant or not required.

The classification of the research subjects, conditions, or groups determines the type of research design to be used.

experimental research design

Advantages of Experimental Research

Experimental research allows you to test your idea in a controlled environment before taking the research to clinical trials. Moreover, it provides the best method to test your theory because of the following advantages:

  • Researchers have firm control over variables to obtain results.
  • The subject does not impact the effectiveness of experimental research. Anyone can implement it for research purposes.
  • The results are specific.
  • Post results analysis, research findings from the same dataset can be repurposed for similar research ideas.
  • Researchers can identify the cause and effect of the hypothesis and further analyze this relationship to determine in-depth ideas.
  • Experimental research makes an ideal starting point. The collected data could be used as a foundation to build new research ideas for further studies.

6 Mistakes to Avoid While Designing Your Research

There is no order to this list, and any one of these issues can seriously compromise the quality of your research. You could refer to the list as a checklist of what to avoid while designing your research.

1. Invalid Theoretical Framework

Usually, researchers miss out on checking if their hypothesis is logical to be tested. If your research design does not have basic assumptions or postulates, then it is fundamentally flawed and you need to rework on your research framework.

2. Inadequate Literature Study

Without a comprehensive research literature review , it is difficult to identify and fill the knowledge and information gaps. Furthermore, you need to clearly state how your research will contribute to the research field, either by adding value to the pertinent literature or challenging previous findings and assumptions.

3. Insufficient or Incorrect Statistical Analysis

Statistical results are one of the most trusted scientific evidence. The ultimate goal of a research experiment is to gain valid and sustainable evidence. Therefore, incorrect statistical analysis could affect the quality of any quantitative research.

4. Undefined Research Problem

This is one of the most basic aspects of research design. The research problem statement must be clear and to do that, you must set the framework for the development of research questions that address the core problems.

5. Research Limitations

Every study has some type of limitations . You should anticipate and incorporate those limitations into your conclusion, as well as the basic research design. Include a statement in your manuscript about any perceived limitations, and how you considered them while designing your experiment and drawing the conclusion.

6. Ethical Implications

The most important yet less talked about topic is the ethical issue. Your research design must include ways to minimize any risk for your participants and also address the research problem or question at hand. If you cannot manage the ethical norms along with your research study, your research objectives and validity could be questioned.

Experimental Research Design Example

In an experimental design, a researcher gathers plant samples and then randomly assigns half the samples to photosynthesize in sunlight and the other half to be kept in a dark box without sunlight, while controlling all the other variables (nutrients, water, soil, etc.)

By comparing their outcomes in biochemical tests, the researcher can confirm that the changes in the plants were due to the sunlight and not the other variables.

Experimental research is often the final form of a study conducted in the research process which is considered to provide conclusive and specific results. But it is not meant for every research. It involves a lot of resources, time, and money and is not easy to conduct, unless a foundation of research is built. Yet it is widely used in research institutes and commercial industries, for its most conclusive results in the scientific approach.

Have you worked on research designs? How was your experience creating an experimental design? What difficulties did you face? Do write to us or comment below and share your insights on experimental research designs!

Frequently Asked Questions

Randomization is important in an experimental research because it ensures unbiased results of the experiment. It also measures the cause-effect relationship on a particular group of interest.

Experimental research design lay the foundation of a research and structures the research to establish quality decision making process.

There are 3 types of experimental research designs. These are pre-experimental research design, true experimental research design, and quasi experimental research design.

The difference between an experimental and a quasi-experimental design are: 1. The assignment of the control group in quasi experimental research is non-random, unlike true experimental design, which is randomly assigned. 2. Experimental research group always has a control group; on the other hand, it may not be always present in quasi experimental research.

Experimental research establishes a cause-effect relationship by testing a theory or hypothesis using experimental groups or control variables. In contrast, descriptive research describes a study or a topic by defining the variables under it and answering the questions related to the same.

' src=

good and valuable

Very very good

Good presentation.

Rate this article Cancel Reply

Your email address will not be published.

experimental study methods

Enago Academy's Most Popular Articles

Graphical Abstracts vs. Infographics: Best Practices for Visuals - Enago

  • Promoting Research

Graphical Abstracts Vs. Infographics: Best practices for using visual illustrations for increased research impact

Dr. Sarah Chen stared at her computer screen, her eyes staring at her recently published…

10 Tips to Prevent Research Papers From Being Retracted - Enago

  • Publishing Research

10 Tips to Prevent Research Papers From Being Retracted

Research paper retractions represent a critical event in the scientific community. When a published article…

2024 Scholar Metrics: Unveiling research impact (2019-2023)

  • Industry News

Google Releases 2024 Scholar Metrics, Evaluates Impact of Scholarly Articles

Google has released its 2024 Scholar Metrics, assessing scholarly articles from 2019 to 2023. This…

What is Academic Integrity and How to Uphold it [FREE CHECKLIST]

Ensuring Academic Integrity and Transparency in Academic Research: A comprehensive checklist for researchers

Academic integrity is the foundation upon which the credibility and value of scientific findings are…

7 Step Guide for Optimizing Impactful Research Process

  • Reporting Research

How to Optimize Your Research Process: A step-by-step guide

For researchers across disciplines, the path to uncovering novel findings and insights is often filled…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

experimental study methods

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

  • AI in Academia
  • Career Corner
  • Diversity and Inclusion
  • Infographics
  • Expert Video Library
  • Other Resources
  • Enago Learn
  • Upcoming & On-Demand Webinars
  • Peer Review Week 2024
  • Open Access Week 2023
  • Conference Videos
  • Enago Report
  • Journal Finder
  • Enago Plagiarism & AI Grammar Check
  • Editing Services
  • Publication Support Services
  • Research Impact
  • Translation Services
  • Publication solutions
  • AI-Based Solutions
  • Thought Leadership
  • Call for Articles
  • Call for Speakers
  • Author Training
  • Edit Profile

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

experimental study methods

Which among these features would you prefer the most in a peer review assistant?

Experimental Design: Types, Examples & Methods

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Experimental design refers to how participants are allocated to different groups in an experiment. Types of design include repeated measures, independent groups, and matched pairs designs.

Probably the most common way to design an experiment in psychology is to divide the participants into two groups, the experimental group and the control group, and then introduce a change to the experimental group, not the control group.

The researcher must decide how he/she will allocate their sample to the different experimental groups.  For example, if there are 10 participants, will all 10 participants participate in both groups (e.g., repeated measures), or will the participants be split in half and take part in only one group each?

Three types of experimental designs are commonly used:

1. Independent Measures

Independent measures design, also known as between-groups , is an experimental design where different participants are used in each condition of the independent variable.  This means that each condition of the experiment includes a different group of participants.

This should be done by random allocation, ensuring that each participant has an equal chance of being assigned to one group.

Independent measures involve using two separate groups of participants, one in each condition. For example:

Independent Measures Design 2

  • Con : More people are needed than with the repeated measures design (i.e., more time-consuming).
  • Pro : Avoids order effects (such as practice or fatigue) as people participate in one condition only.  If a person is involved in several conditions, they may become bored, tired, and fed up by the time they come to the second condition or become wise to the requirements of the experiment!
  • Con : Differences between participants in the groups may affect results, for example, variations in age, gender, or social background.  These differences are known as participant variables (i.e., a type of extraneous variable ).
  • Control : After the participants have been recruited, they should be randomly assigned to their groups. This should ensure the groups are similar, on average (reducing participant variables).

2. Repeated Measures Design

Repeated Measures design is an experimental design where the same participants participate in each independent variable condition.  This means that each experiment condition includes the same group of participants.

Repeated Measures design is also known as within-groups or within-subjects design .

  • Pro : As the same participants are used in each condition, participant variables (i.e., individual differences) are reduced.
  • Con : There may be order effects. Order effects refer to the order of the conditions affecting the participants’ behavior.  Performance in the second condition may be better because the participants know what to do (i.e., practice effect).  Or their performance might be worse in the second condition because they are tired (i.e., fatigue effect). This limitation can be controlled using counterbalancing.
  • Pro : Fewer people are needed as they participate in all conditions (i.e., saves time).
  • Control : To combat order effects, the researcher counter-balances the order of the conditions for the participants.  Alternating the order in which participants perform in different conditions of an experiment.

Counterbalancing

Suppose we used a repeated measures design in which all of the participants first learned words in “loud noise” and then learned them in “no noise.”

We expect the participants to learn better in “no noise” because of order effects, such as practice. However, a researcher can control for order effects using counterbalancing.

The sample would be split into two groups: experimental (A) and control (B).  For example, group 1 does ‘A’ then ‘B,’ and group 2 does ‘B’ then ‘A.’ This is to eliminate order effects.

Although order effects occur for each participant, they balance each other out in the results because they occur equally in both groups.

counter balancing

3. Matched Pairs Design

A matched pairs design is an experimental design where pairs of participants are matched in terms of key variables, such as age or socioeconomic status. One member of each pair is then placed into the experimental group and the other member into the control group .

One member of each matched pair must be randomly assigned to the experimental group and the other to the control group.

matched pairs design

  • Con : If one participant drops out, you lose 2 PPs’ data.
  • Pro : Reduces participant variables because the researcher has tried to pair up the participants so that each condition has people with similar abilities and characteristics.
  • Con : Very time-consuming trying to find closely matched pairs.
  • Pro : It avoids order effects, so counterbalancing is not necessary.
  • Con : Impossible to match people exactly unless they are identical twins!
  • Control : Members of each pair should be randomly assigned to conditions. However, this does not solve all these problems.

Experimental design refers to how participants are allocated to an experiment’s different conditions (or IV levels). There are three types:

1. Independent measures / between-groups : Different participants are used in each condition of the independent variable.

2. Repeated measures /within groups : The same participants take part in each condition of the independent variable.

3. Matched pairs : Each condition uses different participants, but they are matched in terms of important characteristics, e.g., gender, age, intelligence, etc.

Learning Check

Read about each of the experiments below. For each experiment, identify (1) which experimental design was used; and (2) why the researcher might have used that design.

1 . To compare the effectiveness of two different types of therapy for depression, depressed patients were assigned to receive either cognitive therapy or behavior therapy for a 12-week period.

The researchers attempted to ensure that the patients in the two groups had similar severity of depressed symptoms by administering a standardized test of depression to each participant, then pairing them according to the severity of their symptoms.

2 . To assess the difference in reading comprehension between 7 and 9-year-olds, a researcher recruited each group from a local primary school. They were given the same passage of text to read and then asked a series of questions to assess their understanding.

3 . To assess the effectiveness of two different ways of teaching reading, a group of 5-year-olds was recruited from a primary school. Their level of reading ability was assessed, and then they were taught using scheme one for 20 weeks.

At the end of this period, their reading was reassessed, and a reading improvement score was calculated. They were then taught using scheme two for a further 20 weeks, and another reading improvement score for this period was calculated. The reading improvement scores for each child were then compared.

4 . To assess the effect of the organization on recall, a researcher randomly assigned student volunteers to two conditions.

Condition one attempted to recall a list of words that were organized into meaningful categories; condition two attempted to recall the same words, randomly grouped on the page.

Experiment Terminology

Ecological validity.

The degree to which an investigation represents real-life experiences.

Experimenter effects

These are the ways that the experimenter can accidentally influence the participant through their appearance or behavior.

Demand characteristics

The clues in an experiment lead the participants to think they know what the researcher is looking for (e.g., the experimenter’s body language).

Independent variable (IV)

The variable the experimenter manipulates (i.e., changes) is assumed to have a direct effect on the dependent variable.

Dependent variable (DV)

Variable the experimenter measures. This is the outcome (i.e., the result) of a study.

Extraneous variables (EV)

All variables which are not independent variables but could affect the results (DV) of the experiment. Extraneous variables should be controlled where possible.

Confounding variables

Variable(s) that have affected the results (DV), apart from the IV. A confounding variable could be an extraneous variable that has not been controlled.

Random Allocation

Randomly allocating participants to independent variable conditions means that all participants should have an equal chance of taking part in each condition.

The principle of random allocation is to avoid bias in how the experiment is carried out and limit the effects of participant variables.

Order effects

Changes in participants’ performance due to their repeating the same or similar test more than once. Examples of order effects include:

(i) practice effect: an improvement in performance on a task due to repetition, for example, because of familiarity with the task;

(ii) fatigue effect: a decrease in performance of a task due to repetition, for example, because of boredom or tiredness.

Print Friendly, PDF & Email

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

experimental study methods

Home Market Research

Experimental Research: What it is + Types of designs

Experimental Research Design

Any research conducted under scientifically acceptable conditions uses experimental methods. The success of experimental studies hinges on researchers confirming the change of a variable is based solely on the manipulation of the constant variable. The research should establish a notable cause and effect.

What is Experimental Research?

Experimental research is a study conducted with a scientific approach using two sets of variables. The first set acts as a constant, which you use to measure the differences of the second set. Quantitative research methods , for example, are experimental.

If you don’t have enough data to support your decisions, you must first determine the facts. This research gathers the data necessary to help you make better decisions.

You can conduct experimental research in the following situations:

  • Time is a vital factor in establishing a relationship between cause and effect.
  • Invariable behavior between cause and effect.
  • You wish to understand the importance of cause and effect.

Experimental Research Design Types

The classic experimental design definition is: “The methods used to collect data in experimental studies.”

There are three primary types of experimental design:

  • Pre-experimental research design
  • True experimental research design
  • Quasi-experimental research design

The way you classify research subjects based on conditions or groups determines the type of research design  you should use.

0 1. Pre-Experimental Design

A group, or various groups, are kept under observation after implementing cause and effect factors. You’ll conduct this research to understand whether further investigation is necessary for these particular groups.

You can break down pre-experimental research further into three types:

  • One-shot Case Study Research Design
  • One-group Pretest-posttest Research Design
  • Static-group Comparison

0 2. True Experimental Design

It relies on statistical analysis to prove or disprove a hypothesis, making it the most accurate form of research. Of the types of experimental design, only true design can establish a cause-effect relationship within a group. In a true experiment, three factors need to be satisfied:

  • There is a Control Group, which won’t be subject to changes, and an Experimental Group, which will experience the changed variables.
  • A variable that can be manipulated by the researcher
  • Random distribution

This experimental research method commonly occurs in the physical sciences.

0 3. Quasi-Experimental Design

The word “Quasi” indicates similarity. A quasi-experimental design is similar to an experimental one, but it is not the same. The difference between the two is the assignment of a control group. In this research, an independent variable is manipulated, but the participants of a group are not randomly assigned. Quasi-research is used in field settings where random assignment is either irrelevant or not required.

Importance of Experimental Design

Experimental research is a powerful tool for understanding cause-and-effect relationships. It allows us to manipulate variables and observe the effects, which is crucial for understanding how different factors influence the outcome of a study.

But the importance of experimental research goes beyond that. It’s a critical method for many scientific and academic studies. It allows us to test theories, develop new products, and make groundbreaking discoveries.

For example, this research is essential for developing new drugs and medical treatments. Researchers can understand how a new drug works by manipulating dosage and administration variables and identifying potential side effects.

Similarly, experimental research is used in the field of psychology to test theories and understand human behavior. By manipulating variables such as stimuli, researchers can gain insights into how the brain works and identify new treatment options for mental health disorders.

It is also widely used in the field of education. It allows educators to test new teaching methods and identify what works best. By manipulating variables such as class size, teaching style, and curriculum, researchers can understand how students learn and identify new ways to improve educational outcomes.

In addition, experimental research is a powerful tool for businesses and organizations. By manipulating variables such as marketing strategies, product design, and customer service, companies can understand what works best and identify new opportunities for growth.

Advantages of Experimental Research

When talking about this research, we can think of human life. Babies do their own rudimentary experiments (such as putting objects in their mouths) to learn about the world around them, while older children and teens do experiments at school to learn more about science.

Ancient scientists used this research to prove that their hypotheses were correct. For example, Galileo Galilei and Antoine Lavoisier conducted various experiments to discover key concepts in physics and chemistry. The same is true of modern experts, who use this scientific method to see if new drugs are effective, discover treatments for diseases, and create new electronic devices (among others).

It’s vital to test new ideas or theories. Why put time, effort, and funding into something that may not work?

This research allows you to test your idea in a controlled environment before marketing. It also provides the best method to test your theory thanks to the following advantages:

Advantages of experimental research

  • Researchers have a stronger hold over variables to obtain desired results.
  • The subject or industry does not impact the effectiveness of experimental research. Any industry can implement it for research purposes.
  • The results are specific.
  • After analyzing the results, you can apply your findings to similar ideas or situations.
  • You can identify the cause and effect of a hypothesis. Researchers can further analyze this relationship to determine more in-depth ideas.
  • Experimental research makes an ideal starting point. The data you collect is a foundation for building more ideas and conducting more action research .

Whether you want to know how the public will react to a new product or if a certain food increases the chance of disease, experimental research is the best place to start. Begin your research by finding subjects using  QuestionPro Audience  and other tools today.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

experimental study methods

QuestionPro: Leading the Charge in Customer Journey Management and Voice of the Customer Platforms

Sep 17, 2024

Driver analysis

What is Driver Analysis? Importance and Best Practices

experimental study methods

Was The Experience Memorable? (Part II) — Tuesday CX Thoughts

data discovery

Data Discovery: What it is, Importance, Process + Use Cases

Sep 16, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How the Experimental Method Works in Psychology

sturti/Getty Images

The Experimental Process

Types of experiments, potential pitfalls of the experimental method.

The experimental method is a type of research procedure that involves manipulating variables to determine if there is a cause-and-effect relationship. The results obtained through the experimental method are useful but do not prove with 100% certainty that a singular cause always creates a specific effect. Instead, they show the probability that a cause will or will not lead to a particular effect.

At a Glance

While there are many different research techniques available, the experimental method allows researchers to look at cause-and-effect relationships. Using the experimental method, researchers randomly assign participants to a control or experimental group and manipulate levels of an independent variable. If changes in the independent variable lead to changes in the dependent variable, it indicates there is likely a causal relationship between them.

What Is the Experimental Method in Psychology?

The experimental method involves manipulating one variable to determine if this causes changes in another variable. This method relies on controlled research methods and random assignment of study subjects to test a hypothesis.

For example, researchers may want to learn how different visual patterns may impact our perception. Or they might wonder whether certain actions can improve memory . Experiments are conducted on many behavioral topics, including:

The scientific method forms the basis of the experimental method. This is a process used to determine the relationship between two variables—in this case, to explain human behavior .

Positivism is also important in the experimental method. It refers to factual knowledge that is obtained through observation, which is considered to be trustworthy.

When using the experimental method, researchers first identify and define key variables. Then they formulate a hypothesis, manipulate the variables, and collect data on the results. Unrelated or irrelevant variables are carefully controlled to minimize the potential impact on the experiment outcome.

History of the Experimental Method

The idea of using experiments to better understand human psychology began toward the end of the nineteenth century. Wilhelm Wundt established the first formal laboratory in 1879.

Wundt is often called the father of experimental psychology. He believed that experiments could help explain how psychology works, and used this approach to study consciousness .

Wundt coined the term "physiological psychology." This is a hybrid of physiology and psychology, or how the body affects the brain.

Other early contributors to the development and evolution of experimental psychology as we know it today include:

  • Gustav Fechner (1801-1887), who helped develop procedures for measuring sensations according to the size of the stimulus
  • Hermann von Helmholtz (1821-1894), who analyzed philosophical assumptions through research in an attempt to arrive at scientific conclusions
  • Franz Brentano (1838-1917), who called for a combination of first-person and third-person research methods when studying psychology
  • Georg Elias Müller (1850-1934), who performed an early experiment on attitude which involved the sensory discrimination of weights and revealed how anticipation can affect this discrimination

Key Terms to Know

To understand how the experimental method works, it is important to know some key terms.

Dependent Variable

The dependent variable is the effect that the experimenter is measuring. If a researcher was investigating how sleep influences test scores, for example, the test scores would be the dependent variable.

Independent Variable

The independent variable is the variable that the experimenter manipulates. In the previous example, the amount of sleep an individual gets would be the independent variable.

A hypothesis is a tentative statement or a guess about the possible relationship between two or more variables. In looking at how sleep influences test scores, the researcher might hypothesize that people who get more sleep will perform better on a math test the following day. The purpose of the experiment, then, is to either support or reject this hypothesis.

Operational definitions are necessary when performing an experiment. When we say that something is an independent or dependent variable, we must have a very clear and specific definition of the meaning and scope of that variable.

Extraneous Variables

Extraneous variables are other variables that may also affect the outcome of an experiment. Types of extraneous variables include participant variables, situational variables, demand characteristics, and experimenter effects. In some cases, researchers can take steps to control for extraneous variables.

Demand Characteristics

Demand characteristics are subtle hints that indicate what an experimenter is hoping to find in a psychology experiment. This can sometimes cause participants to alter their behavior, which can affect the results of the experiment.

Intervening Variables

Intervening variables are factors that can affect the relationship between two other variables. 

Confounding Variables

Confounding variables are variables that can affect the dependent variable, but that experimenters cannot control for. Confounding variables can make it difficult to determine if the effect was due to changes in the independent variable or if the confounding variable may have played a role.

Psychologists, like other scientists, use the scientific method when conducting an experiment. The scientific method is a set of procedures and principles that guide how scientists develop research questions, collect data, and come to conclusions.

The five basic steps of the experimental process are:

  • Identifying a problem to study
  • Devising the research protocol
  • Conducting the experiment
  • Analyzing the data collected
  • Sharing the findings (usually in writing or via presentation)

Most psychology students are expected to use the experimental method at some point in their academic careers. Learning how to conduct an experiment is important to understanding how psychologists prove and disprove theories in this field.

There are a few different types of experiments that researchers might use when studying psychology. Each has pros and cons depending on the participants being studied, the hypothesis, and the resources available to conduct the research.

Lab Experiments

Lab experiments are common in psychology because they allow experimenters more control over the variables. These experiments can also be easier for other researchers to replicate. The drawback of this research type is that what takes place in a lab is not always what takes place in the real world.

Field Experiments

Sometimes researchers opt to conduct their experiments in the field. For example, a social psychologist interested in researching prosocial behavior might have a person pretend to faint and observe how long it takes onlookers to respond.

This type of experiment can be a great way to see behavioral responses in realistic settings. But it is more difficult for researchers to control the many variables existing in these settings that could potentially influence the experiment's results.

Quasi-Experiments

While lab experiments are known as true experiments, researchers can also utilize a quasi-experiment. Quasi-experiments are often referred to as natural experiments because the researchers do not have true control over the independent variable.

A researcher looking at personality differences and birth order, for example, is not able to manipulate the independent variable in the situation (personality traits). Participants also cannot be randomly assigned because they naturally fall into pre-existing groups based on their birth order.

So why would a researcher use a quasi-experiment? This is a good choice in situations where scientists are interested in studying phenomena in natural, real-world settings. It's also beneficial if there are limits on research funds or time.

Field experiments can be either quasi-experiments or true experiments.

Examples of the Experimental Method in Use

The experimental method can provide insight into human thoughts and behaviors, Researchers use experiments to study many aspects of psychology.

A 2019 study investigated whether splitting attention between electronic devices and classroom lectures had an effect on college students' learning abilities. It found that dividing attention between these two mediums did not affect lecture comprehension. However, it did impact long-term retention of the lecture information, which affected students' exam performance.

An experiment used participants' eye movements and electroencephalogram (EEG) data to better understand cognitive processing differences between experts and novices. It found that experts had higher power in their theta brain waves than novices, suggesting that they also had a higher cognitive load.

A study looked at whether chatting online with a computer via a chatbot changed the positive effects of emotional disclosure often received when talking with an actual human. It found that the effects were the same in both cases.

One experimental study evaluated whether exercise timing impacts information recall. It found that engaging in exercise prior to performing a memory task helped improve participants' short-term memory abilities.

Sometimes researchers use the experimental method to get a bigger-picture view of psychological behaviors and impacts. For example, one 2018 study examined several lab experiments to learn more about the impact of various environmental factors on building occupant perceptions.

A 2020 study set out to determine the role that sensation-seeking plays in political violence. This research found that sensation-seeking individuals have a higher propensity for engaging in political violence. It also found that providing access to a more peaceful, yet still exciting political group helps reduce this effect.

While the experimental method can be a valuable tool for learning more about psychology and its impacts, it also comes with a few pitfalls.

Experiments may produce artificial results, which are difficult to apply to real-world situations. Similarly, researcher bias can impact the data collected. Results may not be able to be reproduced, meaning the results have low reliability .

Since humans are unpredictable and their behavior can be subjective, it can be hard to measure responses in an experiment. In addition, political pressure may alter the results. The subjects may not be a good representation of the population, or groups used may not be comparable.

And finally, since researchers are human too, results may be degraded due to human error.

What This Means For You

Every psychological research method has its pros and cons. The experimental method can help establish cause and effect, and it's also beneficial when research funds are limited or time is of the essence.

At the same time, it's essential to be aware of this method's pitfalls, such as how biases can affect the results or the potential for low reliability. Keeping these in mind can help you review and assess research studies more accurately, giving you a better idea of whether the results can be trusted or have limitations.

Colorado State University. Experimental and quasi-experimental research .

American Psychological Association. Experimental psychology studies human and animals .

Mayrhofer R, Kuhbandner C, Lindner C. The practice of experimental psychology: An inevitably postmodern endeavor . Front Psychol . 2021;11:612805. doi:10.3389/fpsyg.2020.612805

Mandler G. A History of Modern Experimental Psychology .

Stanford University. Wilhelm Maximilian Wundt . Stanford Encyclopedia of Philosophy.

Britannica. Gustav Fechner .

Britannica. Hermann von Helmholtz .

Meyer A, Hackert B, Weger U. Franz Brentano and the beginning of experimental psychology: implications for the study of psychological phenomena today . Psychol Res . 2018;82:245-254. doi:10.1007/s00426-016-0825-7

Britannica. Georg Elias Müller .

McCambridge J, de Bruin M, Witton J.  The effects of demand characteristics on research participant behaviours in non-laboratory settings: A systematic review .  PLoS ONE . 2012;7(6):e39116. doi:10.1371/journal.pone.0039116

Laboratory experiments . In: The Sage Encyclopedia of Communication Research Methods. Allen M, ed. SAGE Publications, Inc. doi:10.4135/9781483381411.n287

Schweizer M, Braun B, Milstone A. Research methods in healthcare epidemiology and antimicrobial stewardship — quasi-experimental designs . Infect Control Hosp Epidemiol . 2016;37(10):1135-1140. doi:10.1017/ice.2016.117

Glass A, Kang M. Dividing attention in the classroom reduces exam performance . Educ Psychol . 2019;39(3):395-408. doi:10.1080/01443410.2018.1489046

Keskin M, Ooms K, Dogru AO, De Maeyer P. Exploring the cognitive load of expert and novice map users using EEG and eye tracking . ISPRS Int J Geo-Inf . 2020;9(7):429. doi:10.3390.ijgi9070429

Ho A, Hancock J, Miner A. Psychological, relational, and emotional effects of self-disclosure after conversations with a chatbot . J Commun . 2018;68(4):712-733. doi:10.1093/joc/jqy026

Haynes IV J, Frith E, Sng E, Loprinzi P. Experimental effects of acute exercise on episodic memory function: Considerations for the timing of exercise . Psychol Rep . 2018;122(5):1744-1754. doi:10.1177/0033294118786688

Torresin S, Pernigotto G, Cappelletti F, Gasparella A. Combined effects of environmental factors on human perception and objective performance: A review of experimental laboratory works . Indoor Air . 2018;28(4):525-538. doi:10.1111/ina.12457

Schumpe BM, Belanger JJ, Moyano M, Nisa CF. The role of sensation seeking in political violence: An extension of the significance quest theory . J Personal Social Psychol . 2020;118(4):743-761. doi:10.1037/pspp0000223

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

  • Experimental Research Designs: Types, Examples & Methods

busayo.longe

Experimental research is the most familiar type of research design for individuals in the physical sciences and a host of other fields. This is mainly because experimental research is a classical scientific experiment, similar to those performed in high school science classes.

Imagine taking 2 samples of the same plant and exposing one of them to sunlight, while the other is kept away from sunlight. Let the plant exposed to sunlight be called sample A, while the latter is called sample B.

If after the duration of the research, we find out that sample A grows and sample B dies, even though they are both regularly wetted and given the same treatment. Therefore, we can conclude that sunlight will aid growth in all similar plants.

What is Experimental Research?

Experimental research is a scientific approach to research, where one or more independent variables are manipulated and applied to one or more dependent variables to measure their effect on the latter. The effect of the independent variables on the dependent variables is usually observed and recorded over some time, to aid researchers in drawing a reasonable conclusion regarding the relationship between these 2 variable types.

The experimental research method is widely used in physical and social sciences, psychology, and education. It is based on the comparison between two or more groups with a straightforward logic, which may, however, be difficult to execute.

Mostly related to a laboratory test procedure, experimental research designs involve collecting quantitative data and performing statistical analysis on them during research. Therefore, making it an example of quantitative research method .

What are The Types of Experimental Research Design?

The types of experimental research design are determined by the way the researcher assigns subjects to different conditions and groups. They are of 3 types, namely; pre-experimental, quasi-experimental, and true experimental research.

Pre-experimental Research Design

In pre-experimental research design, either a group or various dependent groups are observed for the effect of the application of an independent variable which is presumed to cause change. It is the simplest form of experimental research design and is treated with no control group.

Although very practical, experimental research is lacking in several areas of the true-experimental criteria. The pre-experimental research design is further divided into three types

  • One-shot Case Study Research Design

In this type of experimental study, only one dependent group or variable is considered. The study is carried out after some treatment which was presumed to cause change, making it a posttest study.

  • One-group Pretest-posttest Research Design: 

This research design combines both posttest and pretest study by carrying out a test on a single group before the treatment is administered and after the treatment is administered. With the former being administered at the beginning of treatment and later at the end.

  • Static-group Comparison: 

In a static-group comparison study, 2 or more groups are placed under observation, where only one of the groups is subjected to some treatment while the other groups are held static. All the groups are post-tested, and the observed differences between the groups are assumed to be a result of the treatment.

Quasi-experimental Research Design

  The word “quasi” means partial, half, or pseudo. Therefore, the quasi-experimental research bearing a resemblance to the true experimental research, but not the same.  In quasi-experiments, the participants are not randomly assigned, and as such, they are used in settings where randomization is difficult or impossible.

 This is very common in educational research, where administrators are unwilling to allow the random selection of students for experimental samples.

Some examples of quasi-experimental research design include; the time series, no equivalent control group design, and the counterbalanced design.

True Experimental Research Design

The true experimental research design relies on statistical analysis to approve or disprove a hypothesis. It is the most accurate type of experimental design and may be carried out with or without a pretest on at least 2 randomly assigned dependent subjects.

The true experimental research design must contain a control group, a variable that can be manipulated by the researcher, and the distribution must be random. The classification of true experimental design include:

  • The posttest-only Control Group Design: In this design, subjects are randomly selected and assigned to the 2 groups (control and experimental), and only the experimental group is treated. After close observation, both groups are post-tested, and a conclusion is drawn from the difference between these groups.
  • The pretest-posttest Control Group Design: For this control group design, subjects are randomly assigned to the 2 groups, both are presented, but only the experimental group is treated. After close observation, both groups are post-tested to measure the degree of change in each group.
  • Solomon four-group Design: This is the combination of the pretest-only and the pretest-posttest control groups. In this case, the randomly selected subjects are placed into 4 groups.

The first two of these groups are tested using the posttest-only method, while the other two are tested using the pretest-posttest method.

Examples of Experimental Research

Experimental research examples are different, depending on the type of experimental research design that is being considered. The most basic example of experimental research is laboratory experiments, which may differ in nature depending on the subject of research.

Administering Exams After The End of Semester

During the semester, students in a class are lectured on particular courses and an exam is administered at the end of the semester. In this case, the students are the subjects or dependent variables while the lectures are the independent variables treated on the subjects.

Only one group of carefully selected subjects are considered in this research, making it a pre-experimental research design example. We will also notice that tests are only carried out at the end of the semester, and not at the beginning.

Further making it easy for us to conclude that it is a one-shot case study research. 

Employee Skill Evaluation

Before employing a job seeker, organizations conduct tests that are used to screen out less qualified candidates from the pool of qualified applicants. This way, organizations can determine an employee’s skill set at the point of employment.

In the course of employment, organizations also carry out employee training to improve employee productivity and generally grow the organization. Further evaluation is carried out at the end of each training to test the impact of the training on employee skills, and test for improvement.

Here, the subject is the employee, while the treatment is the training conducted. This is a pretest-posttest control group experimental research example.

Evaluation of Teaching Method

Let us consider an academic institution that wants to evaluate the teaching method of 2 teachers to determine which is best. Imagine a case whereby the students assigned to each teacher is carefully selected probably due to personal request by parents or due to stubbornness and smartness.

This is a no equivalent group design example because the samples are not equal. By evaluating the effectiveness of each teacher’s teaching method this way, we may conclude after a post-test has been carried out.

However, this may be influenced by factors like the natural sweetness of a student. For example, a very smart student will grab more easily than his or her peers irrespective of the method of teaching.

What are the Characteristics of Experimental Research?  

Experimental research contains dependent, independent and extraneous variables. The dependent variables are the variables being treated or manipulated and are sometimes called the subject of the research.

The independent variables are the experimental treatment being exerted on the dependent variables. Extraneous variables, on the other hand, are other factors affecting the experiment that may also contribute to the change.

The setting is where the experiment is carried out. Many experiments are carried out in the laboratory, where control can be exerted on the extraneous variables, thereby eliminating them.

Other experiments are carried out in a less controllable setting. The choice of setting used in research depends on the nature of the experiment being carried out.

  • Multivariable

Experimental research may include multiple independent variables, e.g. time, skills, test scores, etc.

Why Use Experimental Research Design?  

Experimental research design can be majorly used in physical sciences, social sciences, education, and psychology. It is used to make predictions and draw conclusions on a subject matter. 

Some uses of experimental research design are highlighted below.

  • Medicine: Experimental research is used to provide the proper treatment for diseases. In most cases, rather than directly using patients as the research subject, researchers take a sample of the bacteria from the patient’s body and are treated with the developed antibacterial

The changes observed during this period are recorded and evaluated to determine its effectiveness. This process can be carried out using different experimental research methods.

  • Education: Asides from science subjects like Chemistry and Physics which involves teaching students how to perform experimental research, it can also be used in improving the standard of an academic institution. This includes testing students’ knowledge on different topics, coming up with better teaching methods, and the implementation of other programs that will aid student learning.
  • Human Behavior: Social scientists are the ones who mostly use experimental research to test human behaviour. For example, consider 2 people randomly chosen to be the subject of the social interaction research where one person is placed in a room without human interaction for 1 year.

The other person is placed in a room with a few other people, enjoying human interaction. There will be a difference in their behaviour at the end of the experiment.

  • UI/UX: During the product development phase, one of the major aims of the product team is to create a great user experience with the product. Therefore, before launching the final product design, potential are brought in to interact with the product.

For example, when finding it difficult to choose how to position a button or feature on the app interface, a random sample of product testers are allowed to test the 2 samples and how the button positioning influences the user interaction is recorded.

What are the Disadvantages of Experimental Research?  

  • It is highly prone to human error due to its dependency on variable control which may not be properly implemented. These errors could eliminate the validity of the experiment and the research being conducted.
  • Exerting control of extraneous variables may create unrealistic situations. Eliminating real-life variables will result in inaccurate conclusions. This may also result in researchers controlling the variables to suit his or her personal preferences.
  • It is a time-consuming process. So much time is spent on testing dependent variables and waiting for the effect of the manipulation of dependent variables to manifest.
  • It is expensive.
  • It is very risky and may have ethical complications that cannot be ignored. This is common in medical research, where failed trials may lead to a patient’s death or a deteriorating health condition.
  • Experimental research results are not descriptive.
  • Response bias can also be supplied by the subject of the conversation.
  • Human responses in experimental research can be difficult to measure.

What are the Data Collection Methods in Experimental Research?  

Data collection methods in experimental research are the different ways in which data can be collected for experimental research. They are used in different cases, depending on the type of research being carried out.

1. Observational Study

This type of study is carried out over a long period. It measures and observes the variables of interest without changing existing conditions.

When researching the effect of social interaction on human behavior, the subjects who are placed in 2 different environments are observed throughout the research. No matter the kind of absurd behavior that is exhibited by the subject during this period, its condition will not be changed.

This may be a very risky thing to do in medical cases because it may lead to death or worse medical conditions.

2. Simulations

This procedure uses mathematical, physical, or computer models to replicate a real-life process or situation. It is frequently used when the actual situation is too expensive, dangerous, or impractical to replicate in real life.

This method is commonly used in engineering and operational research for learning purposes and sometimes as a tool to estimate possible outcomes of real research. Some common situation software are Simulink, MATLAB, and Simul8.

Not all kinds of experimental research can be carried out using simulation as a data collection tool . It is very impractical for a lot of laboratory-based research that involves chemical processes.

A survey is a tool used to gather relevant data about the characteristics of a population and is one of the most common data collection tools. A survey consists of a group of questions prepared by the researcher, to be answered by the research subject.

Surveys can be shared with the respondents both physically and electronically. When collecting data through surveys, the kind of data collected depends on the respondent, and researchers have limited control over it.

Formplus is the best tool for collecting experimental data using survey s. It has relevant features that will aid the data collection process and can also be used in other aspects of experimental research.

Differences between Experimental and Non-Experimental Research 

1. In experimental research, the researcher can control and manipulate the environment of the research, including the predictor variable which can be changed. On the other hand, non-experimental research cannot be controlled or manipulated by the researcher at will.

This is because it takes place in a real-life setting, where extraneous variables cannot be eliminated. Therefore, it is more difficult to conclude non-experimental studies, even though they are much more flexible and allow for a greater range of study fields.

2. The relationship between cause and effect cannot be established in non-experimental research, while it can be established in experimental research. This may be because many extraneous variables also influence the changes in the research subject, making it difficult to point at a particular variable as the cause of a particular change

3. Independent variables are not introduced, withdrawn, or manipulated in non-experimental designs, but the same may not be said about experimental research.

Experimental Research vs. Alternatives and When to Use Them

1. experimental research vs causal comparative.

Experimental research enables you to control variables and identify how the independent variable affects the dependent variable. Causal-comparative find out the cause-and-effect relationship between the variables by comparing already existing groups that are affected differently by the independent variable.

For example, in an experiment to see how K-12 education affects children and teenager development. An experimental research would split the children into groups, some would get formal K-12 education, while others won’t. This is not ethically right because every child has the right to education. So, what we do instead would be to compare already existing groups of children who are getting formal education with those who due to some circumstances can not.

Pros and Cons of Experimental vs Causal-Comparative Research

  • Causal-Comparative:   Strengths:  More realistic than experiments, can be conducted in real-world settings.  Weaknesses:  Establishing causality can be weaker due to the lack of manipulation.

2. Experimental Research vs Correlational Research

When experimenting, you are trying to establish a cause-and-effect relationship between different variables. For example, you are trying to establish the effect of heat on water, the temperature keeps changing (independent variable) and you see how it affects the water (dependent variable).

For correlational research, you are not necessarily interested in the why or the cause-and-effect relationship between the variables, you are focusing on the relationship. Using the same water and temperature example, you are only interested in the fact that they change, you are not investigating which of the variables or other variables causes them to change.

Pros and Cons of Experimental vs Correlational Research

3. experimental research vs descriptive research.

With experimental research, you alter the independent variable to see how it affects the dependent variable, but with descriptive research you are simply studying the characteristics of the variable you are studying.

So, in an experiment to see how blown glass reacts to temperature, experimental research would keep altering the temperature to varying levels of high and low to see how it affects the dependent variable (glass). But descriptive research would investigate the glass properties.

Pros and Cons of Experimental vs Descriptive Research

4. experimental research vs action research.

Experimental research tests for causal relationships by focusing on one independent variable vs the dependent variable and keeps other variables constant. So, you are testing hypotheses and using the information from the research to contribute to knowledge.

However, with action research, you are using a real-world setting which means you are not controlling variables. You are also performing the research to solve actual problems and improve already established practices.

For example, if you are testing for how long commutes affect workers’ productivity. With experimental research, you would vary the length of commute to see how the time affects work. But with action research, you would account for other factors such as weather, commute route, nutrition, etc. Also, experimental research helps know the relationship between commute time and productivity, while action research helps you look for ways to improve productivity

Pros and Cons of Experimental vs Action Research

Conclusion  .

Experimental research designs are often considered to be the standard in research designs. This is partly due to the common misconception that research is equivalent to scientific experiments—a component of experimental research design.

In this research design, one or more subjects or dependent variables are randomly assigned to different treatments (i.e. independent variables manipulated by the researcher) and the results are observed to conclude. One of the uniqueness of experimental research is in its ability to control the effect of extraneous variables.

Experimental research is suitable for research whose goal is to examine cause-effect relationships, e.g. explanatory research. It can be conducted in the laboratory or field settings, depending on the aim of the research that is being carried out. 

Logo

Connect to Formplus, Get Started Now - It's Free!

  • examples of experimental research
  • experimental research methods
  • types of experimental research
  • busayo.longe

Formplus

You may also like:

What is Experimenter Bias? Definition, Types & Mitigation

In this article, we will look into the concept of experimental bias and how it can be identified in your research

experimental study methods

Experimental Vs Non-Experimental Research: 15 Key Differences

Differences between experimental and non experimental research on definitions, types, examples, data collection tools, uses, advantages etc.

Response vs Explanatory Variables: Definition & Examples

In this article, we’ll be comparing the two types of variables, what they both mean and see some of their real-life applications in research

Simpson’s Paradox & How to Avoid it in Experimental Research

In this article, we are going to look at Simpson’s Paradox from its historical point and later, we’ll consider its effect in...

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

Instant insights, infinite possibilities

Experimental design: Guide, steps, examples

Last updated

27 April 2023

Reviewed by

Miroslav Damyanov

Short on time? Get an AI generated summary of this article instead

Experimental research design is a scientific framework that allows you to manipulate one or more variables while controlling the test environment. 

When testing a theory or new product, it can be helpful to have a certain level of control and manipulate variables to discover different outcomes. You can use these experiments to determine cause and effect or study variable associations. 

This guide explores the types of experimental design, the steps in designing an experiment, and the advantages and limitations of experimental design. 

Make research less tedious

Dovetail streamlines research to help you uncover and share actionable insights

  • What is experimental research design?

You can determine the relationship between each of the variables by: 

Manipulating one or more independent variables (i.e., stimuli or treatments)

Applying the changes to one or more dependent variables (i.e., test groups or outcomes)

With the ability to analyze the relationship between variables and using measurable data, you can increase the accuracy of the result. 

What is a good experimental design?

A good experimental design requires: 

Significant planning to ensure control over the testing environment

Sound experimental treatments

Properly assigning subjects to treatment groups

Without proper planning, unexpected external variables can alter an experiment's outcome. 

To meet your research goals, your experimental design should include these characteristics:

Provide unbiased estimates of inputs and associated uncertainties

Enable the researcher to detect differences caused by independent variables

Include a plan for analysis and reporting of the results

Provide easily interpretable results with specific conclusions

What's the difference between experimental and quasi-experimental design?

The major difference between experimental and quasi-experimental design is the random assignment of subjects to groups. 

A true experiment relies on certain controls. Typically, the researcher designs the treatment and randomly assigns subjects to control and treatment groups. 

However, these conditions are unethical or impossible to achieve in some situations.

When it's unethical or impractical to assign participants randomly, that’s when a quasi-experimental design comes in. 

This design allows researchers to conduct a similar experiment by assigning subjects to groups based on non-random criteria. 

Another type of quasi-experimental design might occur when the researcher doesn't have control over the treatment but studies pre-existing groups after they receive different treatments.

When can a researcher conduct experimental research?

Various settings and professions can use experimental research to gather information and observe behavior in controlled settings. 

Basically, a researcher can conduct experimental research any time they want to test a theory with variable and dependent controls. 

Experimental research is an option when the project includes an independent variable and a desire to understand the relationship between cause and effect. 

  • The importance of experimental research design

Experimental research enables researchers to conduct studies that provide specific, definitive answers to questions and hypotheses. 

Researchers can test Independent variables in controlled settings to:

Test the effectiveness of a new medication

Design better products for consumers

Answer questions about human health and behavior

Developing a quality research plan means a researcher can accurately answer vital research questions with minimal error. As a result, definitive conclusions can influence the future of the independent variable. 

Types of experimental research designs

There are three main types of experimental research design. The research type you use will depend on the criteria of your experiment, your research budget, and environmental limitations. 

Pre-experimental research design

A pre-experimental research study is a basic observational study that monitors independent variables’ effects. 

During research, you observe one or more groups after applying a treatment to test whether the treatment causes any change. 

The three subtypes of pre-experimental research design are:

One-shot case study research design

This research method introduces a single test group to a single stimulus to study the results at the end of the application. 

After researchers presume the stimulus or treatment has caused changes, they gather results to determine how it affects the test subjects. 

One-group pretest-posttest design

This method uses a single test group but includes a pretest study as a benchmark. The researcher applies a test before and after the group’s exposure to a specific stimulus. 

Static group comparison design

This method includes two or more groups, enabling the researcher to use one group as a control. They apply a stimulus to one group and leave the other group static. 

A posttest study compares the results among groups. 

True experimental research design

A true experiment is the most common research method. It involves statistical analysis to prove or disprove a specific hypothesis . 

Under completely experimental conditions, researchers expose participants in two or more randomized groups to different stimuli. 

Random selection removes any potential for bias, providing more reliable results. 

These are the three main sub-groups of true experimental research design:

Posttest-only control group design

This structure requires the researcher to divide participants into two random groups. One group receives no stimuli and acts as a control while the other group experiences stimuli.

Researchers perform a test at the end of the experiment to observe the stimuli exposure results.

Pretest-posttest control group design

This test also requires two groups. It includes a pretest as a benchmark before introducing the stimulus. 

The pretest introduces multiple ways to test subjects. For instance, if the control group also experiences a change, it reveals that taking the test twice changes the results.

Solomon four-group design

This structure divides subjects into two groups, with two as control groups. Researchers assign the first control group a posttest only and the second control group a pretest and a posttest. 

The two variable groups mirror the control groups, but researchers expose them to stimuli. The ability to differentiate between groups in multiple ways provides researchers with more testing approaches for data-based conclusions. 

Quasi-experimental research design

Although closely related to a true experiment, quasi-experimental research design differs in approach and scope. 

Quasi-experimental research design doesn’t have randomly selected participants. Researchers typically divide the groups in this research by pre-existing differences. 

Quasi-experimental research is more common in educational studies, nursing, or other research projects where it's not ethical or practical to use randomized subject groups.

  • 5 steps for designing an experiment

Experimental research requires a clearly defined plan to outline the research parameters and expected goals. 

Here are five key steps in designing a successful experiment:

Step 1: Define variables and their relationship

Your experiment should begin with a question: What are you hoping to learn through your experiment? 

The relationship between variables in your study will determine your answer.

Define the independent variable (the intended stimuli) and the dependent variable (the expected effect of the stimuli). After identifying these groups, consider how you might control them in your experiment. 

Could natural variations affect your research? If so, your experiment should include a pretest and posttest. 

Step 2: Develop a specific, testable hypothesis

With a firm understanding of the system you intend to study, you can write a specific, testable hypothesis. 

What is the expected outcome of your study? 

Develop a prediction about how the independent variable will affect the dependent variable. 

How will the stimuli in your experiment affect your test subjects? 

Your hypothesis should provide a prediction of the answer to your research question . 

Step 3: Design experimental treatments to manipulate your independent variable

Depending on your experiment, your variable may be a fixed stimulus (like a medical treatment) or a variable stimulus (like a period during which an activity occurs). 

Determine which type of stimulus meets your experiment’s needs and how widely or finely to vary your stimuli. 

Step 4: Assign subjects to groups

When you have a clear idea of how to carry out your experiment, you can determine how to assemble test groups for an accurate study. 

When choosing your study groups, consider: 

The size of your experiment

Whether you can select groups randomly

Your target audience for the outcome of the study

You should be able to create groups with an equal number of subjects and include subjects that match your target audience. Remember, you should assign one group as a control and use one or more groups to study the effects of variables. 

Step 5: Plan how to measure your dependent variable

This step determines how you'll collect data to determine the study's outcome. You should seek reliable and valid measurements that minimize research bias or error. 

You can measure some data with scientific tools, while you’ll need to operationalize other forms to turn them into measurable observations.

  • Advantages of experimental research

Experimental research is an integral part of our world. It allows researchers to conduct experiments that answer specific questions. 

While researchers use many methods to conduct different experiments, experimental research offers these distinct benefits:

Researchers can determine cause and effect by manipulating variables.

It gives researchers a high level of control.

Researchers can test multiple variables within a single experiment.

All industries and fields of knowledge can use it. 

Researchers can duplicate results to promote the validity of the study .

Replicating natural settings rapidly means immediate research.

Researchers can combine it with other research methods.

It provides specific conclusions about the validity of a product, theory, or idea.

  • Disadvantages (or limitations) of experimental research

Unfortunately, no research type yields ideal conditions or perfect results. 

While experimental research might be the right choice for some studies, certain conditions could render experiments useless or even dangerous. 

Before conducting experimental research, consider these disadvantages and limitations:

Required professional qualification

Only competent professionals with an academic degree and specific training are qualified to conduct rigorous experimental research. This ensures results are unbiased and valid. 

Limited scope

Experimental research may not capture the complexity of some phenomena, such as social interactions or cultural norms. These are difficult to control in a laboratory setting.

Resource-intensive

Experimental research can be expensive, time-consuming, and require significant resources, such as specialized equipment or trained personnel.

Limited generalizability

The controlled nature means the research findings may not fully apply to real-world situations or people outside the experimental setting.

Practical or ethical concerns

Some experiments may involve manipulating variables that could harm participants or violate ethical guidelines . 

Researchers must ensure their experiments do not cause harm or discomfort to participants. 

Sometimes, recruiting a sample of people to randomly assign may be difficult. 

  • Experimental research design example

Experiments across all industries and research realms provide scientists, developers, and other researchers with definitive answers. These experiments can solve problems, create inventions, and heal illnesses. 

Product design testing is an excellent example of experimental research. 

A company in the product development phase creates multiple prototypes for testing. With a randomized selection, researchers introduce each test group to a different prototype. 

When groups experience different product designs , the company can assess which option most appeals to potential customers. 

Experimental research design provides researchers with a controlled environment to conduct experiments that evaluate cause and effect. 

Using the five steps to develop a research plan ensures you anticipate and eliminate external variables while answering life’s crucial questions.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 5 February 2023

Last updated: 16 August 2024

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next.

  • Types of experimental

Log in or sign up

Get started for free

Logo for University of Southern Queensland

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

10 Experimental research

Experimental research—often considered to be the ‘gold standard’ in research designs—is one of the most rigorous of all research designs. In this design, one or more independent variables are manipulated by the researcher (as treatments), subjects are randomly assigned to different treatment levels (random assignment), and the results of the treatments on outcomes (dependent variables) are observed. The unique strength of experimental research is its internal validity (causality) due to its ability to link cause and effect through treatment manipulation, while controlling for the spurious effect of extraneous variable.

Experimental research is best suited for explanatory research—rather than for descriptive or exploratory research—where the goal of the study is to examine cause-effect relationships. It also works well for research that involves a relatively limited and well-defined set of independent variables that can either be manipulated or controlled. Experimental research can be conducted in laboratory or field settings. Laboratory experiments , conducted in laboratory (artificial) settings, tend to be high in internal validity, but this comes at the cost of low external validity (generalisability), because the artificial (laboratory) setting in which the study is conducted may not reflect the real world. Field experiments are conducted in field settings such as in a real organisation, and are high in both internal and external validity. But such experiments are relatively rare, because of the difficulties associated with manipulating treatments and controlling for extraneous effects in a field setting.

Experimental research can be grouped into two broad categories: true experimental designs and quasi-experimental designs. Both designs require treatment manipulation, but while true experiments also require random assignment, quasi-experiments do not. Sometimes, we also refer to non-experimental research, which is not really a research design, but an all-inclusive term that includes all types of research that do not employ treatment manipulation or random assignment, such as survey research, observational research, and correlational studies.

Basic concepts

Treatment and control groups. In experimental research, some subjects are administered one or more experimental stimulus called a treatment (the treatment group ) while other subjects are not given such a stimulus (the control group ). The treatment may be considered successful if subjects in the treatment group rate more favourably on outcome variables than control group subjects. Multiple levels of experimental stimulus may be administered, in which case, there may be more than one treatment group. For example, in order to test the effects of a new drug intended to treat a certain medical condition like dementia, if a sample of dementia patients is randomly divided into three groups, with the first group receiving a high dosage of the drug, the second group receiving a low dosage, and the third group receiving a placebo such as a sugar pill (control group), then the first two groups are experimental groups and the third group is a control group. After administering the drug for a period of time, if the condition of the experimental group subjects improved significantly more than the control group subjects, we can say that the drug is effective. We can also compare the conditions of the high and low dosage experimental groups to determine if the high dose is more effective than the low dose.

Treatment manipulation. Treatments are the unique feature of experimental research that sets this design apart from all other research methods. Treatment manipulation helps control for the ‘cause’ in cause-effect relationships. Naturally, the validity of experimental research depends on how well the treatment was manipulated. Treatment manipulation must be checked using pretests and pilot tests prior to the experimental study. Any measurements conducted before the treatment is administered are called pretest measures , while those conducted after the treatment are posttest measures .

Random selection and assignment. Random selection is the process of randomly drawing a sample from a population or a sampling frame. This approach is typically employed in survey research, and ensures that each unit in the population has a positive chance of being selected into the sample. Random assignment, however, is a process of randomly assigning subjects to experimental or control groups. This is a standard practice in true experimental research to ensure that treatment groups are similar (equivalent) to each other and to the control group prior to treatment administration. Random selection is related to sampling, and is therefore more closely related to the external validity (generalisability) of findings. However, random assignment is related to design, and is therefore most related to internal validity. It is possible to have both random selection and random assignment in well-designed experimental research, but quasi-experimental research involves neither random selection nor random assignment.

Threats to internal validity. Although experimental designs are considered more rigorous than other research methods in terms of the internal validity of their inferences (by virtue of their ability to control causes through treatment manipulation), they are not immune to internal validity threats. Some of these threats to internal validity are described below, within the context of a study of the impact of a special remedial math tutoring program for improving the math abilities of high school students.

History threat is the possibility that the observed effects (dependent variables) are caused by extraneous or historical events rather than by the experimental treatment. For instance, students’ post-remedial math score improvement may have been caused by their preparation for a math exam at their school, rather than the remedial math program.

Maturation threat refers to the possibility that observed effects are caused by natural maturation of subjects (e.g., a general improvement in their intellectual ability to understand complex concepts) rather than the experimental treatment.

Testing threat is a threat in pre-post designs where subjects’ posttest responses are conditioned by their pretest responses. For instance, if students remember their answers from the pretest evaluation, they may tend to repeat them in the posttest exam.

Not conducting a pretest can help avoid this threat.

Instrumentation threat , which also occurs in pre-post designs, refers to the possibility that the difference between pretest and posttest scores is not due to the remedial math program, but due to changes in the administered test, such as the posttest having a higher or lower degree of difficulty than the pretest.

Mortality threat refers to the possibility that subjects may be dropping out of the study at differential rates between the treatment and control groups due to a systematic reason, such that the dropouts were mostly students who scored low on the pretest. If the low-performing students drop out, the results of the posttest will be artificially inflated by the preponderance of high-performing students.

Regression threat —also called a regression to the mean—refers to the statistical tendency of a group’s overall performance to regress toward the mean during a posttest rather than in the anticipated direction. For instance, if subjects scored high on a pretest, they will have a tendency to score lower on the posttest (closer to the mean) because their high scores (away from the mean) during the pretest were possibly a statistical aberration. This problem tends to be more prevalent in non-random samples and when the two measures are imperfectly correlated.

Two-group experimental designs

R

Pretest-posttest control group design . In this design, subjects are randomly assigned to treatment and control groups, subjected to an initial (pretest) measurement of the dependent variables of interest, the treatment group is administered a treatment (representing the independent variable of interest), and the dependent variables measured again (posttest). The notation of this design is shown in Figure 10.1.

Pretest-posttest control group design

Statistical analysis of this design involves a simple analysis of variance (ANOVA) between the treatment and control groups. The pretest-posttest design handles several threats to internal validity, such as maturation, testing, and regression, since these threats can be expected to influence both treatment and control groups in a similar (random) manner. The selection threat is controlled via random assignment. However, additional threats to internal validity may exist. For instance, mortality can be a problem if there are differential dropout rates between the two groups, and the pretest measurement may bias the posttest measurement—especially if the pretest introduces unusual topics or content.

Posttest -only control group design . This design is a simpler version of the pretest-posttest design where pretest measurements are omitted. The design notation is shown in Figure 10.2.

Posttest-only control group design

The treatment effect is measured simply as the difference in the posttest scores between the two groups:

\[E = (O_{1} - O_{2})\,.\]

The appropriate statistical analysis of this design is also a two-group analysis of variance (ANOVA). The simplicity of this design makes it more attractive than the pretest-posttest design in terms of internal validity. This design controls for maturation, testing, regression, selection, and pretest-posttest interaction, though the mortality threat may continue to exist.

C

Because the pretest measure is not a measurement of the dependent variable, but rather a covariate, the treatment effect is measured as the difference in the posttest scores between the treatment and control groups as:

Due to the presence of covariates, the right statistical analysis of this design is a two-group analysis of covariance (ANCOVA). This design has all the advantages of posttest-only design, but with internal validity due to the controlling of covariates. Covariance designs can also be extended to pretest-posttest control group design.

Factorial designs

Two-group designs are inadequate if your research requires manipulation of two or more independent variables (treatments). In such cases, you would need four or higher-group designs. Such designs, quite popular in experimental research, are commonly called factorial designs. Each independent variable in this design is called a factor , and each subdivision of a factor is called a level . Factorial designs enable the researcher to examine not only the individual effect of each treatment on the dependent variables (called main effects), but also their joint effect (called interaction effects).

2 \times 2

In a factorial design, a main effect is said to exist if the dependent variable shows a significant difference between multiple levels of one factor, at all levels of other factors. No change in the dependent variable across factor levels is the null case (baseline), from which main effects are evaluated. In the above example, you may see a main effect of instructional type, instructional time, or both on learning outcomes. An interaction effect exists when the effect of differences in one factor depends upon the level of a second factor. In our example, if the effect of instructional type on learning outcomes is greater for three hours/week of instructional time than for one and a half hours/week, then we can say that there is an interaction effect between instructional type and instructional time on learning outcomes. Note that the presence of interaction effects dominate and make main effects irrelevant, and it is not meaningful to interpret main effects if interaction effects are significant.

Hybrid experimental designs

Hybrid designs are those that are formed by combining features of more established designs. Three such hybrid designs are randomised bocks design, Solomon four-group design, and switched replications design.

Randomised block design. This is a variation of the posttest-only or pretest-posttest control group design where the subject population can be grouped into relatively homogeneous subgroups (called blocks ) within which the experiment is replicated. For instance, if you want to replicate the same posttest-only design among university students and full-time working professionals (two homogeneous blocks), subjects in both blocks are randomly split between the treatment group (receiving the same treatment) and the control group (see Figure 10.5). The purpose of this design is to reduce the ‘noise’ or variance in data that may be attributable to differences between the blocks so that the actual effect of interest can be detected more accurately.

Randomised blocks design

Solomon four-group design . In this design, the sample is divided into two treatment groups and two control groups. One treatment group and one control group receive the pretest, and the other two groups do not. This design represents a combination of posttest-only and pretest-posttest control group design, and is intended to test for the potential biasing effect of pretest measurement on posttest measures that tends to occur in pretest-posttest designs, but not in posttest-only designs. The design notation is shown in Figure 10.6.

Solomon four-group design

Switched replication design . This is a two-group design implemented in two phases with three waves of measurement. The treatment group in the first phase serves as the control group in the second phase, and the control group in the first phase becomes the treatment group in the second phase, as illustrated in Figure 10.7. In other words, the original design is repeated or replicated temporally with treatment/control roles switched between the two groups. By the end of the study, all participants will have received the treatment either during the first or the second phase. This design is most feasible in organisational contexts where organisational programs (e.g., employee training) are implemented in a phased manner or are repeated at regular intervals.

Switched replication design

Quasi-experimental designs

Quasi-experimental designs are almost identical to true experimental designs, but lacking one key ingredient: random assignment. For instance, one entire class section or one organisation is used as the treatment group, while another section of the same class or a different organisation in the same industry is used as the control group. This lack of random assignment potentially results in groups that are non-equivalent, such as one group possessing greater mastery of certain content than the other group, say by virtue of having a better teacher in a previous semester, which introduces the possibility of selection bias . Quasi-experimental designs are therefore inferior to true experimental designs in interval validity due to the presence of a variety of selection related threats such as selection-maturation threat (the treatment and control groups maturing at different rates), selection-history threat (the treatment and control groups being differentially impacted by extraneous or historical events), selection-regression threat (the treatment and control groups regressing toward the mean between pretest and posttest at different rates), selection-instrumentation threat (the treatment and control groups responding differently to the measurement), selection-testing (the treatment and control groups responding differently to the pretest), and selection-mortality (the treatment and control groups demonstrating differential dropout rates). Given these selection threats, it is generally preferable to avoid quasi-experimental designs to the greatest extent possible.

N

In addition, there are quite a few unique non-equivalent designs without corresponding true experimental design cousins. Some of the more useful of these designs are discussed next.

Regression discontinuity (RD) design . This is a non-equivalent pretest-posttest design where subjects are assigned to the treatment or control group based on a cut-off score on a preprogram measure. For instance, patients who are severely ill may be assigned to a treatment group to test the efficacy of a new drug or treatment protocol and those who are mildly ill are assigned to the control group. In another example, students who are lagging behind on standardised test scores may be selected for a remedial curriculum program intended to improve their performance, while those who score high on such tests are not selected from the remedial program.

RD design

Because of the use of a cut-off score, it is possible that the observed results may be a function of the cut-off score rather than the treatment, which introduces a new threat to internal validity. However, using the cut-off score also ensures that limited or costly resources are distributed to people who need them the most, rather than randomly across a population, while simultaneously allowing a quasi-experimental treatment. The control group scores in the RD design do not serve as a benchmark for comparing treatment group scores, given the systematic non-equivalence between the two groups. Rather, if there is no discontinuity between pretest and posttest scores in the control group, but such a discontinuity persists in the treatment group, then this discontinuity is viewed as evidence of the treatment effect.

Proxy pretest design . This design, shown in Figure 10.11, looks very similar to the standard NEGD (pretest-posttest) design, with one critical difference: the pretest score is collected after the treatment is administered. A typical application of this design is when a researcher is brought in to test the efficacy of a program (e.g., an educational program) after the program has already started and pretest data is not available. Under such circumstances, the best option for the researcher is often to use a different prerecorded measure, such as students’ grade point average before the start of the program, as a proxy for pretest data. A variation of the proxy pretest design is to use subjects’ posttest recollection of pretest data, which may be subject to recall bias, but nevertheless may provide a measure of perceived gain or change in the dependent variable.

Proxy pretest design

Separate pretest-posttest samples design . This design is useful if it is not possible to collect pretest and posttest data from the same subjects for some reason. As shown in Figure 10.12, there are four groups in this design, but two groups come from a single non-equivalent group, while the other two groups come from a different non-equivalent group. For instance, say you want to test customer satisfaction with a new online service that is implemented in one city but not in another. In this case, customers in the first city serve as the treatment group and those in the second city constitute the control group. If it is not possible to obtain pretest and posttest measures from the same customers, you can measure customer satisfaction at one point in time, implement the new service program, and measure customer satisfaction (with a different set of customers) after the program is implemented. Customer satisfaction is also measured in the control group at the same times as in the treatment group, but without the new program implementation. The design is not particularly strong, because you cannot examine the changes in any specific customer’s satisfaction score before and after the implementation, but you can only examine average customer satisfaction scores. Despite the lower internal validity, this design may still be a useful way of collecting quasi-experimental data when pretest and posttest data is not available from the same subjects.

Separate pretest-posttest samples design

An interesting variation of the NEDV design is a pattern-matching NEDV design , which employs multiple outcome variables and a theory that explains how much each variable will be affected by the treatment. The researcher can then examine if the theoretical prediction is matched in actual observations. This pattern-matching technique—based on the degree of correspondence between theoretical and observed patterns—is a powerful way of alleviating internal validity concerns in the original NEDV design.

NEDV design

Perils of experimental research

Experimental research is one of the most difficult of research designs, and should not be taken lightly. This type of research is often best with a multitude of methodological problems. First, though experimental research requires theories for framing hypotheses for testing, much of current experimental research is atheoretical. Without theories, the hypotheses being tested tend to be ad hoc, possibly illogical, and meaningless. Second, many of the measurement instruments used in experimental research are not tested for reliability and validity, and are incomparable across studies. Consequently, results generated using such instruments are also incomparable. Third, often experimental research uses inappropriate research designs, such as irrelevant dependent variables, no interaction effects, no experimental controls, and non-equivalent stimulus across treatment groups. Findings from such studies tend to lack internal validity and are highly suspect. Fourth, the treatments (tasks) used in experimental research may be diverse, incomparable, and inconsistent across studies, and sometimes inappropriate for the subject population. For instance, undergraduate student subjects are often asked to pretend that they are marketing managers and asked to perform a complex budget allocation task in which they have no experience or expertise. The use of such inappropriate tasks, introduces new threats to internal validity (i.e., subject’s performance may be an artefact of the content or difficulty of the task setting), generates findings that are non-interpretable and meaningless, and makes integration of findings across studies impossible.

The design of proper experimental treatments is a very important task in experimental design, because the treatment is the raison d’etre of the experimental method, and must never be rushed or neglected. To design an adequate and appropriate task, researchers should use prevalidated tasks if available, conduct treatment manipulation checks to check for the adequacy of such tasks (by debriefing subjects after performing the assigned task), conduct pilot tests (repeatedly, if necessary), and if in doubt, use tasks that are simple and familiar for the respondent sample rather than tasks that are complex or unfamiliar.

In summary, this chapter introduced key concepts in the experimental design research method and introduced a variety of true experimental and quasi-experimental designs. Although these designs vary widely in internal validity, designs with less internal validity should not be overlooked and may sometimes be useful under specific circumstances and empirical contingencies.

Social Science Research: Principles, Methods and Practices (Revised edition) Copyright © 2019 by Anol Bhattacherjee is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Experimental Design: Definition and Types

By Jim Frost 3 Comments

What is Experimental Design?

An experimental design is a detailed plan for collecting and using data to identify causal relationships. Through careful planning, the design of experiments allows your data collection efforts to have a reasonable chance of detecting effects and testing hypotheses that answer your research questions.

An experiment is a data collection procedure that occurs in controlled conditions to identify and understand causal relationships between variables. Researchers can use many potential designs. The ultimate choice depends on their research question, resources, goals, and constraints. In some fields of study, researchers refer to experimental design as the design of experiments (DOE). Both terms are synonymous.

Scientist who developed an experimental design for her research.

Ultimately, the design of experiments helps ensure that your procedures and data will evaluate your research question effectively. Without an experimental design, you might waste your efforts in a process that, for many potential reasons, can’t answer your research question. In short, it helps you trust your results.

Learn more about Independent and Dependent Variables .

Design of Experiments: Goals & Settings

Experiments occur in many settings, ranging from psychology, social sciences, medicine, physics, engineering, and industrial and service sectors. Typically, experimental goals are to discover a previously unknown effect , confirm a known effect, or test a hypothesis.

Effects represent causal relationships between variables. For example, in a medical experiment, does the new medicine cause an improvement in health outcomes? If so, the medicine has a causal effect on the outcome.

An experimental design’s focus depends on the subject area and can include the following goals:

  • Understanding the relationships between variables.
  • Identifying the variables that have the largest impact on the outcomes.
  • Finding the input variable settings that produce an optimal result.

For example, psychologists have conducted experiments to understand how conformity affects decision-making. Sociologists have performed experiments to determine whether ethnicity affects the public reaction to staged bike thefts. These experiments map out the causal relationships between variables, and their primary goal is to understand the role of various factors.

Conversely, in a manufacturing environment, the researchers might use an experimental design to find the factors that most effectively improve their product’s strength, identify the optimal manufacturing settings, and do all that while accounting for various constraints. In short, a manufacturer’s goal is often to use experiments to improve their products cost-effectively.

In a medical experiment, the goal might be to quantify the medicine’s effect and find the optimum dosage.

Developing an Experimental Design

Developing an experimental design involves planning that maximizes the potential to collect data that is both trustworthy and able to detect causal relationships. Specifically, these studies aim to see effects when they exist in the population the researchers are studying, preferentially favor causal effects, isolate each factor’s true effect from potential confounders, and produce conclusions that you can generalize to the real world.

To accomplish these goals, experimental designs carefully manage data validity and reliability , and internal and external experimental validity. When your experiment is valid and reliable, you can expect your procedures and data to produce trustworthy results.

An excellent experimental design involves the following:

  • Lots of preplanning.
  • Developing experimental treatments.
  • Determining how to assign subjects to treatment groups.

The remainder of this article focuses on how experimental designs incorporate these essential items to accomplish their research goals.

Learn more about Data Reliability vs. Validity and Internal and External Experimental Validity .

Preplanning, Defining, and Operationalizing for Design of Experiments

A literature review is crucial for the design of experiments.

This phase of the design of experiments helps you identify critical variables, know how to measure them while ensuring reliability and validity, and understand the relationships between them. The review can also help you find ways to reduce sources of variability, which increases your ability to detect treatment effects. Notably, the literature review allows you to learn how similar studies designed their experiments and the challenges they faced.

Operationalizing a study involves taking your research question, using the background information you gathered, and formulating an actionable plan.

This process should produce a specific and testable hypothesis using data that you can reasonably collect given the resources available to the experiment.

  • Null hypothesis : The jumping exercise intervention does not affect bone density.
  • Alternative hypothesis : The jumping exercise intervention affects bone density.

To learn more about this early phase, read Five Steps for Conducting Scientific Studies with Statistical Analyses .

Formulating Treatments in Experimental Designs

In an experimental design, treatments are variables that the researchers control. They are the primary independent variables of interest. Researchers administer the treatment to the subjects or items in the experiment and want to know whether it causes changes in the outcome.

As the name implies, a treatment can be medical in nature, such as a new medicine or vaccine. But it’s a general term that applies to other things such as training programs, manufacturing settings, teaching methods, and types of fertilizers. I helped run an experiment where the treatment was a jumping exercise intervention that we hoped would increase bone density. All these treatment examples are things that potentially influence a measurable outcome.

Even when you know your treatment generally, you must carefully consider the amount. How large of a dose? If you’re comparing three different temperatures in a manufacturing process, how far apart are they? For my bone mineral density study, we had to determine how frequently the exercise sessions would occur and how long each lasted.

How you define the treatments in the design of experiments can affect your findings and the generalizability of your results.

Assigning Subjects to Experimental Groups

A crucial decision for all experimental designs is determining how researchers assign subjects to the experimental conditions—the treatment and control groups. The control group is often, but not always, the lack of a treatment. It serves as a basis for comparison by showing outcomes for subjects who don’t receive a treatment. Learn more about Control Groups .

How your experimental design assigns subjects to the groups affects how confident you can be that the findings represent true causal effects rather than mere correlation caused by confounders. Indeed, the assignment method influences how you control for confounding variables. This is the difference between correlation and causation .

Imagine a study finds that vitamin consumption correlates with better health outcomes. As a researcher, you want to be able to say that vitamin consumption causes the improvements. However, with the wrong experimental design, you might only be able to say there is an association. A confounder, and not the vitamins, might actually cause the health benefits.

Let’s explore some of the ways to assign subjects in design of experiments.

Completely Randomized Designs

A completely randomized experimental design randomly assigns all subjects to the treatment and control groups. You simply take each participant and use a random process to determine their group assignment. You can flip coins, roll a die, or use a computer. Randomized experiments must be prospective studies because they need to be able to control group assignment.

Random assignment in the design of experiments helps ensure that the groups are roughly equivalent at the beginning of the study. This equivalence at the start increases your confidence that any differences you see at the end were caused by the treatments. The randomization tends to equalize confounders between the experimental groups and, thereby, cancels out their effects, leaving only the treatment effects.

For example, in a vitamin study, the researchers can randomly assign participants to either the control or vitamin group. Because the groups are approximately equal when the experiment starts, if the health outcomes are different at the end of the study, the researchers can be confident that the vitamins caused those improvements.

Statisticians consider randomized experimental designs to be the best for identifying causal relationships.

If you can’t randomly assign subjects but want to draw causal conclusions about an intervention, consider using a quasi-experimental design .

Learn more about Randomized Controlled Trials and Random Assignment in Experiments .

Randomized Block Designs

Nuisance factors are variables that can affect the outcome, but they are not the researcher’s primary interest. Unfortunately, they can hide or distort the treatment results. When experimenters know about specific nuisance factors, they can use a randomized block design to minimize their impact.

This experimental design takes subjects with a shared “nuisance” characteristic and groups them into blocks. The participants in each block are then randomly assigned to the experimental groups. This process allows the experiment to control for known nuisance factors.

Blocking in the design of experiments reduces the impact of nuisance factors on experimental error. The analysis assesses the effects of the treatment within each block, which removes the variability between blocks. The result is that blocked experimental designs can reduce the impact of nuisance variables, increasing the ability to detect treatment effects accurately.

Suppose you’re testing various teaching methods. Because grade level likely affects educational outcomes, you might use grade level as a blocking factor. To use a randomized block design for this scenario, divide the participants by grade level and then randomly assign the members of each grade level to the experimental groups.

A standard guideline for an experimental design is to “Block what you can, randomize what you cannot.” Use blocking for a few primary nuisance factors. Then use random assignment to distribute the unblocked nuisance factors equally between the experimental conditions.

You can also use covariates to control nuisance factors. Learn about Covariates: Definition and Uses .

Observational Studies

In some experimental designs, randomly assigning subjects to the experimental conditions is impossible or unethical. The researchers simply can’t assign participants to the experimental groups. However, they can observe them in their natural groupings, measure the essential variables, and look for correlations. These observational studies are also known as quasi-experimental designs. Retrospective studies must be observational in nature because they look back at past events.

Imagine you’re studying the effects of depression on an activity. Clearly, you can’t randomly assign participants to the depression and control groups. But you can observe participants with and without depression and see how their task performance differs.

Observational studies let you perform research when you can’t control the treatment. However, quasi-experimental designs increase the problem of confounding variables. For this design of experiments, correlation does not necessarily imply causation. While special procedures can help control confounders in an observational study, you’re ultimately less confident that the results represent causal findings.

Learn more about Observational Studies .

For a good comparison, learn about the differences and tradeoffs between Observational Studies and Randomized Experiments .

Between-Subjects vs. Within-Subjects Experimental Designs

When you think of the design of experiments, you probably picture a treatment and control group. Researchers assign participants to only one of these groups, so each group contains entirely different subjects than the other groups. Analysts compare the groups at the end of the experiment. Statisticians refer to this method as a between-subjects, or independent measures, experimental design.

In a between-subjects design , you can have more than one treatment group, but each subject is exposed to only one condition, the control group or one of the treatment groups.

A potential downside to this approach is that differences between groups at the beginning can affect the results at the end. As you’ve read earlier, random assignment can reduce those differences, but it is imperfect. There will always be some variability between the groups.

In a  within-subjects experimental design , also known as repeated measures, subjects experience all treatment conditions and are measured for each. Each subject acts as their own control, which reduces variability and increases the statistical power to detect effects.

In this experimental design, you minimize pre-existing differences between the experimental conditions because they all contain the same subjects. However, the order of treatments can affect the results. Beware of practice and fatigue effects. Learn more about Repeated Measures Designs .

Assigned to one experimental condition Participates in all experimental conditions
Requires more subjects Fewer subjects
Differences between subjects in the groups can affect the results Uses same subjects in all conditions.
No order of treatment effects. Order of treatments can affect results.

Design of Experiments Examples

For example, a bone density study has three experimental groups—a control group, a stretching exercise group, and a jumping exercise group.

In a between-subjects experimental design, scientists randomly assign each participant to one of the three groups.

In a within-subjects design, all subjects experience the three conditions sequentially while the researchers measure bone density repeatedly. The procedure can switch the order of treatments for the participants to help reduce order effects.

Matched Pairs Experimental Design

A matched pairs experimental design is a between-subjects study that uses pairs of similar subjects. Researchers use this approach to reduce pre-existing differences between experimental groups. It’s yet another design of experiments method for reducing sources of variability.

Researchers identify variables likely to affect the outcome, such as demographics. When they pick a subject with a set of characteristics, they try to locate another participant with similar attributes to create a matched pair. Scientists randomly assign one member of a pair to the treatment group and the other to the control group.

On the plus side, this process creates two similar groups, and it doesn’t create treatment order effects. While matched pairs do not produce the perfectly matched groups of a within-subjects design (which uses the same subjects in all conditions), it aims to reduce variability between groups relative to a between-subjects study.

On the downside, finding matched pairs is very time-consuming. Additionally, if one member of a matched pair drops out, the other subject must leave the study too.

Learn more about Matched Pairs Design: Uses & Examples .

Another consideration is whether you’ll use a cross-sectional design (one point in time) or use a longitudinal study to track changes over time .

A case study is a research method that often serves as a precursor to a more rigorous experimental design by identifying research questions, variables, and hypotheses to test. Learn more about What is a Case Study? Definition & Examples .

In conclusion, the design of experiments is extremely sensitive to subject area concerns and the time and resources available to the researchers. Developing a suitable experimental design requires balancing a multitude of considerations. A successful design is necessary to obtain trustworthy answers to your research question and to have a reasonable chance of detecting treatment effects when they exist.

Share this:

experimental study methods

Reader Interactions

' src=

March 23, 2024 at 2:35 pm

Dear Jim You wrote a superb document, I will use it in my Buistatistics course, along with your three books. Thank you very much! Miguel

' src=

March 23, 2024 at 5:43 pm

Thanks so much, Miguel! Glad this post was helpful and I trust the books will be as well.

' src=

April 10, 2023 at 4:36 am

What are the purpose and uses of experimental research design?

Comments and Questions Cancel reply

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

Research Methods | Definitions, Types, Examples

Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design . When planning your methods, there are two key decisions you will make.

First, decide how you will collect data . Your methods depend on what type of data you need to answer your research question :

  • Qualitative vs. quantitative : Will your data take the form of words or numbers?
  • Primary vs. secondary : Will you collect original data yourself, or will you use data that has already been collected by someone else?
  • Descriptive vs. experimental : Will you take measurements of something as it is, or will you perform an experiment?

Second, decide how you will analyze the data .

  • For quantitative data, you can use statistical analysis methods to test relationships between variables.
  • For qualitative data, you can use methods such as thematic analysis to interpret patterns and meanings in the data.

Table of contents

Methods for collecting data, examples of data collection methods, methods for analyzing data, examples of data analysis methods, other interesting articles, frequently asked questions about research methods.

Data is the information that you collect for the purposes of answering your research question . The type of data you need depends on the aims of your research.

Qualitative vs. quantitative data

Your choice of qualitative or quantitative data collection depends on the type of knowledge you want to develop.

For questions about ideas, experiences and meanings, or to study something that can’t be described numerically, collect qualitative data .

If you want to develop a more mechanistic understanding of a topic, or your research involves hypothesis testing , collect quantitative data .

Qualitative to broader populations. .
Quantitative .

You can also take a mixed methods approach , where you use both qualitative and quantitative research methods.

Primary vs. secondary research

Primary research is any original data that you collect yourself for the purposes of answering your research question (e.g. through surveys , observations and experiments ). Secondary research is data that has already been collected by other researchers (e.g. in a government census or previous scientific studies).

If you are exploring a novel research question, you’ll probably need to collect primary data . But if you want to synthesize existing knowledge, analyze historical trends, or identify patterns on a large scale, secondary data might be a better choice.

Primary . methods.
Secondary

Descriptive vs. experimental data

In descriptive research , you collect data about your study subject without intervening. The validity of your research will depend on your sampling method .

In experimental research , you systematically intervene in a process and measure the outcome. The validity of your research will depend on your experimental design .

To conduct an experiment, you need to be able to vary your independent variable , precisely measure your dependent variable, and control for confounding variables . If it’s practically and ethically possible, this method is the best choice for answering questions about cause and effect.

Descriptive . .
Experimental

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Research methods for collecting data
Research method Primary or secondary? Qualitative or quantitative? When to use
Primary Quantitative To test cause-and-effect relationships.
Primary Quantitative To understand general characteristics of a population.
Interview/focus group Primary Qualitative To gain more in-depth understanding of a topic.
Observation Primary Either To understand how something occurs in its natural setting.
Secondary Either To situate your research in an existing body of work, or to evaluate trends within a research topic.
Either Either To gain an in-depth understanding of a specific group or context, or when you don’t have the resources for a large study.

Your data analysis methods will depend on the type of data you collect and how you prepare it for analysis.

Data can often be analyzed both quantitatively and qualitatively. For example, survey responses could be analyzed qualitatively by studying the meanings of responses or quantitatively by studying the frequencies of responses.

Qualitative analysis methods

Qualitative analysis is used to understand words, ideas, and experiences. You can use it to interpret data that was collected:

  • From open-ended surveys and interviews , literature reviews , case studies , ethnographies , and other sources that use text rather than numbers.
  • Using non-probability sampling methods .

Qualitative analysis tends to be quite flexible and relies on the researcher’s judgement, so you have to reflect carefully on your choices and assumptions and be careful to avoid research bias .

Quantitative analysis methods

Quantitative analysis uses numbers and statistics to understand frequencies, averages and correlations (in descriptive studies) or cause-and-effect relationships (in experiments).

You can use quantitative analysis to interpret data that was collected either:

  • During an experiment .
  • Using probability sampling methods .

Because the data is collected and analyzed in a statistically valid way, the results of quantitative analysis can be easily standardized and shared among researchers.

Research methods for analyzing data
Research method Qualitative or quantitative? When to use
Quantitative To analyze data collected in a statistically valid manner (e.g. from experiments, surveys, and observations).
Meta-analysis Quantitative To statistically analyze the results of a large collection of studies.

Can only be applied to studies that collected data in a statistically valid manner.

Qualitative To analyze data collected from interviews, , or textual sources.

To understand general themes in the data and how they are communicated.

Either To analyze large volumes of textual or visual data collected from surveys, literature reviews, or other sources.

Can be quantitative (i.e. frequencies of words) or qualitative (i.e. meanings of words).

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square test of independence
  • Statistical power
  • Descriptive statistics
  • Degrees of freedom
  • Pearson correlation
  • Null hypothesis
  • Double-blind study
  • Case-control study
  • Research ethics
  • Data collection
  • Hypothesis testing
  • Structured interviews

Research bias

  • Hawthorne effect
  • Unconscious bias
  • Recall bias
  • Halo effect
  • Self-serving bias
  • Information bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Is this article helpful?

Other students also liked, writing strong research questions | criteria & examples.

  • What Is a Research Design | Types, Guide & Examples
  • Data Collection | Definition, Methods & Examples

More interesting articles

  • Between-Subjects Design | Examples, Pros, & Cons
  • Cluster Sampling | A Simple Step-by-Step Guide with Examples
  • Confounding Variables | Definition, Examples & Controls
  • Construct Validity | Definition, Types, & Examples
  • Content Analysis | Guide, Methods & Examples
  • Control Groups and Treatment Groups | Uses & Examples
  • Control Variables | What Are They & Why Do They Matter?
  • Correlation vs. Causation | Difference, Designs & Examples
  • Correlational Research | When & How to Use
  • Critical Discourse Analysis | Definition, Guide & Examples
  • Cross-Sectional Study | Definition, Uses & Examples
  • Descriptive Research | Definition, Types, Methods & Examples
  • Ethical Considerations in Research | Types & Examples
  • Explanatory and Response Variables | Definitions & Examples
  • Explanatory Research | Definition, Guide, & Examples
  • Exploratory Research | Definition, Guide, & Examples
  • External Validity | Definition, Types, Threats & Examples
  • Extraneous Variables | Examples, Types & Controls
  • Guide to Experimental Design | Overview, Steps, & Examples
  • How Do You Incorporate an Interview into a Dissertation? | Tips
  • How to Do Thematic Analysis | Step-by-Step Guide & Examples
  • How to Write a Literature Review | Guide, Examples, & Templates
  • How to Write a Strong Hypothesis | Steps & Examples
  • Inclusion and Exclusion Criteria | Examples & Definition
  • Independent vs. Dependent Variables | Definition & Examples
  • Inductive Reasoning | Types, Examples, Explanation
  • Inductive vs. Deductive Research Approach | Steps & Examples
  • Internal Validity in Research | Definition, Threats, & Examples
  • Internal vs. External Validity | Understanding Differences & Threats
  • Longitudinal Study | Definition, Approaches & Examples
  • Mediator vs. Moderator Variables | Differences & Examples
  • Mixed Methods Research | Definition, Guide & Examples
  • Multistage Sampling | Introductory Guide & Examples
  • Naturalistic Observation | Definition, Guide & Examples
  • Operationalization | A Guide with Examples, Pros & Cons
  • Population vs. Sample | Definitions, Differences & Examples
  • Primary Research | Definition, Types, & Examples
  • Qualitative vs. Quantitative Research | Differences, Examples & Methods
  • Quasi-Experimental Design | Definition, Types & Examples
  • Questionnaire Design | Methods, Question Types & Examples
  • Random Assignment in Experiments | Introduction & Examples
  • Random vs. Systematic Error | Definition & Examples
  • Reliability vs. Validity in Research | Difference, Types and Examples
  • Reproducibility vs Replicability | Difference & Examples
  • Reproducibility vs. Replicability | Difference & Examples
  • Sampling Methods | Types, Techniques & Examples
  • Semi-Structured Interview | Definition, Guide & Examples
  • Simple Random Sampling | Definition, Steps & Examples
  • Single, Double, & Triple Blind Study | Definition & Examples
  • Stratified Sampling | Definition, Guide & Examples
  • Structured Interview | Definition, Guide & Examples
  • Survey Research | Definition, Examples & Methods
  • Systematic Review | Definition, Example, & Guide
  • Systematic Sampling | A Step-by-Step Guide with Examples
  • Textual Analysis | Guide, 3 Approaches & Examples
  • The 4 Types of Reliability in Research | Definitions & Examples
  • The 4 Types of Validity in Research | Definitions & Examples
  • Transcribing an Interview | 5 Steps & Transcription Software
  • Triangulation in Research | Guide, Types, Examples
  • Types of Interviews in Research | Guide & Examples
  • Types of Research Designs Compared | Guide & Examples
  • Types of Variables in Research & Statistics | Examples
  • Unstructured Interview | Definition, Guide & Examples
  • What Is a Case Study? | Definition, Examples & Methods
  • What Is a Case-Control Study? | Definition & Examples
  • What Is a Cohort Study? | Definition & Examples
  • What Is a Conceptual Framework? | Tips & Examples
  • What Is a Controlled Experiment? | Definitions & Examples
  • What Is a Double-Barreled Question?
  • What Is a Focus Group? | Step-by-Step Guide & Examples
  • What Is a Likert Scale? | Guide & Examples
  • What Is a Prospective Cohort Study? | Definition & Examples
  • What Is a Retrospective Cohort Study? | Definition & Examples
  • What Is Action Research? | Definition & Examples
  • What Is an Observational Study? | Guide & Examples
  • What Is Concurrent Validity? | Definition & Examples
  • What Is Content Validity? | Definition & Examples
  • What Is Convenience Sampling? | Definition & Examples
  • What Is Convergent Validity? | Definition & Examples
  • What Is Criterion Validity? | Definition & Examples
  • What Is Data Cleansing? | Definition, Guide & Examples
  • What Is Deductive Reasoning? | Explanation & Examples
  • What Is Discriminant Validity? | Definition & Example
  • What Is Ecological Validity? | Definition & Examples
  • What Is Ethnography? | Definition, Guide & Examples
  • What Is Face Validity? | Guide, Definition & Examples
  • What Is Non-Probability Sampling? | Types & Examples
  • What Is Participant Observation? | Definition & Examples
  • What Is Peer Review? | Types & Examples
  • What Is Predictive Validity? | Examples & Definition
  • What Is Probability Sampling? | Types & Examples
  • What Is Purposive Sampling? | Definition & Examples
  • What Is Qualitative Observation? | Definition & Examples
  • What Is Qualitative Research? | Methods & Examples
  • What Is Quantitative Observation? | Definition & Examples
  • What Is Quantitative Research? | Definition, Uses & Methods

Get unlimited documents corrected

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

19+ Experimental Design Examples (Methods + Types)

practical psychology logo

Ever wondered how scientists discover new medicines, psychologists learn about behavior, or even how marketers figure out what kind of ads you like? Well, they all have something in common: they use a special plan or recipe called an "experimental design."

Imagine you're baking cookies. You can't just throw random amounts of flour, sugar, and chocolate chips into a bowl and hope for the best. You follow a recipe, right? Scientists and researchers do something similar. They follow a "recipe" called an experimental design to make sure their experiments are set up in a way that the answers they find are meaningful and reliable.

Experimental design is the roadmap researchers use to answer questions. It's a set of rules and steps that researchers follow to collect information, or "data," in a way that is fair, accurate, and makes sense.

experimental design test tubes

Long ago, people didn't have detailed game plans for experiments. They often just tried things out and saw what happened. But over time, people got smarter about this. They started creating structured plans—what we now call experimental designs—to get clearer, more trustworthy answers to their questions.

In this article, we'll take you on a journey through the world of experimental designs. We'll talk about the different types, or "flavors," of experimental designs, where they're used, and even give you a peek into how they came to be.

What Is Experimental Design?

Alright, before we dive into the different types of experimental designs, let's get crystal clear on what experimental design actually is.

Imagine you're a detective trying to solve a mystery. You need clues, right? Well, in the world of research, experimental design is like the roadmap that helps you find those clues. It's like the game plan in sports or the blueprint when you're building a house. Just like you wouldn't start building without a good blueprint, researchers won't start their studies without a strong experimental design.

So, why do we need experimental design? Think about baking a cake. If you toss ingredients into a bowl without measuring, you'll end up with a mess instead of a tasty dessert.

Similarly, in research, if you don't have a solid plan, you might get confusing or incorrect results. A good experimental design helps you ask the right questions ( think critically ), decide what to measure ( come up with an idea ), and figure out how to measure it (test it). It also helps you consider things that might mess up your results, like outside influences you hadn't thought of.

For example, let's say you want to find out if listening to music helps people focus better. Your experimental design would help you decide things like: Who are you going to test? What kind of music will you use? How will you measure focus? And, importantly, how will you make sure that it's really the music affecting focus and not something else, like the time of day or whether someone had a good breakfast?

In short, experimental design is the master plan that guides researchers through the process of collecting data, so they can answer questions in the most reliable way possible. It's like the GPS for the journey of discovery!

History of Experimental Design

Around 350 BCE, people like Aristotle were trying to figure out how the world works, but they mostly just thought really hard about things. They didn't test their ideas much. So while they were super smart, their methods weren't always the best for finding out the truth.

Fast forward to the Renaissance (14th to 17th centuries), a time of big changes and lots of curiosity. People like Galileo started to experiment by actually doing tests, like rolling balls down inclined planes to study motion. Galileo's work was cool because he combined thinking with doing. He'd have an idea, test it, look at the results, and then think some more. This approach was a lot more reliable than just sitting around and thinking.

Now, let's zoom ahead to the 18th and 19th centuries. This is when people like Francis Galton, an English polymath, started to get really systematic about experimentation. Galton was obsessed with measuring things. Seriously, he even tried to measure how good-looking people were ! His work helped create the foundations for a more organized approach to experiments.

Next stop: the early 20th century. Enter Ronald A. Fisher , a brilliant British statistician. Fisher was a game-changer. He came up with ideas that are like the bread and butter of modern experimental design.

Fisher invented the concept of the " control group "—that's a group of people or things that don't get the treatment you're testing, so you can compare them to those who do. He also stressed the importance of " randomization ," which means assigning people or things to different groups by chance, like drawing names out of a hat. This makes sure the experiment is fair and the results are trustworthy.

Around the same time, American psychologists like John B. Watson and B.F. Skinner were developing " behaviorism ." They focused on studying things that they could directly observe and measure, like actions and reactions.

Skinner even built boxes—called Skinner Boxes —to test how animals like pigeons and rats learn. Their work helped shape how psychologists design experiments today. Watson performed a very controversial experiment called The Little Albert experiment that helped describe behaviour through conditioning—in other words, how people learn to behave the way they do.

In the later part of the 20th century and into our time, computers have totally shaken things up. Researchers now use super powerful software to help design their experiments and crunch the numbers.

With computers, they can simulate complex experiments before they even start, which helps them predict what might happen. This is especially helpful in fields like medicine, where getting things right can be a matter of life and death.

Also, did you know that experimental designs aren't just for scientists in labs? They're used by people in all sorts of jobs, like marketing, education, and even video game design! Yes, someone probably ran an experiment to figure out what makes a game super fun to play.

So there you have it—a quick tour through the history of experimental design, from Aristotle's deep thoughts to Fisher's groundbreaking ideas, and all the way to today's computer-powered research. These designs are the recipes that help people from all walks of life find answers to their big questions.

Key Terms in Experimental Design

Before we dig into the different types of experimental designs, let's get comfy with some key terms. Understanding these terms will make it easier for us to explore the various types of experimental designs that researchers use to answer their big questions.

Independent Variable : This is what you change or control in your experiment to see what effect it has. Think of it as the "cause" in a cause-and-effect relationship. For example, if you're studying whether different types of music help people focus, the kind of music is the independent variable.

Dependent Variable : This is what you're measuring to see the effect of your independent variable. In our music and focus experiment, how well people focus is the dependent variable—it's what "depends" on the kind of music played.

Control Group : This is a group of people who don't get the special treatment or change you're testing. They help you see what happens when the independent variable is not applied. If you're testing whether a new medicine works, the control group would take a fake pill, called a placebo , instead of the real medicine.

Experimental Group : This is the group that gets the special treatment or change you're interested in. Going back to our medicine example, this group would get the actual medicine to see if it has any effect.

Randomization : This is like shaking things up in a fair way. You randomly put people into the control or experimental group so that each group is a good mix of different kinds of people. This helps make the results more reliable.

Sample : This is the group of people you're studying. They're a "sample" of a larger group that you're interested in. For instance, if you want to know how teenagers feel about a new video game, you might study a sample of 100 teenagers.

Bias : This is anything that might tilt your experiment one way or another without you realizing it. Like if you're testing a new kind of dog food and you only test it on poodles, that could create a bias because maybe poodles just really like that food and other breeds don't.

Data : This is the information you collect during the experiment. It's like the treasure you find on your journey of discovery!

Replication : This means doing the experiment more than once to make sure your findings hold up. It's like double-checking your answers on a test.

Hypothesis : This is your educated guess about what will happen in the experiment. It's like predicting the end of a movie based on the first half.

Steps of Experimental Design

Alright, let's say you're all fired up and ready to run your own experiment. Cool! But where do you start? Well, designing an experiment is a bit like planning a road trip. There are some key steps you've got to take to make sure you reach your destination. Let's break it down:

  • Ask a Question : Before you hit the road, you've got to know where you're going. Same with experiments. You start with a question you want to answer, like "Does eating breakfast really make you do better in school?"
  • Do Some Homework : Before you pack your bags, you look up the best places to visit, right? In science, this means reading up on what other people have already discovered about your topic.
  • Form a Hypothesis : This is your educated guess about what you think will happen. It's like saying, "I bet this route will get us there faster."
  • Plan the Details : Now you decide what kind of car you're driving (your experimental design), who's coming with you (your sample), and what snacks to bring (your variables).
  • Randomization : Remember, this is like shuffling a deck of cards. You want to mix up who goes into your control and experimental groups to make sure it's a fair test.
  • Run the Experiment : Finally, the rubber hits the road! You carry out your plan, making sure to collect your data carefully.
  • Analyze the Data : Once the trip's over, you look at your photos and decide which ones are keepers. In science, this means looking at your data to see what it tells you.
  • Draw Conclusions : Based on your data, did you find an answer to your question? This is like saying, "Yep, that route was faster," or "Nope, we hit a ton of traffic."
  • Share Your Findings : After a great trip, you want to tell everyone about it, right? Scientists do the same by publishing their results so others can learn from them.
  • Do It Again? : Sometimes one road trip just isn't enough. In the same way, scientists often repeat their experiments to make sure their findings are solid.

So there you have it! Those are the basic steps you need to follow when you're designing an experiment. Each step helps make sure that you're setting up a fair and reliable way to find answers to your big questions.

Let's get into examples of experimental designs.

1) True Experimental Design

notepad

In the world of experiments, the True Experimental Design is like the superstar quarterback everyone talks about. Born out of the early 20th-century work of statisticians like Ronald A. Fisher, this design is all about control, precision, and reliability.

Researchers carefully pick an independent variable to manipulate (remember, that's the thing they're changing on purpose) and measure the dependent variable (the effect they're studying). Then comes the magic trick—randomization. By randomly putting participants into either the control or experimental group, scientists make sure their experiment is as fair as possible.

No sneaky biases here!

True Experimental Design Pros

The pros of True Experimental Design are like the perks of a VIP ticket at a concert: you get the best and most trustworthy results. Because everything is controlled and randomized, you can feel pretty confident that the results aren't just a fluke.

True Experimental Design Cons

However, there's a catch. Sometimes, it's really tough to set up these experiments in a real-world situation. Imagine trying to control every single detail of your day, from the food you eat to the air you breathe. Not so easy, right?

True Experimental Design Uses

The fields that get the most out of True Experimental Designs are those that need super reliable results, like medical research.

When scientists were developing COVID-19 vaccines, they used this design to run clinical trials. They had control groups that received a placebo (a harmless substance with no effect) and experimental groups that got the actual vaccine. Then they measured how many people in each group got sick. By comparing the two, they could say, "Yep, this vaccine works!"

So next time you read about a groundbreaking discovery in medicine or technology, chances are a True Experimental Design was the VIP behind the scenes, making sure everything was on point. It's been the go-to for rigorous scientific inquiry for nearly a century, and it's not stepping off the stage anytime soon.

2) Quasi-Experimental Design

So, let's talk about the Quasi-Experimental Design. Think of this one as the cool cousin of True Experimental Design. It wants to be just like its famous relative, but it's a bit more laid-back and flexible. You'll find quasi-experimental designs when it's tricky to set up a full-blown True Experimental Design with all the bells and whistles.

Quasi-experiments still play with an independent variable, just like their stricter cousins. The big difference? They don't use randomization. It's like wanting to divide a bag of jelly beans equally between your friends, but you can't quite do it perfectly.

In real life, it's often not possible or ethical to randomly assign people to different groups, especially when dealing with sensitive topics like education or social issues. And that's where quasi-experiments come in.

Quasi-Experimental Design Pros

Even though they lack full randomization, quasi-experimental designs are like the Swiss Army knives of research: versatile and practical. They're especially popular in fields like education, sociology, and public policy.

For instance, when researchers wanted to figure out if the Head Start program , aimed at giving young kids a "head start" in school, was effective, they used a quasi-experimental design. They couldn't randomly assign kids to go or not go to preschool, but they could compare kids who did with kids who didn't.

Quasi-Experimental Design Cons

Of course, quasi-experiments come with their own bag of pros and cons. On the plus side, they're easier to set up and often cheaper than true experiments. But the flip side is that they're not as rock-solid in their conclusions. Because the groups aren't randomly assigned, there's always that little voice saying, "Hey, are we missing something here?"

Quasi-Experimental Design Uses

Quasi-Experimental Design gained traction in the mid-20th century. Researchers were grappling with real-world problems that didn't fit neatly into a laboratory setting. Plus, as society became more aware of ethical considerations, the need for flexible designs increased. So, the quasi-experimental approach was like a breath of fresh air for scientists wanting to study complex issues without a laundry list of restrictions.

In short, if True Experimental Design is the superstar quarterback, Quasi-Experimental Design is the versatile player who can adapt and still make significant contributions to the game.

3) Pre-Experimental Design

Now, let's talk about the Pre-Experimental Design. Imagine it as the beginner's skateboard you get before you try out for all the cool tricks. It has wheels, it rolls, but it's not built for the professional skatepark.

Similarly, pre-experimental designs give researchers a starting point. They let you dip your toes in the water of scientific research without diving in head-first.

So, what's the deal with pre-experimental designs?

Pre-Experimental Designs are the basic, no-frills versions of experiments. Researchers still mess around with an independent variable and measure a dependent variable, but they skip over the whole randomization thing and often don't even have a control group.

It's like baking a cake but forgetting the frosting and sprinkles; you'll get some results, but they might not be as complete or reliable as you'd like.

Pre-Experimental Design Pros

Why use such a simple setup? Because sometimes, you just need to get the ball rolling. Pre-experimental designs are great for quick-and-dirty research when you're short on time or resources. They give you a rough idea of what's happening, which you can use to plan more detailed studies later.

A good example of this is early studies on the effects of screen time on kids. Researchers couldn't control every aspect of a child's life, but they could easily ask parents to track how much time their kids spent in front of screens and then look for trends in behavior or school performance.

Pre-Experimental Design Cons

But here's the catch: pre-experimental designs are like that first draft of an essay. It helps you get your ideas down, but you wouldn't want to turn it in for a grade. Because these designs lack the rigorous structure of true or quasi-experimental setups, they can't give you rock-solid conclusions. They're more like clues or signposts pointing you in a certain direction.

Pre-Experimental Design Uses

This type of design became popular in the early stages of various scientific fields. Researchers used them to scratch the surface of a topic, generate some initial data, and then decide if it's worth exploring further. In other words, pre-experimental designs were the stepping stones that led to more complex, thorough investigations.

So, while Pre-Experimental Design may not be the star player on the team, it's like the practice squad that helps everyone get better. It's the starting point that can lead to bigger and better things.

4) Factorial Design

Now, buckle up, because we're moving into the world of Factorial Design, the multi-tasker of the experimental universe.

Imagine juggling not just one, but multiple balls in the air—that's what researchers do in a factorial design.

In Factorial Design, researchers are not satisfied with just studying one independent variable. Nope, they want to study two or more at the same time to see how they interact.

It's like cooking with several spices to see how they blend together to create unique flavors.

Factorial Design became the talk of the town with the rise of computers. Why? Because this design produces a lot of data, and computers are the number crunchers that help make sense of it all. So, thanks to our silicon friends, researchers can study complicated questions like, "How do diet AND exercise together affect weight loss?" instead of looking at just one of those factors.

Factorial Design Pros

This design's main selling point is its ability to explore interactions between variables. For instance, maybe a new study drug works really well for young people but not so great for older adults. A factorial design could reveal that age is a crucial factor, something you might miss if you only studied the drug's effectiveness in general. It's like being a detective who looks for clues not just in one room but throughout the entire house.

Factorial Design Cons

However, factorial designs have their own bag of challenges. First off, they can be pretty complicated to set up and run. Imagine coordinating a four-way intersection with lots of cars coming from all directions—you've got to make sure everything runs smoothly, or you'll end up with a traffic jam. Similarly, researchers need to carefully plan how they'll measure and analyze all the different variables.

Factorial Design Uses

Factorial designs are widely used in psychology to untangle the web of factors that influence human behavior. They're also popular in fields like marketing, where companies want to understand how different aspects like price, packaging, and advertising influence a product's success.

And speaking of success, the factorial design has been a hit since statisticians like Ronald A. Fisher (yep, him again!) expanded on it in the early-to-mid 20th century. It offered a more nuanced way of understanding the world, proving that sometimes, to get the full picture, you've got to juggle more than one ball at a time.

So, if True Experimental Design is the quarterback and Quasi-Experimental Design is the versatile player, Factorial Design is the strategist who sees the entire game board and makes moves accordingly.

5) Longitudinal Design

pill bottle

Alright, let's take a step into the world of Longitudinal Design. Picture it as the grand storyteller, the kind who doesn't just tell you about a single event but spins an epic tale that stretches over years or even decades. This design isn't about quick snapshots; it's about capturing the whole movie of someone's life or a long-running process.

You know how you might take a photo every year on your birthday to see how you've changed? Longitudinal Design is kind of like that, but for scientific research.

With Longitudinal Design, instead of measuring something just once, researchers come back again and again, sometimes over many years, to see how things are going. This helps them understand not just what's happening, but why it's happening and how it changes over time.

This design really started to shine in the latter half of the 20th century, when researchers began to realize that some questions can't be answered in a hurry. Think about studies that look at how kids grow up, or research on how a certain medicine affects you over a long period. These aren't things you can rush.

The famous Framingham Heart Study , started in 1948, is a prime example. It's been studying heart health in a small town in Massachusetts for decades, and the findings have shaped what we know about heart disease.

Longitudinal Design Pros

So, what's to love about Longitudinal Design? First off, it's the go-to for studying change over time, whether that's how people age or how a forest recovers from a fire.

Longitudinal Design Cons

But it's not all sunshine and rainbows. Longitudinal studies take a lot of patience and resources. Plus, keeping track of participants over many years can be like herding cats—difficult and full of surprises.

Longitudinal Design Uses

Despite these challenges, longitudinal studies have been key in fields like psychology, sociology, and medicine. They provide the kind of deep, long-term insights that other designs just can't match.

So, if the True Experimental Design is the superstar quarterback, and the Quasi-Experimental Design is the flexible athlete, then the Factorial Design is the strategist, and the Longitudinal Design is the wise elder who has seen it all and has stories to tell.

6) Cross-Sectional Design

Now, let's flip the script and talk about Cross-Sectional Design, the polar opposite of the Longitudinal Design. If Longitudinal is the grand storyteller, think of Cross-Sectional as the snapshot photographer. It captures a single moment in time, like a selfie that you take to remember a fun day. Researchers using this design collect all their data at one point, providing a kind of "snapshot" of whatever they're studying.

In a Cross-Sectional Design, researchers look at multiple groups all at the same time to see how they're different or similar.

This design rose to popularity in the mid-20th century, mainly because it's so quick and efficient. Imagine wanting to know how people of different ages feel about a new video game. Instead of waiting for years to see how opinions change, you could just ask people of all ages what they think right now. That's Cross-Sectional Design for you—fast and straightforward.

You'll find this type of research everywhere from marketing studies to healthcare. For instance, you might have heard about surveys asking people what they think about a new product or political issue. Those are usually cross-sectional studies, aimed at getting a quick read on public opinion.

Cross-Sectional Design Pros

So, what's the big deal with Cross-Sectional Design? Well, it's the go-to when you need answers fast and don't have the time or resources for a more complicated setup.

Cross-Sectional Design Cons

Remember, speed comes with trade-offs. While you get your results quickly, those results are stuck in time. They can't tell you how things change or why they're changing, just what's happening right now.

Cross-Sectional Design Uses

Also, because they're so quick and simple, cross-sectional studies often serve as the first step in research. They give scientists an idea of what's going on so they can decide if it's worth digging deeper. In that way, they're a bit like a movie trailer, giving you a taste of the action to see if you're interested in seeing the whole film.

So, in our lineup of experimental designs, if True Experimental Design is the superstar quarterback and Longitudinal Design is the wise elder, then Cross-Sectional Design is like the speedy running back—fast, agile, but not designed for long, drawn-out plays.

7) Correlational Design

Next on our roster is the Correlational Design, the keen observer of the experimental world. Imagine this design as the person at a party who loves people-watching. They don't interfere or get involved; they just observe and take mental notes about what's going on.

In a correlational study, researchers don't change or control anything; they simply observe and measure how two variables relate to each other.

The correlational design has roots in the early days of psychology and sociology. Pioneers like Sir Francis Galton used it to study how qualities like intelligence or height could be related within families.

This design is all about asking, "Hey, when this thing happens, does that other thing usually happen too?" For example, researchers might study whether students who have more study time get better grades or whether people who exercise more have lower stress levels.

One of the most famous correlational studies you might have heard of is the link between smoking and lung cancer. Back in the mid-20th century, researchers started noticing that people who smoked a lot also seemed to get lung cancer more often. They couldn't say smoking caused cancer—that would require a true experiment—but the strong correlation was a red flag that led to more research and eventually, health warnings.

Correlational Design Pros

This design is great at proving that two (or more) things can be related. Correlational designs can help prove that more detailed research is needed on a topic. They can help us see patterns or possible causes for things that we otherwise might not have realized.

Correlational Design Cons

But here's where you need to be careful: correlational designs can be tricky. Just because two things are related doesn't mean one causes the other. That's like saying, "Every time I wear my lucky socks, my team wins." Well, it's a fun thought, but those socks aren't really controlling the game.

Correlational Design Uses

Despite this limitation, correlational designs are popular in psychology, economics, and epidemiology, to name a few fields. They're often the first step in exploring a possible relationship between variables. Once a strong correlation is found, researchers may decide to conduct more rigorous experimental studies to examine cause and effect.

So, if the True Experimental Design is the superstar quarterback and the Longitudinal Design is the wise elder, the Factorial Design is the strategist, and the Cross-Sectional Design is the speedster, then the Correlational Design is the clever scout, identifying interesting patterns but leaving the heavy lifting of proving cause and effect to the other types of designs.

8) Meta-Analysis

Last but not least, let's talk about Meta-Analysis, the librarian of experimental designs.

If other designs are all about creating new research, Meta-Analysis is about gathering up everyone else's research, sorting it, and figuring out what it all means when you put it together.

Imagine a jigsaw puzzle where each piece is a different study. Meta-Analysis is the process of fitting all those pieces together to see the big picture.

The concept of Meta-Analysis started to take shape in the late 20th century, when computers became powerful enough to handle massive amounts of data. It was like someone handed researchers a super-powered magnifying glass, letting them examine multiple studies at the same time to find common trends or results.

You might have heard of the Cochrane Reviews in healthcare . These are big collections of meta-analyses that help doctors and policymakers figure out what treatments work best based on all the research that's been done.

For example, if ten different studies show that a certain medicine helps lower blood pressure, a meta-analysis would pull all that information together to give a more accurate answer.

Meta-Analysis Pros

The beauty of Meta-Analysis is that it can provide really strong evidence. Instead of relying on one study, you're looking at the whole landscape of research on a topic.

Meta-Analysis Cons

However, it does have some downsides. For one, Meta-Analysis is only as good as the studies it includes. If those studies are flawed, the meta-analysis will be too. It's like baking a cake: if you use bad ingredients, it doesn't matter how good your recipe is—the cake won't turn out well.

Meta-Analysis Uses

Despite these challenges, meta-analyses are highly respected and widely used in many fields like medicine, psychology, and education. They help us make sense of a world that's bursting with information by showing us the big picture drawn from many smaller snapshots.

So, in our all-star lineup, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, the Factorial Design is the strategist, the Cross-Sectional Design is the speedster, and the Correlational Design is the scout, then the Meta-Analysis is like the coach, using insights from everyone else's plays to come up with the best game plan.

9) Non-Experimental Design

Now, let's talk about a player who's a bit of an outsider on this team of experimental designs—the Non-Experimental Design. Think of this design as the commentator or the journalist who covers the game but doesn't actually play.

In a Non-Experimental Design, researchers are like reporters gathering facts, but they don't interfere or change anything. They're simply there to describe and analyze.

Non-Experimental Design Pros

So, what's the deal with Non-Experimental Design? Its strength is in description and exploration. It's really good for studying things as they are in the real world, without changing any conditions.

Non-Experimental Design Cons

Because a non-experimental design doesn't manipulate variables, it can't prove cause and effect. It's like a weather reporter: they can tell you it's raining, but they can't tell you why it's raining.

The downside? Since researchers aren't controlling variables, it's hard to rule out other explanations for what they observe. It's like hearing one side of a story—you get an idea of what happened, but it might not be the complete picture.

Non-Experimental Design Uses

Non-Experimental Design has always been a part of research, especially in fields like anthropology, sociology, and some areas of psychology.

For instance, if you've ever heard of studies that describe how people behave in different cultures or what teens like to do in their free time, that's often Non-Experimental Design at work. These studies aim to capture the essence of a situation, like painting a portrait instead of taking a snapshot.

One well-known example you might have heard about is the Kinsey Reports from the 1940s and 1950s, which described sexual behavior in men and women. Researchers interviewed thousands of people but didn't manipulate any variables like you would in a true experiment. They simply collected data to create a comprehensive picture of the subject matter.

So, in our metaphorical team of research designs, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, and Meta-Analysis is the coach, then Non-Experimental Design is the sports journalist—always present, capturing the game, but not part of the action itself.

10) Repeated Measures Design

white rat

Time to meet the Repeated Measures Design, the time traveler of our research team. If this design were a player in a sports game, it would be the one who keeps revisiting past plays to figure out how to improve the next one.

Repeated Measures Design is all about studying the same people or subjects multiple times to see how they change or react under different conditions.

The idea behind Repeated Measures Design isn't new; it's been around since the early days of psychology and medicine. You could say it's a cousin to the Longitudinal Design, but instead of looking at how things naturally change over time, it focuses on how the same group reacts to different things.

Imagine a study looking at how a new energy drink affects people's running speed. Instead of comparing one group that drank the energy drink to another group that didn't, a Repeated Measures Design would have the same group of people run multiple times—once with the energy drink, and once without. This way, you're really zeroing in on the effect of that energy drink, making the results more reliable.

Repeated Measures Design Pros

The strong point of Repeated Measures Design is that it's super focused. Because it uses the same subjects, you don't have to worry about differences between groups messing up your results.

Repeated Measures Design Cons

But the downside? Well, people can get tired or bored if they're tested too many times, which might affect how they respond.

Repeated Measures Design Uses

A famous example of this design is the "Little Albert" experiment, conducted by John B. Watson and Rosalie Rayner in 1920. In this study, a young boy was exposed to a white rat and other stimuli several times to see how his emotional responses changed. Though the ethical standards of this experiment are often criticized today, it was groundbreaking in understanding conditioned emotional responses.

In our metaphorical lineup of research designs, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, and Non-Experimental Design is the journalist, then Repeated Measures Design is the time traveler—always looping back to fine-tune the game plan.

11) Crossover Design

Next up is Crossover Design, the switch-hitter of the research world. If you're familiar with baseball, you'll know a switch-hitter is someone who can bat both right-handed and left-handed.

In a similar way, Crossover Design allows subjects to experience multiple conditions, flipping them around so that everyone gets a turn in each role.

This design is like the utility player on our team—versatile, flexible, and really good at adapting.

The Crossover Design has its roots in medical research and has been popular since the mid-20th century. It's often used in clinical trials to test the effectiveness of different treatments.

Crossover Design Pros

The neat thing about this design is that it allows each participant to serve as their own control group. Imagine you're testing two new kinds of headache medicine. Instead of giving one type to one group and another type to a different group, you'd give both kinds to the same people but at different times.

Crossover Design Cons

What's the big deal with Crossover Design? Its major strength is in reducing the "noise" that comes from individual differences. Since each person experiences all conditions, it's easier to see real effects. However, there's a catch. This design assumes that there's no lasting effect from the first condition when you switch to the second one. That might not always be true. If the first treatment has a long-lasting effect, it could mess up the results when you switch to the second treatment.

Crossover Design Uses

A well-known example of Crossover Design is in studies that look at the effects of different types of diets—like low-carb vs. low-fat diets. Researchers might have participants follow a low-carb diet for a few weeks, then switch them to a low-fat diet. By doing this, they can more accurately measure how each diet affects the same group of people.

In our team of experimental designs, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, and Repeated Measures Design is the time traveler, then Crossover Design is the versatile utility player—always ready to adapt and play multiple roles to get the most accurate results.

12) Cluster Randomized Design

Meet the Cluster Randomized Design, the team captain of group-focused research. In our imaginary lineup of experimental designs, if other designs focus on individual players, then Cluster Randomized Design is looking at how the entire team functions.

This approach is especially common in educational and community-based research, and it's been gaining traction since the late 20th century.

Here's how Cluster Randomized Design works: Instead of assigning individual people to different conditions, researchers assign entire groups, or "clusters." These could be schools, neighborhoods, or even entire towns. This helps you see how the new method works in a real-world setting.

Imagine you want to see if a new anti-bullying program really works. Instead of selecting individual students, you'd introduce the program to a whole school or maybe even several schools, and then compare the results to schools without the program.

Cluster Randomized Design Pros

Why use Cluster Randomized Design? Well, sometimes it's just not practical to assign conditions at the individual level. For example, you can't really have half a school following a new reading program while the other half sticks with the old one; that would be way too confusing! Cluster Randomization helps get around this problem by treating each "cluster" as its own mini-experiment.

Cluster Randomized Design Cons

There's a downside, too. Because entire groups are assigned to each condition, there's a risk that the groups might be different in some important way that the researchers didn't account for. That's like having one sports team that's full of veterans playing against a team of rookies; the match wouldn't be fair.

Cluster Randomized Design Uses

A famous example is the research conducted to test the effectiveness of different public health interventions, like vaccination programs. Researchers might roll out a vaccination program in one community but not in another, then compare the rates of disease in both.

In our metaphorical research team, if True Experimental Design is the quarterback, Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, Repeated Measures Design is the time traveler, and Crossover Design is the utility player, then Cluster Randomized Design is the team captain—always looking out for the group as a whole.

13) Mixed-Methods Design

Say hello to Mixed-Methods Design, the all-rounder or the "Renaissance player" of our research team.

Mixed-Methods Design uses a blend of both qualitative and quantitative methods to get a more complete picture, just like a Renaissance person who's good at lots of different things. It's like being good at both offense and defense in a sport; you've got all your bases covered!

Mixed-Methods Design is a fairly new kid on the block, becoming more popular in the late 20th and early 21st centuries as researchers began to see the value in using multiple approaches to tackle complex questions. It's the Swiss Army knife in our research toolkit, combining the best parts of other designs to be more versatile.

Here's how it could work: Imagine you're studying the effects of a new educational app on students' math skills. You might use quantitative methods like tests and grades to measure how much the students improve—that's the 'numbers part.'

But you also want to know how the students feel about math now, or why they think they got better or worse. For that, you could conduct interviews or have students fill out journals—that's the 'story part.'

Mixed-Methods Design Pros

So, what's the scoop on Mixed-Methods Design? The strength is its versatility and depth; you're not just getting numbers or stories, you're getting both, which gives a fuller picture.

Mixed-Methods Design Cons

But, it's also more challenging. Imagine trying to play two sports at the same time! You have to be skilled in different research methods and know how to combine them effectively.

Mixed-Methods Design Uses

A high-profile example of Mixed-Methods Design is research on climate change. Scientists use numbers and data to show temperature changes (quantitative), but they also interview people to understand how these changes are affecting communities (qualitative).

In our team of experimental designs, if True Experimental Design is the quarterback, Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, Repeated Measures Design is the time traveler, Crossover Design is the utility player, and Cluster Randomized Design is the team captain, then Mixed-Methods Design is the Renaissance player—skilled in multiple areas and able to bring them all together for a winning strategy.

14) Multivariate Design

Now, let's turn our attention to Multivariate Design, the multitasker of the research world.

If our lineup of research designs were like players on a basketball court, Multivariate Design would be the player dribbling, passing, and shooting all at once. This design doesn't just look at one or two things; it looks at several variables simultaneously to see how they interact and affect each other.

Multivariate Design is like baking a cake with many ingredients. Instead of just looking at how flour affects the cake, you also consider sugar, eggs, and milk all at once. This way, you understand how everything works together to make the cake taste good or bad.

Multivariate Design has been a go-to method in psychology, economics, and social sciences since the latter half of the 20th century. With the advent of computers and advanced statistical software, analyzing multiple variables at once became a lot easier, and Multivariate Design soared in popularity.

Multivariate Design Pros

So, what's the benefit of using Multivariate Design? Its power lies in its complexity. By studying multiple variables at the same time, you can get a really rich, detailed understanding of what's going on.

Multivariate Design Cons

But that complexity can also be a drawback. With so many variables, it can be tough to tell which ones are really making a difference and which ones are just along for the ride.

Multivariate Design Uses

Imagine you're a coach trying to figure out the best strategy to win games. You wouldn't just look at how many points your star player scores; you'd also consider assists, rebounds, turnovers, and maybe even how loud the crowd is. A Multivariate Design would help you understand how all these factors work together to determine whether you win or lose.

A well-known example of Multivariate Design is in market research. Companies often use this approach to figure out how different factors—like price, packaging, and advertising—affect sales. By studying multiple variables at once, they can find the best combination to boost profits.

In our metaphorical research team, if True Experimental Design is the quarterback, Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, Repeated Measures Design is the time traveler, Crossover Design is the utility player, Cluster Randomized Design is the team captain, and Mixed-Methods Design is the Renaissance player, then Multivariate Design is the multitasker—juggling many variables at once to get a fuller picture of what's happening.

15) Pretest-Posttest Design

Let's introduce Pretest-Posttest Design, the "Before and After" superstar of our research team. You've probably seen those before-and-after pictures in ads for weight loss programs or home renovations, right?

Well, this design is like that, but for science! Pretest-Posttest Design checks out what things are like before the experiment starts and then compares that to what things are like after the experiment ends.

This design is one of the classics, a staple in research for decades across various fields like psychology, education, and healthcare. It's so simple and straightforward that it has stayed popular for a long time.

In Pretest-Posttest Design, you measure your subject's behavior or condition before you introduce any changes—that's your "before" or "pretest." Then you do your experiment, and after it's done, you measure the same thing again—that's your "after" or "posttest."

Pretest-Posttest Design Pros

What makes Pretest-Posttest Design special? It's pretty easy to understand and doesn't require fancy statistics.

Pretest-Posttest Design Cons

But there are some pitfalls. For example, what if the kids in our math example get better at multiplication just because they're older or because they've taken the test before? That would make it hard to tell if the program is really effective or not.

Pretest-Posttest Design Uses

Let's say you're a teacher and you want to know if a new math program helps kids get better at multiplication. First, you'd give all the kids a multiplication test—that's your pretest. Then you'd teach them using the new math program. At the end, you'd give them the same test again—that's your posttest. If the kids do better on the second test, you might conclude that the program works.

One famous use of Pretest-Posttest Design is in evaluating the effectiveness of driver's education courses. Researchers will measure people's driving skills before and after the course to see if they've improved.

16) Solomon Four-Group Design

Next up is the Solomon Four-Group Design, the "chess master" of our research team. This design is all about strategy and careful planning. Named after Richard L. Solomon who introduced it in the 1940s, this method tries to correct some of the weaknesses in simpler designs, like the Pretest-Posttest Design.

Here's how it rolls: The Solomon Four-Group Design uses four different groups to test a hypothesis. Two groups get a pretest, then one of them receives the treatment or intervention, and both get a posttest. The other two groups skip the pretest, and only one of them receives the treatment before they both get a posttest.

Sound complicated? It's like playing 4D chess; you're thinking several moves ahead!

Solomon Four-Group Design Pros

What's the pro and con of the Solomon Four-Group Design? On the plus side, it provides really robust results because it accounts for so many variables.

Solomon Four-Group Design Cons

The downside? It's a lot of work and requires a lot of participants, making it more time-consuming and costly.

Solomon Four-Group Design Uses

Let's say you want to figure out if a new way of teaching history helps students remember facts better. Two classes take a history quiz (pretest), then one class uses the new teaching method while the other sticks with the old way. Both classes take another quiz afterward (posttest).

Meanwhile, two more classes skip the initial quiz, and then one uses the new method before both take the final quiz. Comparing all four groups will give you a much clearer picture of whether the new teaching method works and whether the pretest itself affects the outcome.

The Solomon Four-Group Design is less commonly used than simpler designs but is highly respected for its ability to control for more variables. It's a favorite in educational and psychological research where you really want to dig deep and figure out what's actually causing changes.

17) Adaptive Designs

Now, let's talk about Adaptive Designs, the chameleons of the experimental world.

Imagine you're a detective, and halfway through solving a case, you find a clue that changes everything. You wouldn't just stick to your old plan; you'd adapt and change your approach, right? That's exactly what Adaptive Designs allow researchers to do.

In an Adaptive Design, researchers can make changes to the study as it's happening, based on early results. In a traditional study, once you set your plan, you stick to it from start to finish.

Adaptive Design Pros

This method is particularly useful in fast-paced or high-stakes situations, like developing a new vaccine in the middle of a pandemic. The ability to adapt can save both time and resources, and more importantly, it can save lives by getting effective treatments out faster.

Adaptive Design Cons

But Adaptive Designs aren't without their drawbacks. They can be very complex to plan and carry out, and there's always a risk that the changes made during the study could introduce bias or errors.

Adaptive Design Uses

Adaptive Designs are most often seen in clinical trials, particularly in the medical and pharmaceutical fields.

For instance, if a new drug is showing really promising results, the study might be adjusted to give more participants the new treatment instead of a placebo. Or if one dose level is showing bad side effects, it might be dropped from the study.

The best part is, these changes are pre-planned. Researchers lay out in advance what changes might be made and under what conditions, which helps keep everything scientific and above board.

In terms of applications, besides their heavy usage in medical and pharmaceutical research, Adaptive Designs are also becoming increasingly popular in software testing and market research. In these fields, being able to quickly adjust to early results can give companies a significant advantage.

Adaptive Designs are like the agile startups of the research world—quick to pivot, keen to learn from ongoing results, and focused on rapid, efficient progress. However, they require a great deal of expertise and careful planning to ensure that the adaptability doesn't compromise the integrity of the research.

18) Bayesian Designs

Next, let's dive into Bayesian Designs, the data detectives of the research universe. Named after Thomas Bayes, an 18th-century statistician and minister, this design doesn't just look at what's happening now; it also takes into account what's happened before.

Imagine if you were a detective who not only looked at the evidence in front of you but also used your past cases to make better guesses about your current one. That's the essence of Bayesian Designs.

Bayesian Designs are like detective work in science. As you gather more clues (or data), you update your best guess on what's really happening. This way, your experiment gets smarter as it goes along.

In the world of research, Bayesian Designs are most notably used in areas where you have some prior knowledge that can inform your current study. For example, if earlier research shows that a certain type of medicine usually works well for a specific illness, a Bayesian Design would include that information when studying a new group of patients with the same illness.

Bayesian Design Pros

One of the major advantages of Bayesian Designs is their efficiency. Because they use existing data to inform the current experiment, often fewer resources are needed to reach a reliable conclusion.

Bayesian Design Cons

However, they can be quite complicated to set up and require a deep understanding of both statistics and the subject matter at hand.

Bayesian Design Uses

Bayesian Designs are highly valued in medical research, finance, environmental science, and even in Internet search algorithms. Their ability to continually update and refine hypotheses based on new evidence makes them particularly useful in fields where data is constantly evolving and where quick, informed decisions are crucial.

Here's a real-world example: In the development of personalized medicine, where treatments are tailored to individual patients, Bayesian Designs are invaluable. If a treatment has been effective for patients with similar genetics or symptoms in the past, a Bayesian approach can use that data to predict how well it might work for a new patient.

This type of design is also increasingly popular in machine learning and artificial intelligence. In these fields, Bayesian Designs help algorithms "learn" from past data to make better predictions or decisions in new situations. It's like teaching a computer to be a detective that gets better and better at solving puzzles the more puzzles it sees.

19) Covariate Adaptive Randomization

old person and young person

Now let's turn our attention to Covariate Adaptive Randomization, which you can think of as the "matchmaker" of experimental designs.

Picture a soccer coach trying to create the most balanced teams for a friendly match. They wouldn't just randomly assign players; they'd take into account each player's skills, experience, and other traits.

Covariate Adaptive Randomization is all about creating the most evenly matched groups possible for an experiment.

In traditional randomization, participants are allocated to different groups purely by chance. This is a pretty fair way to do things, but it can sometimes lead to unbalanced groups.

Imagine if all the professional-level players ended up on one soccer team and all the beginners on another; that wouldn't be a very informative match! Covariate Adaptive Randomization fixes this by using important traits or characteristics (called "covariates") to guide the randomization process.

Covariate Adaptive Randomization Pros

The benefits of this design are pretty clear: it aims for balance and fairness, making the final results more trustworthy.

Covariate Adaptive Randomization Cons

But it's not perfect. It can be complex to implement and requires a deep understanding of which characteristics are most important to balance.

Covariate Adaptive Randomization Uses

This design is particularly useful in medical trials. Let's say researchers are testing a new medication for high blood pressure. Participants might have different ages, weights, or pre-existing conditions that could affect the results.

Covariate Adaptive Randomization would make sure that each treatment group has a similar mix of these characteristics, making the results more reliable and easier to interpret.

In practical terms, this design is often seen in clinical trials for new drugs or therapies, but its principles are also applicable in fields like psychology, education, and social sciences.

For instance, in educational research, it might be used to ensure that classrooms being compared have similar distributions of students in terms of academic ability, socioeconomic status, and other factors.

Covariate Adaptive Randomization is like the wise elder of the group, ensuring that everyone has an equal opportunity to show their true capabilities, thereby making the collective results as reliable as possible.

20) Stepped Wedge Design

Let's now focus on the Stepped Wedge Design, a thoughtful and cautious member of the experimental design family.

Imagine you're trying out a new gardening technique, but you're not sure how well it will work. You decide to apply it to one section of your garden first, watch how it performs, and then gradually extend the technique to other sections. This way, you get to see its effects over time and across different conditions. That's basically how Stepped Wedge Design works.

In a Stepped Wedge Design, all participants or clusters start off in the control group, and then, at different times, they 'step' over to the intervention or treatment group. This creates a wedge-like pattern over time where more and more participants receive the treatment as the study progresses. It's like rolling out a new policy in phases, monitoring its impact at each stage before extending it to more people.

Stepped Wedge Design Pros

The Stepped Wedge Design offers several advantages. Firstly, it allows for the study of interventions that are expected to do more good than harm, which makes it ethically appealing.

Secondly, it's useful when resources are limited and it's not feasible to roll out a new treatment to everyone at once. Lastly, because everyone eventually receives the treatment, it can be easier to get buy-in from participants or organizations involved in the study.

Stepped Wedge Design Cons

However, this design can be complex to analyze because it has to account for both the time factor and the changing conditions in each 'step' of the wedge. And like any study where participants know they're receiving an intervention, there's the potential for the results to be influenced by the placebo effect or other biases.

Stepped Wedge Design Uses

This design is particularly useful in health and social care research. For instance, if a hospital wants to implement a new hygiene protocol, it might start in one department, assess its impact, and then roll it out to other departments over time. This allows the hospital to adjust and refine the new protocol based on real-world data before it's fully implemented.

In terms of applications, Stepped Wedge Designs are commonly used in public health initiatives, organizational changes in healthcare settings, and social policy trials. They are particularly useful in situations where an intervention is being rolled out gradually and it's important to understand its impacts at each stage.

21) Sequential Design

Next up is Sequential Design, the dynamic and flexible member of our experimental design family.

Imagine you're playing a video game where you can choose different paths. If you take one path and find a treasure chest, you might decide to continue in that direction. If you hit a dead end, you might backtrack and try a different route. Sequential Design operates in a similar fashion, allowing researchers to make decisions at different stages based on what they've learned so far.

In a Sequential Design, the experiment is broken down into smaller parts, or "sequences." After each sequence, researchers pause to look at the data they've collected. Based on those findings, they then decide whether to stop the experiment because they've got enough information, or to continue and perhaps even modify the next sequence.

Sequential Design Pros

This allows for a more efficient use of resources, as you're only continuing with the experiment if the data suggests it's worth doing so.

One of the great things about Sequential Design is its efficiency. Because you're making data-driven decisions along the way, you can often reach conclusions more quickly and with fewer resources.

Sequential Design Cons

However, it requires careful planning and expertise to ensure that these "stop or go" decisions are made correctly and without bias.

Sequential Design Uses

In terms of its applications, besides healthcare and medicine, Sequential Design is also popular in quality control in manufacturing, environmental monitoring, and financial modeling. In these areas, being able to make quick decisions based on incoming data can be a big advantage.

This design is often used in clinical trials involving new medications or treatments. For example, if early results show that a new drug has significant side effects, the trial can be stopped before more people are exposed to it.

On the flip side, if the drug is showing promising results, the trial might be expanded to include more participants or to extend the testing period.

Think of Sequential Design as the nimble athlete of experimental designs, capable of quick pivots and adjustments to reach the finish line in the most effective way possible. But just like an athlete needs a good coach, this design requires expert oversight to make sure it stays on the right track.

22) Field Experiments

Last but certainly not least, let's explore Field Experiments—the adventurers of the experimental design world.

Picture a scientist leaving the controlled environment of a lab to test a theory in the real world, like a biologist studying animals in their natural habitat or a social scientist observing people in a real community. These are Field Experiments, and they're all about getting out there and gathering data in real-world settings.

Field Experiments embrace the messiness of the real world, unlike laboratory experiments, where everything is controlled down to the smallest detail. This makes them both exciting and challenging.

Field Experiment Pros

On one hand, the results often give us a better understanding of how things work outside the lab.

While Field Experiments offer real-world relevance, they come with challenges like controlling for outside factors and the ethical considerations of intervening in people's lives without their knowledge.

Field Experiment Cons

On the other hand, the lack of control can make it harder to tell exactly what's causing what. Yet, despite these challenges, they remain a valuable tool for researchers who want to understand how theories play out in the real world.

Field Experiment Uses

Let's say a school wants to improve student performance. In a Field Experiment, they might change the school's daily schedule for one semester and keep track of how students perform compared to another school where the schedule remained the same.

Because the study is happening in a real school with real students, the results could be very useful for understanding how the change might work in other schools. But since it's the real world, lots of other factors—like changes in teachers or even the weather—could affect the results.

Field Experiments are widely used in economics, psychology, education, and public policy. For example, you might have heard of the famous "Broken Windows" experiment in the 1980s that looked at how small signs of disorder, like broken windows or graffiti, could encourage more serious crime in neighborhoods. This experiment had a big impact on how cities think about crime prevention.

From the foundational concepts of control groups and independent variables to the sophisticated layouts like Covariate Adaptive Randomization and Sequential Design, it's clear that the realm of experimental design is as varied as it is fascinating.

We've seen that each design has its own special talents, ideal for specific situations. Some designs, like the Classic Controlled Experiment, are like reliable old friends you can always count on.

Others, like Sequential Design, are flexible and adaptable, making quick changes based on what they learn. And let's not forget the adventurous Field Experiments, which take us out of the lab and into the real world to discover things we might not see otherwise.

Choosing the right experimental design is like picking the right tool for the job. The method you choose can make a big difference in how reliable your results are and how much people will trust what you've discovered. And as we've learned, there's a design to suit just about every question, every problem, and every curiosity.

So the next time you read about a new discovery in medicine, psychology, or any other field, you'll have a better understanding of the thought and planning that went into figuring things out. Experimental design is more than just a set of rules; it's a structured way to explore the unknown and answer questions that can change the world.

Related posts:

  • Experimental Psychologist Career (Salary + Duties + Interviews)
  • 40+ Famous Psychologists (Images + Biographies)
  • 11+ Psychology Experiment Ideas (Goals + Methods)
  • The Little Albert Experiment
  • 41+ White Collar Job Examples (Salary + Path)

Reference this article:

About The Author

Photo of author

Free Personality Test

Free Personality Quiz

Free Memory Test

Free Memory Test

Free IQ Test

Free IQ Test

PracticalPie.com is a participant in the Amazon Associates Program. As an Amazon Associate we earn from qualifying purchases.

Follow Us On:

Youtube Facebook Instagram X/Twitter

Psychology Resources

Developmental

Personality

Relationships

Psychologists

Serial Killers

Psychology Tests

Personality Quiz

Memory Test

Depression test

Type A/B Personality Test

© PracticalPsychology. All rights reserved

Privacy Policy | Terms of Use

Banner

Research Methods: A Student's Comprehensive Guide: Fundamentals

  • Research Approaches
  • Question Crafting
  • Types of Sources
  • Accessing Resources
  • Evaluating Sources
  • Annotated Bibliography
  • Literature Reviews
  • Citations This link opens in a new window

Research Methods: Essential Foundations

Key research methods, method match, qualitative methods.

  • Focus:  Understanding the nuances and depth of non-numerical data, offering rich, detailed insights into your research topic. 
  • Common Techniques:  Interviews, focus groups, case studies, and content analysis.
  • Application:  Best for exploring new ideas, developing theories, and understanding individual or group experiences in detail.

Quantitative Methods

  • Focus:  Utilizes numerical data and statistical techniques to test hypotheses and draw generalizable conclusions. 
  • Common Techniques:  Encompasses surveys, experiments, and statistical analysis. 
  • Application:  Suitable for measuring variables, validating theories, and making data-driven predictions.

Mixed Methods

  • Focus:  Combining qualitative and quantitative data to gain a fuller understanding of a research question. 
  • Common Techniques:  Sequential or concurrent use of interviews, surveys, and experiments.
  • Application:  Ideal when research requires both detailed insights and measurable data to draw well-rounded conclusions.

Choosing the right research method is crucial for project success. Your choice should align with your research question, data needs, and study goals. Here’s how to select the best method:

Qualitative Research : Ideal for exploring complex ideas and answering  “How?”  or  “Why?”  questions. This approach provides rich, detailed insights through techniques such as interviews and focus groups. It’s great for understanding experiences and developing theories.

Quantitative Research : Best for measuring variables and analyzing numerical data to address  “How much?”  or  “What impact?”  questions. This method involves surveys and statistical analysis, making it suitable for testing hypotheses and validating theories.

Mixed Methods : Combining qualitative and quantitative approaches offers a comprehensive analysis. Use this method to explore the  “why”  behind data or to support qualitative findings with numerical evidence, giving you a fuller perspective on your research question.

Considerations

  • Research Focus:  Determine what you aim to uncover or prove.
  • Data:  Decide if you need detailed narratives or numerical data. 
  • Resources:  Evaluate your available time, tools, and data  access.
  • Purpose:  Consider whether you are exploring concepts or testing theories.
  • Student Attitudes Toward Remote Learning : Qualitative methods like interviews provide in-depth personal insights.
  • Impact of Exercise on Academic Performance : Quantitative methods such as surveys are effective for statistical analysis and identifying trends.
  • When in doubt, start with your research question.  A well-defined question will naturally guide you to the most suitable method, whether it’s qualitative, quantitative, or mixed.

Ethical Principles

Informed consent, confidentiality, avoiding bias.

  • Ethical Review Boards
  • Informed Consent:  Clearly explain the study's purpose, methods, risks, and benefits to participates. Obtained documented consent, either through written forms or verbal agreements (recorded with permission).
  • Autonomy:  Ensure participates can make their own informed decisions about participating and have the freedom to withdraw at any time without facing consequences.
  • Minimizing Harm:  Design studies to minimize risks and harm. Evaluate potential risks carefully and implement strategies to reduce them.
  • Maximizing Benefits:  Ensure the research provides value and contributes positively to the field of society, with the benefits outweighing any risks.
  • Fair Selection:  Distribute the benefits and burdens of research equitably. Avoid exploiting vulnerable populations or unfairly burdening any group.
  • Equitable Access:  Ensure all participants have equal access to the benefits of the research and avoid discriminatory practices.

What is Informed Consent?  Informed Consent is all about making sure participants know exactly what they're getting into before they agree to take part in research. It's about honesty, clarity, and respect. 

Key Elements:

  • Clear Explanation:  Participants should understand the purpose of the study, what they'll be asked to do, any possible risks, and the potential benefits. This means explaining everything in simple, straightforward language—no confusing jargon. 
  • Voluntary Participation:  Participation must be completely voluntary. That means no pressure to join, and participants can change their minds and leave the study anytime without any consequences.
  • Understanding:  It's crucial that participants truly understand what they're consenting to. They should feel free to ask questions and get clear answers before agreeing to take part.
  • Written Agreement:  Typically, participants will sign a consent form that summarizes the study's details. This form is a record of their agreement to participate. 

Significance:  Informed consent isn't just a formality—it's about respecting the rights and dignity of those involved in your research. It ensures that everyone is on the same page and that participants feel valued and safe. 

For Special Cases:  When working with children, non-English speakers, or people with cognitive impairments, extra steps should be taken to ensure they understand and agree to participate. This might include using simpler language, translators, or getting permission from a guardian.

What is Confidentiality?  Confidentiality in research is the practice of protecting the private information of participants. It's about ensuring that any personal details shared during the study are kept secure and are not disclosed without permission.

  • Anonymity v Confidentiality:  Anonymity means that even the researcher doesn't know who the participants are, while confidentiality means that the researcher knows but keeps that information private. Both are important, but confidentiality often allows for deeper, more personalized data collection while still protecting participants' privacy.
  • Data Protection:  All personal data, such as names, addresses, and any identifying information, should be stored securely. This could mean using encrypted digital storage or keeping physical records in a locked, safe space. The goal is to prevent unauthorized access to this sensitive information.
  • Limited Access:  Only the research team and necessary personnel should have access to confidential information. It's also essential to clarify with participants who will see their data and in what form. 
  • De-Identification:  When presenting or publishing research findings, it's crucial to remove any information that could identify individual participants. This process, known as de-identification, ensures that the data shared publicly cannot be traced back to the participants.  
  • Informed Consent:   Participants should be informed upfront about how their data will be used and who will have access to it. They should also be reassured that their privacy will be protected throughout the study.

Significance:   Maintaining confidentiality builds trust between researchers and participants. It encourages honest and open communication, which is vital for collecting accurate data. Participants are more likely to share sensitive information if they know  their privacy is safeguarded.

Handling Breaches:  In the  rare case of confidentiality breach, it's important to have a plan in place to address it. This includes promptly notifying participants, taking corrective measures, and ensuring such incidents don't happen again. 

What is Bias in Research?  Bias in research refers to any influence that unfairly skews the results of a study. It can occur at any stage of the research process, from planning and data collection to analysis and interpretation. Bias can lead to incorrect conclusions, reducing the validity and reliability of your research.

Types of Bias:

  • For example, if a study only surveys college students about work-life balance, it might not accurately reflect the experience of those in different life stages. 
  • Confirmation Bias:  This happens when researchers focus on data that supports their hypothesis while ignoring or downplaying evidence that contradicts it. This can lead to a one-sided interpretation of the results. 
  • For instance, using a survey with leading questions can influence participants to respond in a certain way, distorting the findings.
  • Rooting Bias:  Occurs when only certain results are reported, often because they are more favorable or expected. This can mislead readers and hide the full scope of the research findings.

How to Avoid Bias:

  • Use Random Sampling:  Ensure that every individual in the population has an equal chance of being selected for the study. Random sampling helps create a more representative sample and reduces selection bias.
  • Blind or Double-Blind Studies:  In a blind study, participants don't know which group they're in (e.g., treatment v control), while in a double-blind study, neither participants nor the researchers know. This method helps prevent both participant and researcher bias.
  • For example, using the same questionnaire and instructions for all everyone guarantees uniform conditions. 
  • Peer Review & Replication:  Have experts review your study to catch potential biases you might have missed. Encourage others to replicate your study to verify  accuracy and rule out bias. 
  • Promote Transparency:  Clearly outline your methods, limitations, and any potential conflicts of interest. Acknowledging where bias might have crept in, even unintentionally, demonstrates integrity and allows others to account for it when interpreting your findings. 

Significance:  Avoiding bias is crucial for maintaining the credibility and reliability of your research. Unbiased research provides a more accurate representation of reality, leading to conclusions that can be trusted and built upon by others. It also helps ensure that your findings contribute positively to the broader field of study, rather than perpetuating misinformation.

Pro-Tip:  Always question your assumptions. Regularly re-evaluate your methods, seek feedback from peers, and be prepared to adjust your approach to minimize bias. This diligence will help you produce high-quality, trustworthy  research.

Ethical Review Board

Ethical Review Boards (ERBs)

Before starting a research project involving human participants, it's crucial to go through an ERB process. ERBs are panels of experts who assess the ethical aspects of your research plan to safeguard participants' rights and well-being. 

What Do ERBs Do?

ERBs review your research proposal to verify that it aligns with ethical standards. They focus on aspects like informed consent, risk minimization, and confidentiality. The board ensures that your study is designed to treat participants fairly, without exposing them to necessary harm. 

Key Consideration:

Submitting your research to an ERB isn't just a formality; it's a vital step to maintaining the integrity of your work. An ERB's approval signifies that your research meets high ethical standards, which helps build trust in your findings and protects the people who contribute to your study. 

  • Foundations

Learning Objectives

Research methods are fundamental to conducting thorough and credible research. They provide the framework for collecting and analyzing data systematically, helping you build a solid foundation for your findings.

  • Systematic Approach:  Research methods offer a structured way to gather and interpret data, ensuring consistency and repeatability in your research process.
  • Credibility:  By applying well-established methods, you enhance the reliability and validity of your findings, making your results more trustworthy.
  • Problem-Solving:  These methods enable you to address complex questions and generate actionable insights based on your research. 
  • Identify key characteristics of qualitative and quantitative research methods.
  • Understand the relevance of selecting appropriate methods for specific research questions.
  • Apply criteria to choose the right research approach based on research goals. 
  • Next: Research Approaches >>
  • Last Updated: Sep 19, 2024 10:47 AM
  • URL: https://tsu.libguides.com/researchmethods
  • Open access
  • Published: 19 September 2024

Empowering medical students: bridging gaps with high-fidelity simulations; a mixed-methods study on self-efficacy

  • Pınar Daylan Koçkaya 1 ,
  • Tuncay Müge Alvur 2 &
  • Orhan Odabaşı 3  

BMC Medical Education volume  24 , Article number:  1026 ( 2024 ) Cite this article

Metrics details

High-fidelity simulations play a crucial role in preparing for high-mortality events like cardiopulmonary arrest, emphasizing the need for rapid and accurate intervention. Proficiency in cardiopulmonary resuscitation(CPR) requires a strong self-efficacy(SE); training for both is crucial. This study assesses the impact of Advanced Life Support(ALS) simulation on SE changes in final-year medical students.

This mixed-methods prospective simulation study involved medical students in emergency medicine internships, examining self-efficacy perceptions regarding ALS technical skills(ALS-SEP). A comparison was made between students who underwent scenario-based ALS simulation training and those who did not. Competencies in chest compression skills were assessed, and the concordance between ALS-SEP scores and observed CPR performances were evaluated. Focus group interviews were conducted and analyzed using content analysis techniques.

The study involved 80 students, with 53 in the experimental group(EG) and 27 in the control group(CG). The EG, underwent simulation training, showed a significantly higher ALS-SEP change than the CG( p  < 0.05). However, there was low concordance between pre-simulation SEP and actual performance. Compression skills success rates were inadequate. Qualitative analysis revealed main themes as"learning“(32.6%), “self-efficacy“(29%), “simulation method“(21.3%), and “development“(16.5%).

Post-simulation, students reported improved SEP and increased readiness for future interventions. The findings and qualitative statements support the effectiveness of simulation practices in bridging the gap between SEP and performance. Utilizing simulation-based ALS training enhances learners’ belief in their capabilities, raises awareness of their competencies, and encourages reflective thinking. Given the importance of high SEP for ALS, simulation trainings correlating self-efficacy perception and performance may significantly reduce potential medical errors stemming from a disparity between perceived capability and actual performance.

Peer Review reports

Introduction

Sudden cardiac arrest (SCA) remains a significant factor in global mortality rates and poses a considerable public health problem, even with many advancements and ongoing efforts directed toward the prevention and treatment of SCA. SCA is the third most common cause of death in Europe [ 1 ].

Simulation training plays a significant role in cardiopulmonary resuscitation (CPR) training. Both high- fidelity and low-fidelity simulation modalities facilitate contextual learning for students with different learning levels and methods. They provide an opportunity to integrate both technical and non-technical skills. Simulation enables learners to acquire the necessary competencies to effectively manage human factors, particularly in CPR scenarios. Profound learning occurs during the reflective phase of debriefing [ 2 ]. Simulation-based training for resuscitation is reported to be highly effective. Evidence indicates that high- fidelity simulations enhance learning when applied under appropriate conditions [ 3 ]. Simulation-based CPR training outperforms training methods without simulation involvement, with topics such as teamwork included. Moreover, the effectiveness of simulation training increases with a design that incorporates structured feedback opportunities [ 4 ].

Self-efficacy (SE), which was first defined by Bandura [ 5 ], refers to an individual’s self-judgment of possessing the necessary characteristics to organize and execute actions required for successfully performing a specific duty or task. SE is also defined as a cognitive perception factor that is affected by individual behaviors. In the context of students, SE encompasses their assessment of proficiency in the training activities encountered throughout their educational journey, aligning with their expectations. Notably, SE has been identified as a crucial determinant for achieving success in psychomotor skills [ 6 ].

Studies examining the relationship between health simulation and self-efficacy consistently indicate that various simulation training programs enhance performance-related self-efficacy [ 7 , 8 , 9 , 10 , 11 , 12 , 13 ]. However, it is crucial to consider the alignment between clinicians’ perceived abilities or self-efficacy and their actual proficiency levels. Clinicians with high self-efficacy perception but low performance may have a detrimental impact on patient outcomes, particularly in critical conditions such as resuscitation [ 14 ]. The debriefing step, which allows for the evaluation of individual performance during the scenario using simulation, can increase self- efficacy perceptions related to performance, specifically through reflection. This process can effectively eliminate conditions that pose a risk to the patient. Self-efficacy perception has a significant impact on the cognitive, emotional, psychomotor, and social aspects of resuscitation capability. Even clinicians who possess knowledge and proficiency in their techniques cannot successfully apply these skills without a strong belief in their self-efficacy regarding the practice itself. The importance of applications aimed at increasing self-efficacy perception in CPR training cannot be overstated [ 15 ].

Enhancing students’ self-efficacy perception is of significance because it contributes to academic achievement, training interest, and the intended outcomes of the training. To promote an increase in students’ self-efficacy perception, trainers are advised to establish clear, specific, and attainable learning objectives, along with challenging learning objectives that require effort. Additionally, providing accurate and equitable feedback, fostering the development of an accurate self-efficacy perception, and incorporating peer experiences into the training are recommended strategies [ 16 ].

This study aimed to examine whether scenario-based advanced life support simulation training affects the self-efficacy perception of intern students in their final year of medical school. This study assessed the relationship between students’ technical CPR abilities, self-efficacy perception, and performance, as well as the impact of gender on these abilities and perceptions. Additionally, the study sought to explore the students’ experiences and opinions regarding the simulation training in which they participated.

This study was previously presented at the National Medical Education Congress (UTEK22) 12th Annual Scientific Assembly on May 20, 2022.

Study design and sample size

This prospective study was conducted at Kocaeli University, School of Medicine, between February and October 2020. This study aimed to evaluate the effect of scenario-based simulation on the self-efficacy in relation to their technical skills in ALS. The study followed a mixed research design, incorporating both quantitative and qualitative elements. The quantitative phase involved a semi- experimental approach with both experimental and control groups. The qualitative phase involved content analysis of the focus group interviews. All senior medical students were eligible to participate in this study. Only students who had completed the face-to-face Anesthesiology and Reanimation internship, the ALS course, and had attended ALS with real patients, but had not previously participated in the simulation, were included.

Based on the power analysis conducted using the G*Power program, it was determined that a minimum of 26 individuals per group (experimental and control) would be required, assuming an effect size of 0.80, α = 0.05, and Power (1-β) = 0.80. For this study, 80 students voluntarily participated, with 53 assigned to the experimental group and 27 to the control group, which are higher than the calculated minimum number of each group depending on power analysis. Furthermore, focus group interviews were conducted with 11 students. The control group exclusively comprised students who proceeded with their regular emergency medicine internship, whereas the experimental group students actively engaged in scenario-based simulation intervention as part of their internship experience.

The research was conducted in three stages: preparation, pilot testing, and simulation. During the preparation stage, data collection tools for the research were developed. The ALS scenario was developed based on the expertise of a specialist group comprising emergency medicine specialists, national ALS instructors, and paramedics from national emergency health services, 112. To ensure usability and evaluate the technical aspects of the simulation training, two pilot tests were conducted to assess the forms and technical features.

The high-fidelity simulation stage was conducted at the Kocaeli University Simulation Center (KOUSIM), where video recordings were obtained. The simulation involved teams of three students, each equipped with CPR feedback wristbands. In the scenario outlined in the study, the students were assigned the task of providing intervention for a 55-year-old male patient who suffered cardiac arrest and was diagnosed with chronic obstructive pulmonary disease. The patient presented to the hospital emergency department with respiratory distress. A panicked family member provided the students with information about the patient’s deteriorating condition. Upon initial contact with the students, the patient was unresponsive. During the events, the observed arrest rhythms initially showed asystole, followed by ventricular fibrillation. Before the simulation, the students assessed their self-efficacy perceptions in various areas of ALS technical skills, such as compression quality, airway management, medication administration, and defibrillation skills. They were instructed to perform continuous chest compression for a duration of 2 min and to execute all the necessary skills at least once. The scenario was designed to end with asystole unless a shockable rhythm was identified.

The researchers assessed the technical skills of the students using a mid-fidelity ALS simulator, and then reviewed video recordings during the debriefing session.

Data collection

In the research, various forms were utilized, namely the Introductory Information Form, ALS Technical Skills Self-Efficacy Perception (ALS-SEP) Form (Table  1 ), ALS Technical Skills Assessment Tool (Table  2 ), Evaluation of Simulation Feedback Form (Table  3 ), and Focus Group Interview Form.

The researchers developed the ALS-SEP form through consultation with physicians, paramedics, and national ALS trainers. They also considered the technical skills required during ALS according to ERC and AHA guidelines [ 17 – 18 ]. These skills encompass chest compression rate and depth, airway and ventilation management, establishing vascular access, defibrillation, and drug administration. The form consists of nine criteria To assess these items, a 100-mm Visual Analog Scale (VAS) was used, which has been validated for evaluating self-efficacy in resuscitation skills [ 19 ]. The Visual Analog Scale (VAS) consists of a fixed line measuring 100 mm between two opposing adjectives (e.g., very low - very high). Participants mark a point on the line representing their perceived condition. The distance between this mark and the starting point was measured to assess the participant’s self-efficacy level. In the VAS scoring of the ALS-SEP Form, a score of 10 indicates “I certainly can do it,” while a score of 1 signifies “I certainly cannot do it.” The ALS-SEP form was administered as a pre- test (PET) and post-test (POT) to assess the participants’ initial conditions in both the experimental and control groups and their conditions at the end of the internship. PET was implemented during the first quarter of the emergency medicine internship, while PEA was implemented at the end of the internship.

Compression skills were evaluated using a CPR feedback wristband that measures compression depth and rate. The researchers observed and evaluated the students’ performance using the ALS Technical Skills Assessment Tool. The correlation between the ALS-SEP scores and observed performances was evaluated. Feedback was collected after the simulation using a 5-point Likert scale, which included 14 statements and 1 open-ended question. Additionally, focus group interviews were conducted online following the internship.

Data analysis

Statistical analysis of quantitative data was conducted using IBM SPSS 20.0 (IBM Corp., Armonk, NY, USA) software package. The normal distribution assumption was assessed using the Kolmogorov- Smirnov and Shapiro- Wilk tests. Numerical variables were presented as either mean ± standard deviation or median (25th-75th percentile), whereas categorical variables were presented as frequency (percentage). Due to the inability to assume a normal distribution, non-parametric methods were used for statistical analysis. The Mann- Whitney U test was used to assess differences between groups, and the Wilcoxon signed-rank test was used to examine differences between paired samples. Kappa statistics were used for compatibility analysis. A significance level of p  < 0.05 was considered statistically significant for two-tailed hypothesis tests.

The ALS-SEP was evaluated for each skill individually, analyzing the change in self-efficacy perception. The average score of all self-efficacy ratings was calculated as the “combined self-efficacy score (CSES)” for the ALS skill, which was defined as a set of sequential procedures within the chain of survival framework [ 17 – 18 ].

The CPR feedback wristband collected data on achieving a compression depth of 5–6 cm (± 2 mm) and a compression rate of 100–120/min. Additionally, the device provided success percentage ratios for both depth and rate parameters during compression.

The researchers observed and assessed the students’ performance, assigning scores of 0 points for inadequate or unobserved performance, 1 point for performance needing improvement, and 2 points for adequate performance. The concordance between the ALS-SEP scores and observed performances was evaluated. To facilitate appropriate analysis between the observer’s 3-point scoring and the students’ 10- point VAS scoring, the VAS scoring was categorized based on the expert opinion of ALS instructors. In this categorization, the 1-2-3-4 lines on the VAS scale corresponded to 0 points, the 5-6-7 lines corresponded to 1 point, and the 8-9-10 lines corresponded to 2 points. Kappa concordance statistics were used to assess the agreement between the two scoring methods.

The content analysis method was used to evaluate the focus group interviews using recorded interview data. The codes were derived from the interview data and organized to identify themes, as well as to explore concepts and relationships. Categorical data is presented in terms of frequency and percentage.

Limitations

This study had some limitations. First, the randomization process for the volunteers at the beginning of the study had to be altered because of the mandatory interruption in the training schedule caused by the COVID-19 pandemic. As a result, the first volunteer group was designated as the control group, whereas the experimental group comprised students who were able to start face-to-face training. The pandemic has had some impact on the conduct and logistics of this study. The initial randomization process was disrupted due to mandatory interruptions in the training schedule, resulting in a smaller control group and a larger experimental group. The power analysis verified that the calculated sample sizes were adequate to identify significant effects, even considering the challenges encountered. Despite the smaller control group, the experimental group size was larger than the calculated minimum, providing a stronger basis for statistical analysis and increasing the reliability of our findings. Following the face-to-face simulation training and the overwhelmingly positive feedback it received, the simulation became a mandatory component of the curriculum. This development led to the design and opening of a simulation center at our faculty, equipped with a greater number of new high-fidelity simulators, making it impossible to maintain a control group in subsequent iterations of the study. The larger size of the experimental group was facilitated by the logistics of implementing the new simulation-based training program, which allowed for a more comprehensive assessment of the simulation’s impact on self-efficacy and performance.

It’s important to note that the participants in the experimental group, who received the simulation training post-isolation, might have experienced heightened levels of self-efficacy. This increase in self-efficacy is primarily attributed to the intensive nature of the simulation training itself, which was designed to enhance ALS skills and self-efficacy. Additionally, the unique context of the pandemic may have influenced the students’ overall resilience and adaptability, potentially contributing to their readiness to engage with and benefit from the simulation training. However, the core enhancement in self-efficacy is directly linked to the structured, high-fidelity simulation program implemented. Additionally, this research was conducted in a single center.

In the control group, there were 12 women (44.4%) and 15 men (55.6%), while in the experimental group, there were 35 women (66%) and 18 men (33.9%). There was no statistically significant difference in gender distribution between the groups ( p  = 0.054, p  > 0.05). The average age of participants in the control and experimental groups was 23.74 ± 0.44 and 23.58 ± 0.49 years, respectively. No significant difference was observed ( p  > 0.05).

None of the participants in either the control or experimental groups had previously received high-fidelity simulation training. An evaluation was conducted based on their participation in performing specific tasks during the ALS training. All participants had experience performing tasks such as “cardiac compression” and “ventilation of intubated patients using a bag-valve mask” at least once.

Quantitative results

When comparing the results of PET for ALS-SEP between the control and experimental groups, no statistically significant difference was found, except for the adjustment of the required energy dose for defibrillation ( p  > 0.05) (Table  4 ). The POT results regarding ALS-SEP were evaluated for both groups. Statistical significance was observed for several topics, including maintaining airway opening, bag valve mask usage, endotracheal intubation, and drug administration ( p  < 0.05) (Table  5 ). The experimental group showed a higher increase in the percentage of change in CSES (52.94%) than the control group (27.27%), and this increase was statistically significant ( p  < 0.05) (Fig.  1 ). The results of the increase in percentage in both groups were significantly different for specific questions related to skills ( p  < 0.05) (Table  6 ). The percentage of change in CSES was measured as 44.64 (28.86–78.57) and 44.82 (23.98–64.11) in women and men, respectively, with no statistically significant difference between genders ( p  > 0.05). According to CPR wristband results, the percentage of students reaching the expected compression depth was 17.24% 17.24 ± 23.18%, and their ability to compress at the expected rate interval was 29.90% 29.90 ± 37.36% (Table  7 ). The number of students who achieved at least 80% of the expected depth and rate was 2 (3.7%) and 13 (24.52%), respectively.

figure 1

Comparison of the percentage change in the combined self-efficacy scores between the pre-test and post-test

The agreement between the performance scores assigned by the observers and the self-efficacy perceptions reported by the students was evaluated using Kappa concordance statistics, indicating a low level of agreement (Kappa < 0.2). No significant correlation was observed between the students’ performance and their self-efficacy perceptions (Table  8 ).

Qualitative results

The main topics of discussion among the students revolved around their perceptions of simulation, their experiences with simulation training, the benefits they gained from simulation, and their recommendations. After analyzing the data, four main themes emerged, namely “learning,” “self-efficacy,” “simulation method,” and “development.” The analysis revealed that the learning theme represented 32.6% of the opinions, followed by the “self-efficacy” theme at 29%, the “simulation method” theme at 21.3%, and the development theme at 16.5% (Table  9 ).

Regarding the “learning” theme, the students expressed that the knowledge and skills they gained through simulation training were long-lasting. They emphasized that the training was instructive and informative, especially in relation to CPR, and that they learned effectively by actively participating in simulation scenarios. They also mentioned that self-evaluation helped them recognize their efficiency and learn about appropriate interventions (Table  10 ).

In relation to the theme of “self-efficacy perception”, the students compared their competence before and after the simulation training. A significant portion of the quotes were reported as “The perception of being more competent compared to before the simulation” (31.87%). They believed that the experience improved their ability to accurately intervene in future situations and increased their confidence in managing ALS. They recognized their personal limitations and lack of expertise, which contributed to the growth of their self-efficacy (Table  11 ).

The students primarily focused on the perception of fidelity within the theme of “simulation.” They shared their views on the significance of reviewing recordings during debriefing sessions and gaining the skills and knowledge they lacked (Table  12 ). Furthermore, they highlighted the importance of simulation training in earlier medical education semesters and expressed a wish for a wider range of scenarios in the future (Table  13 ).

In response to the question presented in Table  3 , “After this simulation, I can provide advanced life support more confidently in my future professional career,” 98.11% of the students expressed agreement. Additionally, all the students conveyed satisfaction with their involvement in the ALS simulation, rating the training an average of 4.88 out of 5 points.

Scenario-based high-fidelity simulation training offers valuable opportunities for individual, team, and interdisciplinary training. It serves as a platform for evaluating decision-making processes and fostering continuous improvement. In addition, it supports learning by providing reflective and analytical steps that facilitate individual development [ 20 ]. Interactive training methods such as simulation training, which include accurate feedback and correction of errors, can improve the relationship between self-efficacy and competence. Performance is influenced by a complex interplay of preparedness, self-efficacy, and acquired knowledge and skills. The students’ perception of self-efficacy, which can be developed through reflection during simulation training, could significantly influence their professional performance and motivation to enhance it. According to Bandura’s theory [ 21 ], students with high self-efficacy tend to achieve more successful, effective, and efficient outcomes than those with low self-efficacy. Students with high self- efficacy demonstrate increased effort and motivation when faced with challenges. Moreover, the level of self- efficacy can influence task selection, motivation, and willingness to perform, as students with low self- efficacy may be more prone to avoid or withdraw from tasks due to fear [ 22 ].

Various methods, such as low or high fidelity models, virtual and web-based applications, or scenario-based simulation, can be used to teach CPR skills. Regardless of the chosen method, it is essential to have effective feedback mechanisms that provide accurate assessments of student performance [ 2 ].

The perception of high self-efficacy in performing CPR is closely linked to the delivery of high-quality CPR [ 23 ]. Therefore, ALS training that focuses on improving both CPR skills and self-efficacy can be highly beneficial. Recently, there has been an increasing preference for training that focuses on fundamental skills required for performing high-quality CPR, as well as scenario-based simulation training that closely replicates real-life situations. Evidence supporting the use of simulation methods in enhancing self-efficacy for various skills exists, including CPR. A systematic review has demonstrated that simulations with high fidelity, conducted under accurate conditions, facilitate the learning of CPR skills [ 3 ].

Another systematic review and meta-analysis have demonstrated that simulation-based CPR training, which includes teamwork and structured feedback, is superior to training without simulation in terms of knowledge and skill acquisition [ 4 ]. Moreover, high-fidelity simulation training is considered to be more effective than low-fidelity CPR model training for teaching high-quality CPR to medical students [ 24 ]. There is increasing evidence suggesting that students educated with simulation-based CPR curricula exhibit better proficiency in learning ALS compared with those following the traditional curriculum [ 25 ]. In addition, simulation has been found to significantly enhance the quality of care provided by assistants during real ALS cases, suggesting that it can complement traditional procedural training methods [ 26 ].

Although clinicians possess knowledge and expertise in their techniques, their ability to effectively apply these skills is associated with a strong self-efficacy belief in their abilities. Healthcare professionals with a high perception of self-efficacy in CPR are expected to demonstrate successful CPR performance using their acquired resuscitation knowledge and skills. In contrast, healthcare professionals with low self-efficacy perceptions may experience uncertainties regarding their capabilities and demonstrate hesitancy regarding participating in critical and high-risk scenarios, such as cardiopulmonary resuscitation. Therefore, it is recommended to use educational methods that enhance self-efficacy perception during CPR training [ 15 ]. Scenario-based simulation training can be used to improve self-efficacy perceptions and reduce these difficulties.

In this study, a high-fidelity scenario-based simulation was conducted for intern students in their final year of medical education. The aim of this study was to investigate the effect of ALS simulation on students’ self- efficacy. The data revealed that the percentage of change in the CSES was significantly higher among students who participated in the ALS simulation than among those who did not ( p  < 0.05). (Table  4 .)

Additionally, there are studies that emphasize the gap between clinicians’ self-efficacy perceptions and their actual level of competence [ 14 ]. A systematic review conducted by Davis et al. [ 27 ] emphasized the lack of consistent correlation between observed self-efficacy measurements of physicians and their actual self-efficacy, suggesting a limited ability for accurate self-assessment. Interestingly, they found that physicians with lower skills, but higher self-efficacy tended to have poorer self-evaluation abilities.

Gonzi et al. investigated the relationship between self-efficacy perception and performance by examining the correlation between hospital staff’s self-efficacy perceptions in basic life support and their actual performance during the application. The findings indicated that there was no significant correlation between the self-efficacy perception measured before the simulation and the performance measured during the application [ 28 ]. In a pediatric resuscitation study by Turner et al., participants’ performance in high- fidelity simulation training was evaluated as an indicator of the probability of transferring self-efficacy to clinical learning practice. However, no correlation was found between self-efficacy and resuscitation skills performance [ 29 ].

The relationship between performance and self-efficacy perception is a critical aspect to consider. Healthcare professionals may demonstrate suboptimal CPR performance [ 30 ]. It is hypothesized that physicians with high self-efficacy perceptions, but low performance may lack awareness of their deficiencies in meeting specific skill requirements, resulting in overconfidence. This may pose significant risks, especially in critical cases that require resuscitation [ 14 ]. The perception of healthcare professionals in evaluating the accuracy of their CPR skills may not be as accurate as the objective feedback methods used during CPR simulations. Additionally, this perception may lead to an overestimation of compression quality, which can result in low- quality CPR. The self-efficacy perceptions of healthcare professionals exhibited a stronger correlation with their actual performance following CPR trainings involving simulation. In addition, it was observed that the self-evaluation processes were better maintained under these conditions [ 28 ].

In our study, we assessed students’ self-efficacy perceptions using the ALS Technical Skills Assessment Tool, and their skills were also assessed by an observer during the simulation training. However, the compatibility analyses conducted using the obtained data revealed a discrepancy between the student’s self-efficacy perceptions and the observer’s performance scores. The correlation between the students’ ALS performances and their self-efficacy perceptions was low. Furthermore, we investigated the correlation between students’ self-efficacy perceptions regarding cardiac compression skills and their actual performance by using CPR feedback bracelets. The results demonstrated that the success rates of students in both components of this fundamental skill were remarkably low (Table  6 ). Despite the low success rates, students generally perceived themselves as self-sufficient. The CPR device measurements revealed low success rates, indicating an inconsistent relationship between self-efficacy perception and demonstrated performance.

The theme of “Self-efficacy Perception” during the focus group interviews revealed that the code of “recognition of individual insufficiency and inexperience” was expressed at a ratio of 28.57%. Participants made statements such as “I faced my insufficiency during the training and " For the first time, ALS management was entirely left to us, and we saw the benefits of this. There was an opportunity to see our mistakes.” It is great, of course, to be more competent. “I saw my mistakes and believe I won’t repeat them. I gained more confidence in myself regarding actually doing it.” “In this simulation, we not only witness our own development but also feel more self-assured”.

These statements emphasize the effectiveness of using simulation in training procedures to establish a connection between self-efficacy perception and performance. Students show higher scores and increased self-efficacy perceptions in the ALS training conducted with high-fidelity simulations. The use of simulation in ALS training enhances knowledge and self-efficacy. The debriefing step, which involves reflection and evaluation of performance during simulation scenarios, can reduce potential risks for patients. This step enhances self-efficacy perception related to individual performances.

In conclusion, our study showed that students who participated in simulation showed a higher percentage of changes in self-efficacy scores than those who did not participate. The findings indicated that the simulation experience contributed to the development of students’ confidence in their ability to manage ALS independently This was supported by their increased perception of adequacy in ALS, confidence in future interventions, and acknowledgment of personal inadequacy and lack of experience.

During medical education, students face various challenges in their CPR training. Real- life ALS situations often involve a chaotic environment where students may not have the opportunity to fully practice each step of ALS. Moreover, mastering ALS requires the acquisition of numerous psychomotor skills. In addition, the ALS process includes non-technical skills such as self-efficacy belief, effective teamwork, leadership, crisis management, clinical decision-making, delivering bad news, and stress management, all of which are essential for successful resuscitation.

Developing mechanisms that effectively transfer these skills to real-life situations and provide frequent repetition using realistic scenarios can be challenging throughout the duration of medical education. In cases where there is a high perception of ALS self-efficacy but inadequate performance, considering the potential risks to the patient, it is crucial to design ALS training programs throughout medical education that promote high levels of both self-efficacy perception and performance, ensuring they are correlated. These training programs should be carefully designed and integrated into educational curricula with a learner- centered approach, focusing on the holistic development and acquisition of complex skills essential for patient safety. It is also important to regularly provide students with opportunities for self-assessment and evaluation of their performance and skill development in ALS.

It is evident that advanced life support simulations are more commonly investigated in studies involving healthcare professionals who are experts or experienced in this field. Unlike simulation research conducted with healthcare professionals competent in ALS, this study comprehensively examines the impact of high-fidelity scenario-based ALS simulations on medical students. It showcases a broader potential role of these simulations in under-graduate medical education and offers a perspective on health education.

Data availability

The data that support the findings of this study are not openly available due to reasons of sensitivity and are available from the corresponding author upon reasonable request. Data are located in controlled access data storage at Kocaeli University Faculty of Medicine.

Gräsner JT, Herlitz J, Tjelmeland IBM, et al. European Resuscitation Council guidelines 2021: epidemiology of cardiac arrest in Europe. Resuscitation. 2021;161:61–79. https://doi.org/10.1016/j.resuscitation.2021.02.007 .

Article   Google Scholar  

Greif R, Lockey A, Breckwoldt J, et al. [Education for resuscitation]. Notf Rettungsmedizin. 2021;24:750–72. https://doi.org/10.1007/s10049-021-00890-0 .

Issenberg SB, McGaghie WC, Petrusa ER, Lee Gordon D, Scalese RJ. Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review. Med Teach. 2005;27:10–28. https://doi.org/10.1080/01421590500046924 .

Mundell WC, Kennedy CC, Szostek JH, Cook DA. Simulation technology for resuscitation training: a systematic review and meta-analysis. Resuscitation. 2013;84:1174–83. https://doi.org/10.1016/j.resuscitation.2013.04.016 .

Bandura A. Self-efficacy: toward a unifying theory of behavioral change. Psychol Rev. 1977;84:191–215. https://doi.org/10.1037/0033-295X.84.2.191 .

Senemoğlu N, editor. Gelişim, Oğrenme ve Oğretim. 2013, 233:235.Ankara.

Bambini D, Washburn J, Perkins R. Outcomes of clinical simulation for novice nursing students: communication, confidence, clinical judgment. Nurs Educ Perspect. 2009;30:79–82.

Google Scholar  

Bayouth L, Ashley S, Brady J, et al. An in-situ simulation-based educational outreach project for pediatric trauma care in a rural trauma system. J Pediatr Surg. 2018;53:367–71. https://doi.org/10.1016/j.jpedsurg.2017.10.042 .

Li J, Li X, Gu L, et al. Effects of Simulation-based deliberate practice on nursing students’ communication, Empathy, and self-efficacy. J Nurs Educ. 2019;1:681–9. https://doi.org/10.3928/01484834-20191120-02 .

Wenlock RD, Arnold A, Patel H, Kirtchuk D. Low-fidelity simulation of medical emergency and cardiac arrest responses in a suspected COVID-19 patient - an interim report. Clin Med (Lond. 2020;20:66–71. https://doi.org/10.7861/clinmed.2020-0142 .

Franklin AE, Lee CS. Effectiveness of simulation for improvement in self-efficacy among novice nurses: a meta-analysis. J Nurs Educ. 2014;1:607–14. https://doi.org/10.3928/01484834-20141023-03 .

Vuk J, Anders ME, Mercado CC, Kennedy RL, Casella J, Steelman SC. Impact of simulation training on self- efficacy of outpatient health care providers to use electronic health records. Int J Med Inf. 2015;84:423–9. https://doi.org/10.1016/j.ijmedinf.2015.02.003 .

Reznek M, Smith-Coggins R, Howard S, et al. Emergency medicine crisis resource management (EMCRM): pilot study of a simulation-based crisis management course for emergency medicine. Acad Emerg Med. 2003;10:386–9. https://doi.org/10.1111/j.1553-2712.2003.tb01354.x .

Hunt EA, Fiedor-Hamilton M, Eppich WJ. Resuscitation education: narrowing the gap between evidence- based resuscitation guidelines and performance using best educational practices. Pediatr Clin North Am. 2008;55:1025. https://doi.org/10.1016/j.pcl.2008.04.007 .

Maibach EW, Schieber RA, Carroll MF. Self-efficacy in pediatric resuscitation: implications for education and performance. Pediatrics. 1996;97:94–9.

Artino AR Jr. Academic self-efficacy: from educational theory to instructional practice. Perspect Med Educ. 2012;1:76–85. https://doi.org/10.1007/s40037-012-0012-5 .

Panchal AR, Bartos JA, Cabañas JG, et al. Part 3: adult basic and advanced life support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2020;142:366–468. https://doi.org/10.1161/CIR.0000000000000916 .

Soar J, Böttiger BW, Carli P et al. European Resuscitation Council Guidelines 2021: Adult advanced life support [published correction appears in Resuscitation. 2021;167:105–106. https://doi.org/10.1016/j.resuscitation.2021.02.010

Turner NM, van de Leemput AJ, Draaisma JM, Oosterveld P, ten Cate OT. Validity of the visual analogue scale as an instrument to measure self-efficacy in resuscitation skills. Med Educ. 2008;42:503–11. https://doi.org/10.1111/j.1365-2923.2007.02950.x .

Ostergaard D, Rosenberg J. The evidence: what works, why and how? In essential simulation in clinical education. Wiley-Blackwell 20132642, https://doi.org/10.1002/9781118748039.ch3

Bandura A. Self-efficacy: the exercise of control. W H Freeman/Times Books/Henry Holt & Co. 1997.

Schunk DH, Ertmer PA. Chap. 19 - Self-Regulation and Academic Learning:Self-Efficacy Enhancing Interventions. Boekaerts, M. and Pintrich, P.R. and Zeidner, M. and of Self-Regulation. San Diego, Handbook, editor: Academic Press; 2000631649.

Verplancke T, De Paepe P, Calle PA, De Regge M, Van Maele G, Monsieurs KG. Determinants of the quality of basic life support by hospital nurses. Resuscitation. 2008;77:75–80. https://doi.org/10.1016/j.resuscitation.2007.10.006 .

McCoy CE, Rahman A, Rendon JC, et al. Randomized Controlled Trial of Simulation vs. Standard Training for Teaching Medical Students High-quality cardiopulmonary resuscitation. West J Emerg Med. 2019;20:15–22. https://doi.org/10.5811/westjem.2018.11.39040 .

Ko PY, Scott JM, Mihai A, Grant WD. Comparison of a modified longitudinal simulation-based advanced cardiovascular life support to a traditional advanced cardiovascular life support curriculum in third-year medical students. Teach Learn Med. 2011;23:324–30. https://doi.org/10.1080/10401334.2011.611763 .

Wayne DB, Didwania A, Feinglass J, Fudala MJ, Barsuk JH, McGaghie WC. Simulation-based education improves quality of care during cardiac arrest team responses at an academic teaching hospital: a case- control study. Chest. 2008;133:56–61. https://doi.org/10.1378/chest.07-0131 .

Davis DA, Mazmanian PE, Fordis M, Van Harrison R, Thorpe KE, Perrier L. Accuracy of physician self- assessment compared with observed measures of competence: a systematic review. JAMA. 2006;296:1094–102. https://doi.org/10.1001/jama.296.9.1094 .

Gonzi G, Sestigiani F, D’errico A et al. Correlation between quality of cardiopulmonary resuscitation and self-efficacy measured during in-hospital cardiac arrest simulation; preliminary results. Acta Biomed 2015;86(1):40–5.

Turner NM, Lukkassen I, Bakker N, Draaisma J, ten Cate OT. The effect of the APLS-course on self-efficacy and its relationship to behavioural decisions in paediatric resuscitation. Resuscitation. 2009;80:913–8. https://doi.org/10.1016/j.resuscitation.2009.03.028 .

Aufderheide TP, Pirrallo RG, Yannopoulos D et al. Incomplete chest wall decompression: a clinical evaluation of CPR performance by EMS personnel and assessment of alternative manual chest compression- decompression techniques. 2005:353–362.

Download references

Acknowledgements

We would like to express our gratitude to Sibel Balcı from Kocaeli University Faculty of Medicine, Department of Biostatistics, for her statistical support in calculating the results, and to Sibel Daylan from Abant İzzet Baysal University, School of Foreign Languages, for providing English proofreading support.

This study received no funding.

Author information

Authors and affiliations.

Division of Basic Medical Sciences, Department of Medical Education, Kocaeli University Faculty of Medicine, Kocaeli, Turkey

Pınar Daylan Koçkaya

Division of Internal Medical Sciences, Department of Family Medicine, Kocaeli University Faculty of Medicine, Kocaeli, Turkey

Tuncay Müge Alvur

Basic Sciences Division, Department of Medical Education and Informatics, Hacettepe University Faculty of Medicine, Ankara, Turkey

Orhan Odabaşı

You can also search for this author in PubMed   Google Scholar

Contributions

P.D.K conceived and designed research; P.D.K and T.M.A., performed experiments; P.D.K analyzed data; P.D.K, T.M.A. and O.O inter-preted results of experiments; P.D.K prepared figures; P.D.K. drafted manuscript; T.M.A. and O.O edited and revised manuscript; P.D.K., T.M.A. and O.O approved final version of manuscript.

Corresponding author

Correspondence to Pınar Daylan Koçkaya .

Ethics declarations

Disclosures.

No conflicts of interest, financial or otherwise, are declared by the authors.

Human ethics approval and consent to participate declarations

This study was conducted with ethical approval granted by the Kocaeli University Noninterventional Clinical Research Ethics Committee (Reference Number: 80418770-302.14.06/76217). All participants were provided with both verbal and written information about the study objective, including the voluntary nature of participation and the option to withdraw from the study at any time without facing any negative consequences. The participants were also informed that their responses could not be traced back to them. Written informed consent was obtained from the participants before all interviews.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Koçkaya, P.D., Alvur, T.M. & Odabaşı, O. Empowering medical students: bridging gaps with high-fidelity simulations; a mixed-methods study on self-efficacy. BMC Med Educ 24 , 1026 (2024). https://doi.org/10.1186/s12909-024-05996-w

Download citation

Received : 29 January 2024

Accepted : 05 September 2024

Published : 19 September 2024

DOI : https://doi.org/10.1186/s12909-024-05996-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Advanced Life Support
  • Cardiopulmonary resuscitation
  • Medical education
  • Simulation training
  • Self efficacy

BMC Medical Education

ISSN: 1472-6920

experimental study methods

Evaluation of Reservoir Porosity and Permeability from Well Log Data Based on an Ensemble Approach: A Comprehensive Study Incorporating Experimental, Simulation, and Fieldwork Data

  • Original Paper
  • Published: 18 September 2024

Cite this article

experimental study methods

  • Edwin E. Nyakilla   ORCID: orcid.org/0000-0002-7402-2611 1 , 2 ,
  • Sun Guanhua 1 , 2 ,
  • Hao Hongliang 2 ,
  • Grant Charles 3 ,
  • Mouigni B. Nafouanti 3 ,
  • Emanuel X. Ricky 3 ,
  • Selemani N. Silingi 3 , 4 ,
  • Elieneza N. Abelly 3 ,
  • Eric R. Shanghvi 3 ,
  • Safi Naqibulla 3 ,
  • Mbega R. Ngata 3 ,
  • Erasto Kasala 3 ,
  • Melckzedeck Mgimba 5 ,
  • Alaa Abdulmalik 3 ,
  • Fatna A. Said 7 ,
  • Mbula N. Nadege 3 ,
  • Johnson J. Kasali 6 &

Permeability and porosity are key parameters in reservoir characterization for understanding hydrocarbon flow behavior. While traditional laboratory core analysis is time-consuming, machine learning has emerged as a valuable tool for more efficient and accurate estimation. This paper proposes an ensemble technique called adaptive boosting (AdaBoost) for porosity and permeability estimation, utilizing methods such as support vector machine (SVM), Gaussian process regression (GPR), multivariate analysis, and backpropagation neural network (BPNN) for prediction based on well logs. Performance evaluation metrics including root mean square error, mean square error, and coefficient of determination ( R 2 ) were used to compare the models. The results demonstrate that AdaBoost outperformed GPR, SVM, and BPNN models in terms of processing time and accuracy, achieving R 2 values of 0.980 and 0.962 for permeability and porosity during training, respectively, and 0.960 and 0.951 during testing, respectively. This study highlights AdaBoost as a robust and accurate technique that can enhance reservoir characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

experimental study methods

Explore related subjects

  • Artificial Intelligence

Data and Materials Availability

All the data and materials used here are published with this paper and will be available upon request.

Adegbite, J. O., Belhaj, H., & Bera, A. (2021). Investigations on the relationship among the porosity, permeability and pore throat size of transition zone samples in carbonate reservoirs using multiple regression analysis, artificial neural network and adaptive neuro-fuzzy interface system. Petroleum Research . https://doi.org/10.1016/j.ptlrs.2021.05.005

Article   Google Scholar  

Adeniran, A. A., Adebayo, A. R., Salami, H. O., Yahaya, M. O., & Abdulraheem, A. (2019). A competitive ensemble model for permeability prediction in heterogeneous oil and gas reservoirs. Applied Computing and Geosciences, 1 , 100004.

Ahmadi, M. A., & Chen, Z. (2019). Comparison of machine learning methods for estimating permeability and porosity of oil reservoirs via petro-physical logs. Petroleum, 5 , 271–284.

Ahmadi, M., Naderpour, H., & Kheyroddin, A. (2017). ANN model for predicting the compressive strength of circular steel-confined concrete. International Journal of Civil Engineering, 15 , 213–221.

Ahmadi, M. A., Zendehboudi, S., Lohi, A., Elkamel, A., Chatzis, I., Ali Ahmadi, M., Zendehboudi, S., Lohi, A., Elkamel, A., & Chatzis, I. (2013). Reservoir permeability prediction by neural networks combined with hybrid genetic algorithm and particle swarm optimization. Geophysical Prospecting, 61 , 582–598.

Al-Anazi, A., & Gates, I. D. (2010). A support vector machine algorithm to classify lithofacies and model permeability in heterogeneous reservoirs. Engineering Geology, 114 , 267–277.

Al-Anazi, A. F., & Gates, I. D. (2012a). Support vector regression to predict porosity and permeability: Effect of sample size. Computers & Geosciences, 39 , 64–76.

Ali Ahmadi, M., Zendehboudi, S., Lohi, A., Elkamel, A., & Chatzis, I. (2013). Reservoir permeability prediction by neural networks combined with hybrid genetic algorithm and particle swarm optimization. Geophysical Prospecting, 61 , 582–598.

Aljuboori, F. A., Lee, J. H., Elraies, K. A., & Stephen, K. D. (2021). Using statistical approaches in permeability prediction in highly heterogeneous carbonate reservoirs. Carbonates and Evaporites, 36 , 1–14.

Al-Mohair, H. K., Saleh, J. M., & Suandi, S. A. (2015). Hybrid human skin detection using neural network and K-means clustering technique. Applied Soft Computing, 33 , 337–347.

Al-Mudhafar, W.J., (2020). Integrating electrofacies and well logging data into regression and machine learning approaches for improved permeability estimation in a carbonate reservoir in a giant southern Iraqi oil field, In Offshore technology conference. OnePetro.

Al-Rikaby, A. S., & Al-Jawad, M. S. (2024). Identification of reservoir flow zone & permeability estimation. Egyptian Journal of Petroleum, 33 , 1–21.

Amour, F., & Nick, H. M. (2021). Porosity and permeability variability across a chalk reservoir in the Danish North Sea: Quantitative impacts of depositional and diagenetic processes. Engineering Geology, 285 , 106059.

Asante-Okyere, S., Shen, C., Ziggah, Y. Y., Rulegeya, M. M., & Zhu, X. (2020a). A novel hybrid technique of integrating gradient-boosted machine and clustering algorithms for lithology classification. Natural Resources Research, 29 , 2257–2273.

Asante-Okyere, S., Shen, C., Ziggah, Y. Y., Rulegeya, M. M., & Zhu, X. (2020b). Principal component analysis (PCA) based hybrid models for the accurate estimation of reservoir water saturation. Computers & Geosciences, 145 , 104555.

Babadagli, T., & Al-Salmi, S. (2004). A review of permeability-prediction methods for carbonate reservoirs using well-log data. SPE Reservoir Evaluation and Engineering, 7 , 75–88.

Article   CAS   Google Scholar  

Bashir, Y., Siddiqui, N. A., Morib, D. L., Babasafari, A. A., Ali, S. H., Imran, Q. S., & Karaman, A. (2024). Cohesive approach for determining porosity and P-impedance in carbonate rocks using seismic attributes and inversion analysis. Journal of Petroleum Exploration and Production Technology, 14 (5), 1173–1187.

Bolandi, V., Kadkhodaie, A., & Farzi, R. (2017). Analyzing organic richness of source rocks from well log data by using SVM and ANN classifiers: A case study from the Kazhdumi formation, the Persian Gulf basin, offshore Iran. Journal of Petroleum Science and Engineering, 151 , 224–234.

Bom, C. R., Valentín, M. B., Fraga, B. M. O., Campos, J., Coutinho, B., Dias, L. O., Faria, E. L., de Albuquerque, M. P. M. P., de Albuquerque, M. P. M. P., & Correia, M. D. (2021). Bayesian deep networks for absolute permeability and porosity uncertainty prediction from image borehole logs from brazilian carbonate reservoirs. Journal of Petroleum Science and Engineering, 201 , 108361.

Bramer, M. (2016). Data for data mining. Principles of data mining (pp. 9–19). Springer.

Chapter   Google Scholar  

Cabrera, D., & Samaniego, F. (2021). Experimental permeability tensor for fractured carbonate rocks. Rock Mechanics and Rock Engineering, 54 , 1171–1191.

Chen, S., Gu, C., Lin, C., Wang, Y., & Hariri-Ardebili, M. A. (2020). Prediction, monitoring, and interpretation of dam leakage flow via adaptative kernel extreme learning machine. Measurement, 166 , 108161.

Chen, W., & Li, Y. (2020). GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models. Catena, 195 , 104777.

D’Haen, J., Van den Poel, D., & Thorleuchter, D. (2013). Predicting customer profitability during acquisition: Finding the optimal combination of data source and data mining technique. Expert Systems with Applications, 40 , 2007–2012.

Davari, M. A., Senemari, S., Alimoradi, A., & Safavi, S. J. (2024). Permeability prediction from log data using machine learning methods. Journal of Petroleum Geomechanics . https://doi.org/10.22107/JPG.2024.426878.1220

Dev, V. A., & Eden, M. R. (2019). Formation lithology classification using scalable gradient boosted decision trees. Computers & Chemical Engineering, 128 , 392–404.

Edwards, D. S., Struckmeyer, H. I. M., Bradshaw, M. T., & Skinner, J. E. (1999). Geochemical characteristics of Australia’s southern margin petroleum systems. APPEA J., 39 , 297–321.

Farouk, S., Sen, S., Ganguli, S. S., Abuseda, H., & Debnath, A. (2021). Petrophysical assessment and permeability modeling utilizing core data and machine learning approaches-A study from the Badr El Din-1 field, Egypt. Marine and Petroleum Geology, 133 , 105265.

Feng, D. C., Liu, Z. T., Wang, X. D., Chen, Y., Chang, J. Q., Wei, D. F., & Jiang, Z. M. (2020). Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach. Construction and Building Materials, 230 , 117000.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55 , 119–139.

Gan, L., Wang, Y., Luo, X., Zhang, M., Li, X., Dai, X., & Yang, H. (2019). A permeability prediction method based on pore structure and lithofacies. Petroleum Exploration and Development, 46 , 935–942.

Gholizadeh, P., & Esmaeili, B. (2016). Applying classification trees to analyze electrical contractors’ accidents. Construction Research Congress, 2016 , 2699–2708.

Google Scholar  

Gu, Y., Bao, Z., & Cui, G. (2018). Permeability prediction using hybrid techniques of continuous restricted Boltzmann machine, particle swarm optimization and support vector regression. Journal of Natural Gas Science and Engineering, 59 , 97–115.

Han, H., Shi, B., & Zhang, L. (2021). Prediction of landslide sharp increase displacement by SVM with considering hysteresis of groundwater change. Engineering Geology, 280 , 105876.

Hidayat, F., & Astsauri, T. M. S. (2021). Applied random forest for parameter sensitivity of low salinity water injection (LSWI) implementation on carbonate reservoir. Alexandria Engineering Journal . https://doi.org/10.1016/j.aej.2021.06.096

Humadi, J. (2024). Predicting reservoir or non-reservoir formations by calculating permeability and porosity in an Iraqi oil field. Journal of Chemical and Petroleum Engineering., 58 , 115–129.

Izenman, A. J. (2008). Modern multivariate statistical techniques. Regression Classification, and Manifold Learning, 10 , 970–978.

Jia, W., Zhao, D., Shen, T., Ding, S., Zhao, Y., & Hu, C. (2015). An optimized classification algorithm by BP neural network based on PLS and HCA. Applied Intelligence, 43 , 176–191.

Kadhim, F.S., Imran, A.L.A.M., Rasool, M.Y.F., 2020. Using NMR, core analysis, and well logging data to predict permeability of carbonate reservoirs: a case study, In: IOP conference series: Materials science and engineering. IOP Publishing, p. 12071.

Kaloop, M. R., Kumar, D., Samui, P., Hu, J. W., & Kim, D. (2020). Compressive strength prediction of high-performance concrete using gradient tree boosting machine. Construction and Building Materials, 264 , 120198.

Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection, In: Ijcai. Montreal, Canada, pp. 1137–1145.

Leisi, A., Aftab, S., & Manaman, N. S. (2024). Poro-acoustic impedance (PAI) as a new and robust seismic inversion attribute for porosity prediction and reservoir characterization. Journal of Applied Geophysics, 223 , 105351.

Li, J., Tang, T., Yu, S., & Yu, P. (2024). A machine learning based-method to generate random circle-packed porous media with the desired porosity and permeability. Advances in Water Resources, 185 , 104631.

Liao, K. W., Fan, J. C., & Huang, C. L. (2011). An artificial neural network for groutability prediction of permeation grouting with microfine cement grouts. Computers and Geotechnics, 38 , 978–986.

Liu, J. J., & Liu, J. C. (2022). Permeability predictions for tight sandstone reservoir using explainable machine learning and particle swarm optimization. Geofluids, 2022 , 2263329.

Liu, X., Han, G., Wang, E., Wang, S., & Nawnit, K. (2018). Multiscale hierarchical analysis of rock mass and prediction of its mechanical and hydraulic properties. Journal of Rock Mechanics and Geotechnical Engineering, 10 , 694–702.

Mahdy, A., Zakaria, W., Helmi, A., Helaly, A. S., & Mahmoud, A. M. E. (2024). Machine learning approach for core permeability prediction from well logs in Sandstone Reservoir, Mediterranean Sea, Egypt. Journal of Applied Geophysics, 220 , 105249.

Mangione, A., Lewis, H., Geiger, S., Jiang, Z., Couples, G. D., Buckman, J., Beavington-Penney, S., & Hall, S. A. (2021). Estimation of pre-dolomitisation porosity and permeability of a nummulitic carbonate reservoir rock using the multi-component architecture method (MCAM). Marine and Petroleum Geology, 132 , 105196.

Matveev, M. Y., Endruweit, A., Long, A. C., Iglesias, M. A., & Tretyakov, M. V. (2021). Bayesian inversion algorithm for estimating local variations in permeability and porosity of reinforcements using experimental data. Composites Part A, Applied Science and Manufacturing, 143 , 106323.

Mohammadian, E., Kheirollahi, M., Liu, B., Ostadhassan, M., & Sabet, M. (2022). A case study of petrophysical rock typing and permeability prediction using machine learning in a heterogenous carbonate reservoir in Iran. Science and Reports, 12 , 1–15.

Moussa, T., Elkatatny, S., Mahmoud, M., & Abdulraheem, A. (2018). Development of new permeability formulation from well log data using artificial intelligence approaches. Journal of Energy Resources Technology, 140 , 072903.

Mulashani, A. K., Shen, C., Nkurlu, B. M., Mkono, C. N., & Kawamala, M. (2021). Enhanced group method of data handling (GMDH) for permeability prediction based on the modified levenberg marquardt technique from well log data. Energy, 239 , 121915.

Nady, M. M. E., Lotfy, N. M., Ramadan, F. S., & Hammad, M. M. (2015). Evaluation of organic matters, hydrocarbon potential and thermal maturity of source rocks based on geochemical and statistical methods: Case study of source rocks in Ras Gharib oilfield, central Gulf of Suez, Egypt. Egyptian Journal of Petroleum, 24 , 203–211.

Nyakilla, E. E., Jun, G., Kasimu, N. A., Robert, E. F., Innocent, N., Mohamedy, T., & Shaame, M. (2022). Application of machine learning in the prediction of compressive, and shear bond strengths from the experimental data in oil well cement at 80 °C. Ensemble trees boosting approach. Construction and Building Materials, 317 , 125778.

Nyakilla, E. E., Silingi, S. N., Shen, C., Jun, G., Mulashani, A. K., & Chibura, P. E. (2021). Evaluation of source rock potentiality and prediction of total organic carbon using well log data and inte- grated methods of multivariate analysis, machine learning, and geochemical analysis. Natural Resources Research . https://doi.org/10.1007/s11053-021-09988-1

Otchere, D. A. (2024). Fundamental error in tree-based machine learning model selection for reservoir characterisation. Energy Geosci., 5 , 100229.

Otchere, D. A., Ganat, T. O. A., Gholami, R., & Lawal, M. (2021). A novel custom ensemble learning model for an improved reservoir permeability and water saturation prediction. J. Nat. Gas Sci. Eng., 91 , 103962.

Pan, S., Horsfield, B., Zou, C., Yang, Z., & Gao, D. (2017). Statistical analysis as a tool for assisting geochemical interpretation of the upper Triassic Yanchang formation, Ordos Basin, Central China. International Journal of Coal Geology, 173 , 51–64.

Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. London, Edinburgh. Dublin Philos. Mag. J. Sci., 2 , 559–572.

Pham, B. T., Jaafari, A., Phong, T. V., Mafi-Gholami, D., Amiri, M., Van Tao, N., Duong, V. H., & Prakash, I. (2021a). Naïve Bayes ensemble models for groundwater potential mapping. Ecol. Inform., 64 , 101389.

Pham, B. T., Nguyen, M. D., Nguyen-Thoi, T., Ho, L. S., Koopialipoor, M., Kim Quoc, N., Armaghani, D. J., & Le, H. V. (2021b). A novel approach for classification of soils based on laboratory tests using Adaboost, tree and ANN modeling. Transportation Geotechnics, 27 , 100508.

Pitombo, C. S., de Souza, A. D., & Lindner, A. (2017). Comparing decision tree algorithms to estimate intercity trip distribution. Transportation Research Part C: Emerging Technologies, 77 , 16–32.

Qian, C., Yang, S., Wang, Y., Wu, C., & Zhang, Y. (2021). Prediction and modeling of petrophysical parameters of deep-buried, low permeability glutenite reservoirs in Yubei area, Turpan-Hami Basin, China. Journal of Petroleum Science and Engineering, 207 , 109154.

Qian, J., Yan, Y., Wang, Y., Liu, Y., & Luo, Q. (2024). Effect of scale and matrix porosity on the relationship between permeability and resistivity in fracture-matrix system. Journal of Hydrology, 629 , 130600.

Rafik, B., & Kamel, B. (2017). Prediction of permeability and porosity from well log data using the nonparametric regression with multivariate analysis and neural network, Hassi R’Mel Field. Algeria. Egypt. J. Pet., 26 , 763–778.

Rao, H., Shi, X., Rodrigue, A. K., Feng, J., Xia, Y., Elhoseny, M., Yuan, X., & Gu, L. (2019). Feature selection based on artificial bee colony and gradient boosting decision tree. Applied Soft Computing, 74 , 634–642.

Röding, M., Ma, Z., & Torquato, S. (2020). Predicting permeability via statistical learning on higher—order microstructural information. Scientific Reports . https://doi.org/10.1038/s41598-020-72085-5

Sun, Y., Pang, S., Zhang, J., & Zhang, Y. (2024). Porosity prediction through well logging data: A combined approach of convolutional neural network and transformer model (CNN-transformer). Physics of Fluids, 36 , 026604.

Tan, X. H., Jiang, L., Li, X. P., Li, Y. Y., & Zhang, K. (2017). A complex model for the permeability and porosity of porous media. Chemical Engineering Science, 172 , 230–238.

Tian, J., Qi, C., Sun, Y., Yaseen, Z. M., & Pham, B. T. (2021). Permeability prediction of porous media using a combination of computational fluid dynamics and hybrid machine learning methods. Engineering Computations, 37 , 3455–3471.

Tong, Z., Meng, Y., Zhang, J., Wu, Y., Li, Z., Wang, D., Li, X., & Ou, G. (2024). Coal structure identification based on geophysical logging data: Insights from wavelet transform (WT) and particle Swarm optimization support vector machine (PSO-SVM) algorithms. International Journal of Coal Geology, 282 , 104435.

Urang, J. G., Ebong, E. D., Akpan, A. E., & Akaerue, E. I. (2020). A new approach for porosity and permeability prediction from well logs using artificial neural network and curve fitting techniques: A case study of Niger Delta, Nigeria. Journal of Applied Geophysics, 183 , 104207.

Vapnik, V. N. (1995). The nature of statistical learning theory . Springer.

Book   Google Scholar  

Wang, B., Wang, Z., Shen, B., Tang, D., Wu, Y., Wu, B., Li, S., & Zhang, J. (2024a). Evaluation of saturation interpretation methods for ultra-low permeability argillaceous sandstone gas reservoirs: A case study of the Huangliu formation in the Dongfang area. Processes, 12 , 271.

Wang, L., & Zhang, Y. (2024). Interpreting correlations in stress-dependent permeability, porosity, and compressibility of rocks: A viewpoint from finite strain theory. International Journal for Numerical and Analytical Methods in Geomechanics, 48 , 2000–2019.

Wang, Z., Fang, H., Sang, S., Guo, J., Yu, S., Liu, H., & Xu, H. (2024b). Comprehensive analysis of connectivity and permeability of a pore-fracture structure in low permeability seam of Huainan–Huaibei coalfield. ACS Omega, 9 , 15357–15371.

Wu, G., Lü, Z. T., & Wu, Z. S. (2006). Strength and ductility of concrete cylinders confined with FRP composites. Construction and Building Materials, 20 , 134–148.

Wu, J., Xu, H., Xiong, B., Fang, C., Wang, S., Zong, P., Liu, D., & Xin, F. (2024). A new method for investigating the impact of temperature on in-situ reservoir properties using high-temperature AFM. Geothermics, 120 , 103006.

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., & Philip, S. Y. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14 , 1–37.

Yalamanchi, P., & Datta Gupta, S. (2024). Estimation of pore structure and permeability in tight carbonate reservoir based on machine learning (ML) algorithm using SEM images of Jaisalmer sub-basin, India. Scientific Repoorts, 14 , 930.

Yasuda, T., Ookawara, S., Yoshikawa, S., & Matsumoto, H. (2021). Machine learning and data-driven characterization framework for porous materials: Permeability prediction and channeling defect detection. Chemical Engineering Journal, 420 , 130069.

Zaremotlagh, S., Hezarkhani, A., & Sadeghi, M. (2016). Detecting homogenous clusters using whole-rock chemical compositions and REE patterns: A graph-based geochemical approach. Journal of Geochemical Exploration, 170 , 94–106.

Zhang, J., Wang, R., Jia, A., & Feng, N. (2024). Optimization and Application of XGBoost Logging Prediction Model for Porosity and Permeability Based on K-means Method. Applied Sciences, 14 , 3956.

Zhong, Z., Carr, T. R., Wu, X., & Wang, G. (2019). Application of a convolutional neural network in permeability prediction: A case study in the Jacksonburg-Stringtown oil field, West Virginia, USA. Geophysics, 84 , B363–B373.

Zhou, D., Tang, Y., Zhou, W., Wu, Z., Wu, Y., Yan, G., Huang, Z., Wang, H., Li, Z., Li, Y., (2024). Study on 4D geomechanical modelling for fault critical re-active stress evaluation in underground gas storage, In: International petroleum technology conference. IPTC, p. D021S049R007.

Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., Yu, W. H., & Wang, H. (2016). Fly ash-based geopolymer: clean production, properties and applications. Journal of Cleaner Production, 125 , 253–267.

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Hubei (Three Gorges Innovation Development Joint Fund grant No. 2022CFD031), this work was supported by Peking University Ordos Energy Research Institute, Huineng Kechuang Building, Minzu Road, Kangbashi District, Ordos City, Inner Mongolia, and the National Science Foundation for Young Scientists of China (12302507). Finally, we would like to express our sincere thanks and gratitude to all reviewers and editors for their time end efforts toward raising this work to the publication standards.

Author information

Authors and affiliations.

State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China

Edwin E. Nyakilla & Sun Guanhua

Peking University Ordos Energy Research Institute, Huineng Kechuang Building, Minzu Road, Kangbashi District, Ordos City, 017010, Inner Mongolia Autonomous Region, China

Edwin E. Nyakilla, Sun Guanhua, Hao Hongliang & Li Dan

Department of Petroleum Geology School of Earth Resources, China University of Geosciences, Wuhan, 430074, China

Grant Charles, Mouigni B. Nafouanti, Emanuel X. Ricky, Selemani N. Silingi, Elieneza N. Abelly, Eric R. Shanghvi, Safi Naqibulla, Mbega R. Ngata, Erasto Kasala, Alaa Abdulmalik & Mbula N. Nadege

Department of Geology, Earth Sciences Institute of Shinyanga, (ESIS), P.O. Box 1016, Shinyanga, Tanzania

Selemani N. Silingi

Mbeya University of Science and Technology (MUST), P.O. Box 131, Mbeya, Tanzania

Melckzedeck Mgimba

Colledge of Petroleum Engineering, China University of Petroleum (Beijing), Beijing, 102249, China

Johnson J. Kasali

School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, China

Fatna A. Said

You can also search for this author in PubMed   Google Scholar

Corresponding authors

Correspondence to Edwin E. Nyakilla , Sun Guanhua or Hao Hongliang .

Ethics declarations

Conflict of interest.

The authors declare there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Nyakilla, E.E., Guanhua, S., Hongliang, H. et al. Evaluation of Reservoir Porosity and Permeability from Well Log Data Based on an Ensemble Approach: A Comprehensive Study Incorporating Experimental, Simulation, and Fieldwork Data. Nat Resour Res (2024). https://doi.org/10.1007/s11053-024-10402-9

Download citation

Received : 25 March 2024

Accepted : 27 August 2024

Published : 18 September 2024

DOI : https://doi.org/10.1007/s11053-024-10402-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Machine learning
  • multivariate analysis
  • permeability
  • Find a journal
  • Publish with us
  • Track your research

Help | Advanced Search

Computer Science > Computer Vision and Pattern Recognition

Title: exploring 3d face reconstruction and fusion methods for face verification: a case-study in video surveillance.

Abstract: 3D face reconstruction (3DFR) algorithms are based on specific assumptions tailored to distinct application scenarios. These assumptions limit their use when acquisition conditions, such as the subject's distance from the camera or the camera's characteristics, are different than expected, as typically happens in video surveillance. Additionally, 3DFR algorithms follow various strategies to address the reconstruction of a 3D shape from 2D data, such as statistical model fitting, photometric stereo, or deep learning. In the present study, we explore the application of three 3DFR algorithms representative of the SOTA, employing each one as the template set generator for a face verification system. The scores provided by each system are combined by score-level fusion. We show that the complementarity induced by different 3DFR algorithms improves performance when tests are conducted at never-seen-before distances from the camera and camera characteristics (cross-distance and cross-camera settings), thus encouraging further investigations on multiple 3DFR-based approaches.
Comments: Accepted at T-CAP - Towards a Complete Analysis of People: Fine-grained Understanding for Real-World Applications, workshop in conjunction with the 18th European Conference on Computer Vision ECCV 2024
Subjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
Cite as: [cs.CV]
  (or [cs.CV] for this version)
  Focus to learn more arXiv-issued DOI via DataCite

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Journal Proposal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

materials-logo

Article Menu

experimental study methods

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Experimental study on the frost resistance of basalt fiber reinforced concrete.

experimental study methods

1. Introduction

2. raw materials and experiments methods, 2.1. raw materials, 2.2. concrete mix design and curing conditions, 2.3. testing, 2.3.1. compressive strength test, 2.3.2. freeze-thaw cycle test, 2.3.3. sem test, 2.3.4. mip test, 3. results and discussion, 3.1. appearance changes of concrete, 3.4. compressive strength, 3.5. microscopic structure analysis, 3.6. pore structure of bfrc, 4. conclusions, author contributions, institutional review board statement, informed consent statement, data availability statement, conflicts of interest.

  • Li, Y.; Zhang, J.; He, Y.; Huang, G.; Li, J.; Niu, Z.; Gao, B. A review on durability of basalt fiber reinforced concrete. Compos. Sci. Technol. 2022 , 225 , 109519. [ Google Scholar ] [ CrossRef ]
  • Dilbas, H.; Çakır, Ö. Influence of basalt fiber on physical and mechanical properties of treated recycled aggregate concrete. Construct. Build. Mater. 2020 , 254 , 119216. [ Google Scholar ] [ CrossRef ]
  • Scalici, T.; Pitarresi, G.; Badagliacco, D.; Fiore, V.; Valenza, A. Mechanical properties of basalt fiber reinforced composites manufactured with different vacuum assisted impregnation techniques. Compos. Part B Eng. 2016 , 104 , 35–43. [ Google Scholar ] [ CrossRef ]
  • Sim, J.; Park, C.; Moon, D.Y. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. Part B: Eng. 2005 , 36 , 504–512. [ Google Scholar ] [ CrossRef ]
  • Zhang, H.; Wang, B.; Xie, A.; Qi, Y. Experimental study on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete. Constr. Build. Mater. 2017 , 152 , 154–167. [ Google Scholar ] [ CrossRef ]
  • Özkan, S.; Demir, F. The hybrid effects of PVA fiber and basalt fiber on mechanical performance of cost effective hybrid cementitious composites. Constr. Build. Mater. 2020 , 263 , 120564. [ Google Scholar ] [ CrossRef ]
  • Huang, H.; Yuan, Y.; Zhang, W.; Zhu, L. Property Assessment of High-Performance Concrete Containing Three Types of Fibers. Int. J. Concr. Struct. Mater. 2021 , 15 , 1–17. [ Google Scholar ] [ CrossRef ]
  • Jiang, C.; Fan, K.; Wu, F.; Chen, D. Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Mater. Des. 2014 , 58 , 187–193. [ Google Scholar ]
  • Branston, J.; Das, S.; Kenno, S.Y.; Taylor, C. Mechanical behaviour of basalt fibre reinforced concrete. Constr. Build. Mater. 2016 , 124 , 878–886. [ Google Scholar ] [ CrossRef ]
  • Dias, D.P.; Thaumaturgo, C. Fracture toughness of geopolymeric concretes reinforced with basalt fibers. Cem. Concr. Compos. 2005 , 27 , 49–54. [ Google Scholar ] [ CrossRef ]
  • Li, W.; Xu, J. Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading. Mater. Sci. Eng. A 2009 , 505 , 178–186. [ Google Scholar ] [ CrossRef ]
  • Quispe, C.; Lino, D.; Rodríguez, J.; Hinostroza, A. Concrete Cracking Control in Underwater Marine Structures using Basalt Fiber. IOP Conf. Ser. Mater. Sci. Eng. 2021 , 1054 , 012008. [ Google Scholar ] [ CrossRef ]
  • Guo, Y.; Hu, X.; Lv, J. Experimental study on the resistance of basalt fiber-reinforced concrete to chloride penetration. Construct. Build. Mater. 2019 , 223 , 142–155. [ Google Scholar ] [ CrossRef ]
  • Ren, D.; Yan, C.; Duan, P.; Zhang, Z.; Li, L.; Yan, Z. Durability performances of wollastonite, tremolite and basalt fiber-reinforced metakaolin geopolymer composites under sulfate and chloride attack. Constr. Build. Mater. 2017 , 134 , 56–66. [ Google Scholar ] [ CrossRef ]
  • Li, M.; Gong, F.; Wu, Z. Study on mechanical properties of alkali-resistant basalt fiber reinforced concrete. Constr. Build. Mater. 2020 , 245 , 118424. [ Google Scholar ] [ CrossRef ]
  • Yonggui, W.; Shuaipeng, L.; Hughes, P.; Yuhui, F. Mechanical properties and microstructure of basalt fiber and nano-silica reinforced recycled concrete after exposure to elevated temperatures. Construct. Build. Mater. 2020 , 247 , 118561. [ Google Scholar ] [ CrossRef ]
  • Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. A review on basalt fibre and its composites. Compos. Part B 2015 , 74 , 74–94. [ Google Scholar ] [ CrossRef ]
  • Metha, P.K. Durability of concrete—Fifty years of progress. In Proceedings of the 2nd CANMET/ACI International Conference on Durability, Montreal, QC, Canada, 4–9 August 1991; pp. 1–31. [ Google Scholar ]
  • Hang, M.; Cui, L.; Wu, J.; Sun, Z. Freezing-thawing damage characteristics and calculation models of aerated concrete. J. Build. Eng. 2019 , 28 , 101072. [ Google Scholar ] [ CrossRef ]
  • Pigeon, M. Durability of Concrete in Cold Climates ; CRC Press: Boca Raton, FL, USA, 2014. [ Google Scholar ]
  • Duan, A.; Jin, W.; Qian, J. Effect of freeze–thaw cycles on the stress–strain curves of unconfined and confined concrete. Mater. Struct. 2011 , 44 , 1309–1324. [ Google Scholar ] [ CrossRef ]
  • Liu, M.; Liu, D.; Qiao, P.; Sun, L. Characterization of microstructural damage evolution of freeze-thawed shotcrete by an integrative micro-CT and nanoindentation statistical approach. Cem. Concr. Compos. 2021 , 117 , 103909. [ Google Scholar ] [ CrossRef ]
  • Yang, Z.; Weiss, W.J.; Olek, J. Water Transport in Concrete Damaged by Tensile Loading and Freeze–Thaw Cycling. J. Mater. Civ. Eng. 2006 , 18 , 424–434. [ Google Scholar ] [ CrossRef ]
  • Li, Y.; Wang, R.; Zhao, Y. Effect of coupled deterioration by freeze-thaw cycle and carbonation on concrete produced with coarse recycled concrete aggregates. J. Ceram. Soc. Jpn. 2017 , 125 , 36–45. [ Google Scholar ] [ CrossRef ]
  • Wang, R.; Zhang, Q.; Li, Y. Deterioration of concrete under the coupling effects of freeze–thaw cycles and other actions: A review. Constr. Build. Mater. 2022 , 319 , 126045. [ Google Scholar ] [ CrossRef ]
  • Jin, S.J.; Li, Z.L.; Zhang, J.; Wang, Y.L. Experimental study on anti-freezing performance of reinforced concrete of basalt fiber under corrosion condition. Eng. Mech. 2015 , 32 , 178–183. [ Google Scholar ]
  • Jin, S.J.; Li, Z.L.; Zhang, J.; Wang, Y.L. Experimental Study on the Performance of the Basalt Fiber Concrete Resistance to Freezing and Thawing. Appl. Mech. Mater. 2014 , 584–586 , 1304–1308. [ Google Scholar ]
  • Fan, X.C.; Wu, D.; Chen, H. Experimental Research on the Freeze-Thaw Resistance of Basalt Fiber Reinforced Concrete. Adv. Mater. Res. 2014 , 919 , 1912–1915. [ Google Scholar ]
  • Yan, J.; Ma, Y.; Zhang, X.; Yan, J. Analysis of frost resistance of basalt fiber cement solidified aeolian sand subgrade. J. Phys. Conf. Ser. 2020 , 1654 , 012118. [ Google Scholar ] [ CrossRef ]
  • Liu, J.; Zhao, S.; Liu, R.Q. Study on antifreeze properties and pore structure of basalt fiber reinforced concrete. J. Phys. Conf. Ser. 2020 , 1605 , 12151. [ Google Scholar ]
  • Li, W.; Liu, H.; Zhu, B.; Lyu, X.; Gao, X.; Liang, C. Mechanical Properties and Freeze–Thaw Durability of Basalt Fiber Reactive Powder Concrete. Appl. Sci. 2020 , 10 , 5682. [ Google Scholar ] [ CrossRef ]
  • Şahin, F.; Uysal, M.; Canpolat, O.; Aygörmez, Y.; Cosgun, T.; Dehghanpour, H. Effect of basalt fiber on metakaolin-based geopolymer mortars containing rilem, basalt and recycled waste concrete aggregates. Construct. Build. Mater. 2021 , 301 , 124113. [ Google Scholar ] [ CrossRef ]
  • Mermerdaş, K.; İpek, S.; Mahmood, Z. Visual inspection and mechanical testing of fly ash-based fibrous geopolymer composites under freeze-thaw cycles. Construct. Build. Mater. 2021 , 283 , 122756. [ Google Scholar ] [ CrossRef ]
  • Gao, C.; Du, G.; Guo, Q.; Zhuang, Z. Static and Dynamic Behaviors of Basalt Fiber Reinforced Cement-Soil after Freeze-Thaw Cycle. KSCE J. Civ. Eng. 2020 , 24 , 3573–3583. [ Google Scholar ] [ CrossRef ]
  • Gao, C.; Du, G.; Guo, Q.; Xia, H.; Pan, H.; Cai, J. Dynamic and Static Splitting-Tensile Properties of Basalt Fiber–Reinforced Cemented Clay Under Freeze–Thaw Cycles. J. Mater. Civ. Eng. 2020 , 32 , 06020014. [ Google Scholar ] [ CrossRef ]
  • Zhao, Y.; Wang, L.; Lei, Z.; Han, X.; Xing, Y. Experimental study on dynamic mechanical properties of the basalt fiber reinforced concrete after the freeze-thaw based on the digital image correlation method. Constr. Build. Mater. 2017 , 147 , 194–202. [ Google Scholar ] [ CrossRef ]
  • Zhao, Y.; Wang, L.; Lei, Z.; Han, X.; Shi, J. Study on bending damage and failure of basalt fiber reinforced concrete under freeze-thaw cycles. Constr. Build. Mater. 2018 , 163 , 460–470. [ Google Scholar ] [ CrossRef ]
  • Hu, X.; Guo, Y.; Lv, J.; Mao, J. The Mechanical Properties and Chloride Resistance of Concrete Reinforced with Hybrid Polypropylene and Basalt Fibres. Materials 2019 , 12 , 2371. [ Google Scholar ] [ CrossRef ]
  • JGJ/T 221-2010 ; Technical Specification for Application of Fiber Reinforced Concrete. China Architecture & Building Press: Beijing, China, 2010.
  • JGJ55-2011 ; Code for Design of Ordinary Concrete Mix Proportions. China Architecture & Building Press: Beijing, China, 2011.
  • GB/T 50081-2019 ; Standard for Test Method of Concrete Physical and Mechanical Properties. China Architecture and Building Press: Beijing, China, 2019.
  • GB/T 50082-2009 ; Standard for Test Methods of Long-Term Performance and Durability of Ordinary Concrete. China Architecture and Building Press: Beijing, China, 2009.
  • Sulima, I.; Boczkai, S.; Jaworska, L. SEM and TEM characterization of stainless steel composites reinforce with TiB2. Mater. Charact. 2016 , 118 , 560–569. [ Google Scholar ] [ CrossRef ]
  • Al-Obaidi, H.N. Beam analysis of scanning electron microscope according to the mirror effect phenomenon. J. Electrost. 2015 , 74 , 102–107. [ Google Scholar ] [ CrossRef ]
  • Kumar, R.; Bhattacharjee, B. Assessment of permeation quality of concrete through mercury intrusion porosimetry. Cem. Concr. Res. 2004 , 34 , 321–328. [ Google Scholar ] [ CrossRef ]
  • Zhang, J.; Zhao, J.; Zhang, Y.; Gao, Y.; Zheng, Y. Instantaneous chloride diffusion coefficient and its time dependency of concrete exposed to a marine tidal environment. Constr. Build. Mater. 2018 , 167 , 225–234. [ Google Scholar ] [ CrossRef ]
  • Zhu, X.; Chen, X.; Bai, Y.; Ning, Y.; Zhang, W. Evaluation of fracture behavior of high-strength hydraulic concrete damaged by freeze-thaw cycle test. Constr. Build. Mater. 2022 , 321 , 126346. [ Google Scholar ] [ CrossRef ]
  • Coussy, O.; Monteiro, P.J.M. Poroelastic model for concrete exposed to freezing temperatures. Cem. Concr. Res. 2008 , 38 , 40–48, Erratum in Cem. Concr. Res. 2009 , 39 , 371–372. [ Google Scholar ] [ CrossRef ]
  • Algin, Z.; Ozen, M. The properties of chopped basalt fibre reinforced self-compacting concrete. Constr. Build. Mater. 2018 , 186 , 678–685. [ Google Scholar ] [ CrossRef ]
  • Hao, L.; Liu, Y.; Wang, W.; Zhang, J.; Zhang, Y. Effect of salty freeze-thaw cycles on durability of thermal insulation concrete with recycled aggregates. Constr. Build. Mater. 2018 , 189 , 478–486. [ Google Scholar ] [ CrossRef ]
  • Kessler, S.; Thiel, C.; Grosse, C.U.; Gehlen, C. Effect of freeze–thaw damage on chloride ingress into concrete. Mater. Struct. 2017 , 50 , 121. [ Google Scholar ] [ CrossRef ]
  • Yuan, J.; Wu, Y.; Zhang, J. Characterization of air voids and frost resistance of concrete based on industrial computerized tomographical technology. Constr. Build. Mater. 2018 , 168 , 975–983. [ Google Scholar ] [ CrossRef ]
  • Setzer, M.J. Micro-Ice-Lens Formation in Porous Solid. J. Colloid Interface Sci. 2001 , 243 , 193–201. [ Google Scholar ] [ CrossRef ]
  • Chen, B.; Liu, J.Y. Contribution of hybrid fibres on the properties of the high strength lightweight concrete having good workability. Cem. Concr. Res. 2005 , 35 , 913–917. [ Google Scholar ] [ CrossRef ]
  • Sadrmomtazi, A.; Tahmouresi, B.; Saradar, A. Effects of silica fume on mechanical strength and microstructure of basalt fiber reinforced cementitious composites (BFRCC). Constr. Build. Mater. 2018 , 162 , 321–333. [ Google Scholar ] [ CrossRef ]
  • Wang, R.; Meyer, C. Performance of cement mortar made with recycled high impact polystyrene. Cem. Concr. Compos. 2012 , 34 , 975–981. [ Google Scholar ] [ CrossRef ]
  • Jalasutram, S.; Sahoo, D.R.; Matsagar, V. Experimental investigation of the mechanical properties of basalt fiber-reinforced concrete. Struct. Concr. 2017 , 18 , 292–302. [ Google Scholar ] [ CrossRef ]
  • Shen, P.; Liu, Z. Study on the hydration of young concrete based on dielectric property measurement. Constr. Build. Mater. 2019 , 196 , 354–361. [ Google Scholar ] [ CrossRef ]
  • Qiu, W.-L.; Teng, F.; Pan, S.-S. Damage constitutive model of concrete under repeated load after seawater freeze-thaw cycles. Constr. Build. Mater. 2020 , 236 , 117560. [ Google Scholar ] [ CrossRef ]
  • An, M.; Wang, Y.; Yu, Z. Damage mechanisms of ultra-high-performance concrete under freeze–thaw cycling in salt solution considering the effect of rehydration. Constr. Build. Mater. 2019 , 198 , 546–552. [ Google Scholar ] [ CrossRef ]
  • John, D.S. An unusual case of ground water sulphate attack on concrete. Cem. Concr. Res. 1982 , 12 , 633–639. [ Google Scholar ] [ CrossRef ]
  • Sun, L.F.; Jiang, K.; Zhu, X.; Xu, L. An alternating experimental study on the combined effect of freeze-thaw and chloride penetration in concrete. Constr. Build. Mater. 2020 , 252 , 119025. [ Google Scholar ] [ CrossRef ]
  • Borhan, T.M. Thermal and mechanical properties of basalt fibre reinforced concrete. World Acad. Sci. Eng. Technol. 2013 , 7 , 334–337. [ Google Scholar ]
  • Jun, W.; Ye, Z. Experimental research on mechanical and working properties of non-dipping chopped basalt fiber reinforced concrete. In Proceedings of the 3rd International Conference on Information Management, Innovation Management and Industrial Engineering, Shenzhen, China, 26–27 November 2010; pp. 635–637. [ Google Scholar ]
  • Gao, C.; Wu, W. Using ESEM to analyze the microscopic property of basalt fiber reinforced asphalt concrete. Int. J. Pavement Res. Technol. 2018 , 11 , 374–380. [ Google Scholar ] [ CrossRef ]
  • Sutter, L.; Peterson, K.; Touton, S.; Van Dam, T.; Johnston, D. Petrographic evidence of calcium oxychloride formation in mortars exposed to magnesium chloride solution. Cem. Concr. Res. 2006 , 36 , 1533–1541. [ Google Scholar ] [ CrossRef ]
  • Shi, C. Formation and stability of 3CaO⋅CaCl 2 ⋅12H 2 O. Cem. Concr. Res. 2001 , 31 , 1373–1375. [ Google Scholar ]
  • Kurdowski, W. The protective layer and decalcification of C-S-H in the mechanism of chloride corrosion of cement paste. Cem. Concr. Res. 2004 , 34 , 1555–1559. [ Google Scholar ] [ CrossRef ]
  • Afroughsabet, V.; Ozbakkaloglu, T. Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Constr. Build. Mater. 2015 , 94 , 73–82. [ Google Scholar ] [ CrossRef ]
  • Gesoglu, M.; Güneyisi, E.; Nahhab, A.H.; Yazıcı, H. Properties of ultra-high performance fiber reinforced cementitious composites made with gypsum-contaminated aggregates and cured at normal and elevated temperatures. Constr. Build. Mater. 2015 , 93 , 427–438. [ Google Scholar ] [ CrossRef ]
  • Khan, M.; Cao, M.L.; Ali, M. Effect of basalt fibers on mechanical properties of calcium carbonate whisker-steel fiber reinforced concrete. Constr. Build. Mater. 2018 , 192 , 742–753. [ Google Scholar ] [ CrossRef ]
  • Wu, Z.W. High performance concrete and its fine mineral admixture. Arch. Technol. 1999 , 30 , 160–163. [ Google Scholar ]

Click here to enlarge figure

The Chemical Composition (%)The Physical Properties
SiO Al O Fe O Na OMgOK OCaOMnOSpecific Gravity (kg/m )Specific Surface (m /kg)
20.942.844.640.481.650.2669.030.163140350
Length (mm)Diameter (μm)Density (g/cm )Tensile Strength (MPa)Elastic Modulus (GPa)Interlaminar Shear Strength (MPa)Elongation (%)Hygroscopicity (%)
12162.65263088.9562.99<0.1
SeriesMix IDCementWaterFine AggregateCoarse AggregateBF (%)SP (%)Curing Conditions
kg/m
AA0500160696104400.92Normal curing
A150016069610440.151.2
A250016069610440.301.84
A350016069610440.452.3
A450016069610440.602.7
BB0500160696104400.92Short-term curing
B150016069610440.151.2
B250016069610440.301.84
CC0500160696104400.92Seawater curing
C150016069610440.151.2
C250016069610440.301.84
SeriesLoading Rate (MPa/s)
Before FTCsAfter FTCs
A0.80.7
B0.70.5
C0.70.4
Specimen IDA0A1A2A3A4B0B1B2C0C1C2
Number of FTCs500600600600600100175175125125125
Specimen IDA0A1A2A3A4B0B1B2C0C1C2
Initial mass10.129.879.729.699.6510.099.759.6210.139.769.43
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Guo, Y.; Gao, J.; Lv, J. Experimental Study on the Frost Resistance of Basalt Fiber Reinforced Concrete. Materials 2024 , 17 , 4593. https://doi.org/10.3390/ma17184593

Guo Y, Gao J, Lv J. Experimental Study on the Frost Resistance of Basalt Fiber Reinforced Concrete. Materials . 2024; 17(18):4593. https://doi.org/10.3390/ma17184593

Guo, Yihong, Jianlin Gao, and Jianfu Lv. 2024. "Experimental Study on the Frost Resistance of Basalt Fiber Reinforced Concrete" Materials 17, no. 18: 4593. https://doi.org/10.3390/ma17184593

Article Metrics

Further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

IMAGES

  1. All Types Of Experimental Research Methods Pdf Download

    experimental study methods

  2. All Types Of Experimental Research Methods Pdf Download

    experimental study methods

  3. Experimental research

    experimental study methods

  4. 15 Experimental Design Examples (2024)

    experimental study methods

  5. All Types Of Experimental Research Methods Pdf Download

    experimental study methods

  6. What is Experimental Research & How is it Significant for Your Business

    experimental study methods

VIDEO

  1. HOW TO WRITE THE METHODOLOGY

  2. Part 4: Experimental Design Techniques

  3. Experimental Method & Case Study Method l Methods of Psychology in Hindi #psychology

  4. Experimental Method A scientific Method to study behavior, Methods of Psychology, Control, experime

  5. Types of Experimental Design

  6. Research Method

COMMENTS

  1. Exploring Experimental Research: Methodologies, Designs, and

    Experimental research serves as a fundamental scientific method aimed at unraveling cause-and-effect relationships between variables across various disciplines. This paper delineates the key ...

  2. Guide to Experimental Design

    Step 1: Define your variables. You should begin with a specific research question. We will work with two research question examples, one from health sciences and one from ecology: Example question 1: Phone use and sleep. You want to know how phone use before bedtime affects sleep patterns.

  3. Experimental Design

    Experimental design is a process of planning and conducting scientific experiments to investigate a hypothesis or research question. It involves carefully designing an experiment that can test the hypothesis, and controlling for other variables that may influence the results. Experimental design typically includes identifying the variables that ...

  4. Experimental Method In Psychology

    There are three types of experiments you need to know: 1. Lab Experiment. A laboratory experiment in psychology is a research method in which the experimenter manipulates one or more independent variables and measures the effects on the dependent variable under controlled conditions. A laboratory experiment is conducted under highly controlled ...

  5. A Quick Guide to Experimental Design

    Step 1: Define your variables. You should begin with a specific research question. We will work with two research question examples, one from health sciences and one from ecology: Example question 1: Phone use and sleep. You want to know how phone use before bedtime affects sleep patterns.

  6. Experimental Research Designs: Types, Examples & Advantages

    Experimental research design is a framework of protocols and procedures created to conduct experimental research with a scientific approach using two sets of variables. Herein, the first set of variables acts as a constant, used to measure the differences of the second set. The best example of experimental research methods is quantitative research.

  7. Experimental Research Design

    In the language of research methods, in randomized experiments, the assignment of research subjects to experimental conditions is exogenous. Exogenous in this context means outside or external to everyone involved in the experiment including the research subjects, treatment providers, and researchers - only randomization affects experimental ...

  8. Experimental Design: Types, Examples & Methods

    Three types of experimental designs are commonly used: 1. Independent Measures. Independent measures design, also known as between-groups, is an experimental design where different participants are used in each condition of the independent variable. This means that each condition of the experiment includes a different group of participants.

  9. Experimental Research: What it is + Types of designs

    The classic experimental design definition is: "The methods used to collect data in experimental studies.". There are three primary types of experimental design: The way you classify research subjects based on conditions or groups determines the type of research design you should use. 01. Pre-Experimental Design.

  10. Experimental Research

    Experimental science is the queen of sciences and the goal of all speculation. Roger Bacon (1214-1294) Download chapter PDF. Experiments are part of the scientific method that helps to decide the fate of two or more competing hypotheses or explanations on a phenomenon. The term 'experiment' arises from Latin, Experiri, which means, 'to ...

  11. How the Experimental Method Works in Psychology

    The experimental method involves manipulating one variable to determine if this causes changes in another variable. This method relies on controlled research methods and random assignment of study subjects to test a hypothesis. For example, researchers may want to learn how different visual patterns may impact our perception.

  12. Experimental Research Designs: Types, Examples & Methods

    Data collection methods in experimental research are the different ways in which data can be collected for experimental research. They are used in different cases, depending on the type of research being carried out. 1. Observational Study. This type of study is carried out over a long period. It measures and observes the variables of interest ...

  13. Guide to experimental research design

    Experimental design is a research method that enables researchers to assess the effect of multiple factors on an outcome.. You can determine the relationship between each of the variables by: Manipulating one or more independent variables (i.e., stimuli or treatments). Applying the changes to one or more dependent variables (i.e., test groups or outcomes)

  14. Types of Research Designs Compared

    You can also create a mixed methods research design that has elements of both. Descriptive research vs experimental research. Descriptive research gathers data without controlling any variables, while experimental research manipulates and controls variables to determine cause and effect.

  15. Experimental research

    10 Experimental research. 10. Experimental research. Experimental research—often considered to be the 'gold standard' in research designs—is one of the most rigorous of all research designs. In this design, one or more independent variables are manipulated by the researcher (as treatments), subjects are randomly assigned to different ...

  16. Experimental Design: Definition and Types

    An experimental design is a detailed plan for collecting and using data to identify causal relationships. Through careful planning, the design of experiments allows your data collection efforts to have a reasonable chance of detecting effects and testing hypotheses that answer your research questions. An experiment is a data collection ...

  17. Experimental Studies and Observational Studies

    Definitions. The experimental study is a powerful methodology for testing causal relations between one or more explanatory variables (i.e., independent variables) and one or more outcome variables (i.e., dependent variable). In order to accomplish this goal, experiments have to meet three basic criteria: (a) experimental manipulation (variation ...

  18. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  19. 19+ Experimental Design Examples (Methods + Types)

    1) True Experimental Design. In the world of experiments, the True Experimental Design is like the superstar quarterback everyone talks about. Born out of the early 20th-century work of statisticians like Ronald A. Fisher, this design is all about control, precision, and reliability.

  20. Best practices for implementing experimental research methods

    Experimental research methods have a long history across a number of different disciplines—including consumer research. Although experiments are just one of many alternative research methods, experiments are notable because they are the best way to establish causation. This makes experiments a powerful tool when researchers need to show cause ...

  21. Research Methods: A Student's Comprehensive Guide: Fundamentals

    Key Research Methods Qualitative Methods. Focus: Understanding the nuances and depth of non-numerical data, offering rich, detailed insights into your research topic. Common Techniques: Interviews, focus groups, case studies, and content analysis. Application: Best for exploring new ideas, developing theories, and understanding individual or group experiences in detail.

  22. Numerical and Experimental Study on the Particle Erosion and Gas

    The experimental and simulative methods were used to study the hydrodynamic characteristics of gas-solid two-phase flow and particle erosion in a codirectional swirling spouted bed (CSSB). The four-zone flow of particles was found in the filling zone: separation zone, convergence zone, re-separation zone, and particle accumulation zone. The internal reinforced structure effectively ...

  23. Empowering medical students: bridging gaps with high-fidelity

    This mixed-methods prospective simulation study involved medical students in emergency medicine internships, examining self-efficacy perceptions regarding ALS technical skills(ALS-SEP). ... making it impossible to maintain a control group in subsequent iterations of the study. The larger size of the experimental group was facilitated by the ...

  24. Evaluation of Reservoir Porosity and Permeability from Well Log Data

    Permeability and porosity are key parameters in reservoir characterization for understanding hydrocarbon flow behavior. While traditional laboratory core analysis is time-consuming, machine learning has emerged as a valuable tool for more efficient and accurate estimation. This paper proposes an ensemble technique called adaptive boosting (AdaBoost) for porosity and permeability estimation ...

  25. FlexibleCP: A data augmentation strategy for traffic sign detection

    The contribution of this paper consists of the following aspects: (1) Development of FlexibleCP methodology: We introduce FlexibleCP, an innovative data augmentation strategy aimed at significantly enhancing the performance of traffic sign detection systems. (2) Experimental validation and comparative analysis: Our method, rigorously tested on CTSD and GTSDB datasets, demonstrates significant ...

  26. Exploring 3D Face Reconstruction and Fusion Methods for Face

    View PDF HTML (experimental) Abstract: 3D face reconstruction (3DFR) algorithms are based on specific assumptions tailored to distinct application scenarios. These assumptions limit their use when acquisition conditions, such as the subject's distance from the camera or the camera's characteristics, are different than expected, as typically happens in video surveillance.

  27. Experimental Study on the Frost Resistance of Basalt Fiber ...

    Some scholars have performed research related to the frost resistance of BFRC. Jin et al. [26,27] carried out experimental research on the frost resistance of BFRC with the volume content change of BF in a non-corrosive environment.He indicated that the decreasing trend of the relative elastic modulus of BFRC tended to level off with increasing BF dosage, meaning the addition of BF improved ...